
Lecture 2
Data Summarization and Manipulation

Andrew Jaffe

Instructor

Start New Script
Start a new script for lecture 2, and add the appropriate header

2/62

Data Output
While its nice to be able to read in a variety of data formats, it's equally important to be able to output

data somewhere.

write.table(): prints its required argument x (after converting it to a data frame if it is not one nor a

matrix) to a file or connection.

write.table(x,file = "", append = FALSE, quote = TRUE, sep = " ",
 eol = "\n", na = "NA", dec = ".", row.names = TRUE,
 col.names = TRUE, qmethod = c("escape", "double"),
 fileEncoding = "")

3/62

Data Output
x: the R data frame or matrix you want to write

file: the file name where you want to R object written. It can be an absolute path, or a filename (which

writes the file to your working directory)

sep: what character separates the columns?

row.names: I like setting this to FALSE because I email these to collaborators who open them in Excel

"," = .csv - Note there is also a write.csv() function

"\t" = tab delimited

·

·

4/62

Data Output
For example, from the Homework 1 Dataset:

Note that row.names=TRUE would make the first column contain the row names, here just the numbers

1:nrow(dat2), which is not very useful for excel.

> dat = read.csv("C:/Users/Andrew/Dropbox/WinterRClass/Datasets/OpenBaltimore/Charm_City_Circulator_Ridership.csv"
+ header = T, as.is = T)
> dat2 = dat[, c("day", "date", "orangeAverage", "purpleAverage", "greenAverage",
+ "bannerAverage", "daily")]
> write.csv(dat2, file = "charmcitycirc_reduced.csv", row.names = FALSE)

5/62

Saving R Data
It's very useful to be able to save collections of R objects for future analyses.

For example, if a task takes several hours(/days) to run, it might be nice to run it once and save the

results for downstream analyses.

save(...,file="[name].rda")

where "..." is as many R objects, referenced by unquoted variable names, as you want to save.

For example, from the homework:

> save(dat, dat2, file = "charmcirc.rda")

6/62

Saving R Data
You also probably have noticed the prompt when you close R about saving your workspace. The

workspace is the collection of R objects and custom R functions in your current environment. You can

check the workspace with ls():

Saving the workspace will save all of these files in your current working directory as a hidden file called

".Rdata". The function save.image() also saves the entire workspace, but you can give your desired file

name as an input (which is nicer because the file is not hidden).

Note that R Studio should be able to open any .rda or .Rdata file. Opening one of these file types from

Windows Explorer or OSX's Finder loads all of the objects into your workspace and changes your

working directory to wherever the file was located.

> ls()

[1] "dat" "dat2" "f" "x"

7/62

Loading R Data
You can easily load any '.rda' or '.Rdata' file with the load() function:

Note that this saves the R object names as character strings in an object called 'tmp', which is nice if

you already have a lot of items in your working directory, and/or you don't know exactly which got

loaded in

> tmp = load("charmcirc.rda")
> tmp

[1] "dat" "dat2"

> ls()

[1] "dat" "dat2" "f" "tmp" "x"

8/62

Removing R Data
You can easily remove any R object(s) using the rm() or remove() functions, and they are no longer in

your R environment (which you can confirm with running 'ls()')

You can also remove all of the objects you have added to your worksapce with:

rm(list = ls())

9/62

Subsetting Data
Often you only want to look at subsets of a data set at any given time. As a review, elements of an R

object are selected using the brackets.

Today we are going to look at more flexible ways of identifying which rows of a dataset to select

10/62

Subsetting Data
Note: there is a convenience function for subsetting, called subset(), which takes the R object, the

logical statement to identify the index of the rows to take, and then an option to select a subset of the

columns:

However, the function comes with a warning in the help file:

"Warning: This is a convenience function intended for use interactively. For programming it is better to

use the standard subsetting functions like [, and in particular the non-standard evaluation of argument

subset can have unanticipated consequences."

Therefore, we are only going to use the brackets for selecting data in this class.

subset(x, subset, select, drop = FALSE, ...)

11/62

Subsetting Data
You can put a negative integers inside brackets to remove these indices from the data.

> x = c(1, 3, 77, 54, 23, 7, 76, 5)
> x[1:3] # first 3

[1] 1 3 77

> x[-2] # all but the second

[1] 1 77 54 23 7 76 5

12/62

Subsetting Data
Note that you have to be careful with this syntax when dropping more than 1 element:

> x[-c(1, 2, 3)] # drop first 3

[1] 54 23 7 76 5

> x[-1:3] # shorthand

Error: only 0's may be mixed with negative subscripts

> x[-(1:3)] # needs parentheses

[1] 54 23 7 76 5

13/62

Subsetting Data
Sometimes you want to select a specific sequence of rows from a data frame. Here, the seq()

command comes in handy. We already saw one specific application using the colon, but seq() is much

more flexible.

where 'from' and 'to' are integers. 'by' can be any numeric value.

seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
 length.out = NULL, along.with = NULL, ...)
Typical usages are:
#seq(from, to)
#seq(from, to, by=)
#seq(from, to, length.out=)
#seq(along.with=)
#seq(from)
#seq(length.out=)

14/62

seq()
> seq(1, 10, by = 2) # odds

[1] 1 3 5 7 9

> seq(2, 10, by = 2) # evens

[1] 2 4 6 8 10

> seq(1, 10, length.out = 3)

[1] 1.0 5.5 10.0

15/62

seq()
The 'along.with' argument becomes useful later when we talk about R programming, but here is taste:

This is essentially a sequence from 1 to length(x)

> x

[1] 1 3 77 54 23 7 76 5

> seq(along = x)

[1] 1 2 3 4 5 6 7 8

16/62

seq()
'by' can also be negative, but be careful. You can also create sequences from larger numbers to

smaller numbers.

> seq(1, 10, by = -2) # odds

Error: wrong sign in 'by' argument

> seq(10, 1, by = -2) # odds

[1] 10 8 6 4 2

> seq(10, 1, by = 2) # evens

Error: wrong sign in 'by' argument

17/62

seq()
We can take all of the even rows in a data frame:

> head(dat2, 2) # only the first 2 rows

 day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952 NA NA
2 Tuesday 01/12/2010 796 NA NA
 bannerAverage daily
1 NA 952
2 NA 796

> head(dat2[seq(2, nrow(dat2), by = 2),], 2)

 day date orangeAverage purpleAverage greenAverage
2 Tuesday 01/12/2010 796 NA NA
4 Thursday 01/14/2010 1214 NA NA
 bannerAverage daily
2 NA 796
4 NA 1214

18/62

Selecting on multiple queries
You can select rows where a value is allowed to be several categories. In the homework, we had to

subset the Charm City Circulator dataset by each day. How can we select rows that are 1 of 2 days?

The %in% operator proves useful: '%in% is a more intuitive interface as a binary operator, which

returns a logical vector indicating if there is a match or not for its left operand.'

> (dat$day %in% c("Monday", "Tuesday"))[1:20] # select entries that are monday or tuesday

 [1] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[12] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

> which(dat$day %in% c("Monday", "Tuesday"))[1:20] # which indices are true?

 [1] 1 2 8 9 15 16 22 23 29 30 36 37 43 44 50 51 57 58 64 65

19/62

Selecting on multiple queries
What about selecting rows based on the values of two variables? We can 'chain' together logical

statements using the following:

'&' : AND

'|' : OR

·

·

> # which Mondays had more than 3000 average riders?
> which(dat$day == "Monday" & dat$daily > 3000)[1:20]

 [1] 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260
[18] 267 274 281

20/62

AND
Which days had more than 10000 riders overall and more than 3000 riders on the purple line?

> Index = which(dat$daily > 10000 & dat$purpleAverage > 3000)
> length(Index) # the number of days

[1] 280

> head(dat2[Index,], 2) # first 2 rows

 day date orangeAverage purpleAverage greenAverage
551 Friday 07/15/2011 4705 6293 NA
552 Saturday 07/16/2011 4624 7622 NA
 bannerAverage daily
551 NA 10998
552 NA 12246

21/62

OR
Which days had more than 10000 riders overall or more than 3000 riders on the purple line?

> Index = which(dat$daily > 10000 | dat$purpleAverage > 3000)
> length(Index) # the number of days

[1] 600

> head(dat2[Index,], 2) # first 2 rows

 day date orangeAverage purpleAverage greenAverage
180 Friday 07/09/2010 2847 3094 NA
188 Saturday 07/17/2010 1513 3562 NA
 bannerAverage daily
180 NA 5941
188 NA 5076

22/62

Subsetting with missing data
Note that logical statements cannot evaluate missing values, and therefore returns an NA:

> dat$purpleAverage[1:10] > 0

 [1] NA NA NA NA NA NA NA NA NA NA

> which(dat$purpleBoardings > 0)[1:10]

 [1] 148 149 150 151 152 153 154 155 156 157

23/62

Subsetting with missing data
You can use the complete.cases() function on a data frame, matrix, or vector, which returns a logical

vector indicating which cases are complete, i.e., they have no missing values.

24/62

Subsetting columns
We touched on this last class. You can select columns using the variable/column names or column

index

> dat[1:3, c("purpleAverage", "orangeAverage")]

 purpleAverage orangeAverage
1 NA 952
2 NA 796
3 NA 1212

> dat[1:3, c(8, 5)]

 purpleAverage orangeAverage
1 NA 952
2 NA 796
3 NA 1212

25/62

Subsetting columns
You can also remove a column by setting its value to NULL

> tmp = dat2
> tmp$daily = NULL
> tmp[1:3,]

 day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952 NA NA
2 Tuesday 01/12/2010 796 NA NA
3 Wednesday 01/13/2010 1212 NA NA
 bannerAverage
1 NA
2 NA
3 NA

26/62

Manipulating Data
So far, we've covered how to read in data, and select specific rows and columns. All of these steps

help you set up your analysis or data exploration. Now we are going to cover manipulating your data

and summarizing it using basic statistics and visualizations.

27/62

Sorting and ordering
sort(x, decreasing=FALSE): 'sort (or order) a vector or factor (partially) into ascending or descending

order.' Note that this returns an object that has been sorted/ordered

order(...,decreasing=FALSE): 'returns a permutation which rearranges its first argument into ascending

or descending order, breaking ties by further arguments.' Note that this returns the indices

corresponding to the sorted data.

> x = c(1, 4, 7, 6, 4, 12, 9, 3)
> sort(x)

[1] 1 3 4 4 6 7 9 12

> order(x)

[1] 1 8 2 5 4 3 7 6

28/62

Sorting and ordering

The first indicates the rows of 'dat2' ordered by daily average ridership. The second displays the actual

sorted values of daily average ridership.

> head(order(dat2$daily, decreasing = TRUE))

[1] 888 887 886 971 880 866

> head(sort(dat2$daily, decreasing = TRUE))

[1] 22075 21951 17580 16714 16366 16150

29/62

Sorting and ordering
> datSorted = dat2[order(dat2$daily, decreasing = TRUE),]
> datSorted[1:5,]

 day date orangeAverage purpleAverage greenAverage
888 Saturday 06/16/2012 6322 7797 3338
887 Friday 06/15/2012 6926 8090 3485
886 Thursday 06/14/2012 5618 6521 2770
971 Friday 09/07/2012 5718 7007 2688
880 Friday 06/08/2012 5782 6882 2858
 bannerAverage daily
888 4617.0 22075
887 3450.0 21951
886 2672.0 17580
971 1301.0 16714
880 844.5 16366

30/62

Sorting and ordering
Note that the row names refer to their previous values. You can do something like this to fix:

> rownames(datSorted) = NULL
> datSorted[1:5,]

 day date orangeAverage purpleAverage greenAverage
1 Saturday 06/16/2012 6322 7797 3338
2 Friday 06/15/2012 6926 8090 3485
3 Thursday 06/14/2012 5618 6521 2770
4 Friday 09/07/2012 5718 7007 2688
5 Friday 06/08/2012 5782 6882 2858
 bannerAverage daily
1 4617.0 22075
2 3450.0 21951
3 2672.0 17580
4 1301.0 16714
5 844.5 16366

31/62

Creating categorical variables
One frequently-used tool is creating categorical variables out of continuous variables, like generating

quantiles of a specific continuously measured variable.

A general function for creating new variables based on existing variables is the ifelse() function, which

"returns a value with the same shape as test which is filled with elements selected from either yes or no

depending on whether the element of test is TRUE or FALSE."

ifelse(test, yes, no)

test: an object which can be coerced to logical mode.
yes: return values for true elements of test.
no: return values for false elements of test.

32/62

Creating categorical variables
For example, we can create a new variable that records whether daily ridership on the Circulator was

above 10,000.

> hi_rider = ifelse(dat$daily > 10000, 1, 0)
> head(hi_rider)

[1] 0 0 0 0 0 0

> table(hi_rider)

hi_rider
 0 1
740 282

33/62

Creating categorical variables
You can also nest ifelse() within itself to create 3 levels of a variable.

> riderLevels = ifelse(dat$daily < 10000, "low", ifelse(dat$daily > 20000, "high",
+ "med"))
> head(riderLevels)

[1] "low" "low" "low" "low" "low" "low"

> table(riderLevels)

riderLevels
high low med
 2 740 280

34/62

Creating categorical variables
However, it's much easier to use cut() to create categorical variables from continuous variables.

'cut divides the range of x into intervals and codes the values in x according to which interval they fall.

The leftmost interval corresponds to level one, the next leftmost to level two and so on.'

x: a numeric vector which is to be converted to a factor by cutting.

breaks: either a numeric vector of two or more unique cut points or a single number (greater than or

equal to 2) giving the number of intervals into which x is to be cut.

labels: labels for the levels of the resulting category. By default, labels are constructed using "(a,b]"

interval notation. If labels = FALSE, simple integer codes are returned instead of a factor.

cut(x, breaks, labels = NULL,
 include.lowest = FALSE, right = TRUE, dig.lab = 3,
 ordered_result = FALSE, ...)

35/62

Factors
Factors are used to represent categorical data, and can also be used for ordinal data (ie categories

have an intrinsic ordering)

Note that R reads in character strings as factors by default in functions like read.table()

'The function factor is used to encode a vector as a factor (the terms 'category' and 'enumerated type'

are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be ordered.

For compatibility with S there is also a function ordered.'

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion functions for these

classes.

factor(x = character(), levels, labels = levels,
 exclude = NA, ordered = is.ordered(x))

36/62

Factors
Suppose we have a vector of case-control status

> cc = factor(c("case", "case", "case", "control", "control", "control"))
> cc

[1] case case case control control control
Levels: case control

> levels(cc) = c("control", "case")
> cc

[1] control control control case case case
Levels: control case

37/62

Factors
Note that the levels are alphabetically ordered by default. We can also specify the levels within the

factor call

> factor(c("case", "case", "case", "control", "control", "control"), labels = c("control",
+ "case"))

[1] control control control case case case
Levels: control case

> factor(c("case", "case", "case", "control", "control", "control"), labels = c("control",
+ "case"), ordered = TRUE)

[1] control control control case case case
Levels: control < case

38/62

Factors
Factors can be converted to numeric or character very easily

> x = factor(c("case", "case", "case", "control", "control", "control"), labels = c("control",
+ "case"))
> as.character(x)

[1] "control" "control" "control" "case" "case" "case"

> as.numeric(x)

[1] 1 1 1 2 2 2

39/62

Cut
Now that we know about factors, cut() will make more sense:

> x = 1:100
> cx = cut(x, breaks = c(0, 10, 25, 50, 100))
> head(cx)

[1] (0,10] (0,10] (0,10] (0,10] (0,10] (0,10]
Levels: (0,10] (10,25] (25,50] (50,100]

> table(cx)

cx
 (0,10] (10,25] (25,50] (50,100]
 10 15 25 50

40/62

Cut
We can also leave off the labels

> cx = cut(x, breaks = c(0, 10, 25, 50, 100), labels = FALSE)
> head(cx)

[1] 1 1 1 1 1 1

> table(cx)

cx
 1 2 3 4
10 15 25 50

41/62

Cut
Note that you have to specify the endpoints of the data, otherwise some of the categories will not be

created

> cx = cut(x, breaks = c(10, 25, 50), labels = FALSE)
> head(cx)

[1] NA NA NA NA NA NA

> table(cx)

cx
 1 2
15 25

42/62

Adding to data frames
> dat2$riderLevels = cut(dat2$daily, breaks = c(0, 10000, 20000, 1e+05))
> dat2[1:2,]

 day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952 NA NA
2 Tuesday 01/12/2010 796 NA NA
 bannerAverage daily riderLevels
1 NA 952 (0,1e+04]
2 NA 796 (0,1e+04]

> table(dat2$riderLevels, useNA = "always")

 (0,1e+04] (1e+04,2e+04] (2e+04,1e+05] <NA>
 731 280 2 12

43/62

Making 2D objects
We can make matrices from "scratch" using the matrix() function.

data: a data vector.

nrow: the number of rows

ncol: the number of columns

byrow: does the data fill in the matrix across the rows or down the columns?

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
 dimnames = NULL)

44/62

Matrices
> m1 = matrix(1:9, nrow = 3, ncol = 3, byrow = FALSE)
> m1

 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> m2 = matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE)
> m2

 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

45/62

Adding rows and columns
More generally, you can add columns (or another matrix/data frame) to a data frame or matrix using

cbind() ('column bind'). You can also add rows (or another matrix/data frame) using rbind() ('row bind').

Note that the vector you are adding has to have the same length as the number of rows (for cbind) or

the number of columns (rbind)

When binding two matrices, they must have either the same number of rows or columns

> cbind(m1, m2)

 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 4 7 1 2 3
[2,] 2 5 8 4 5 6
[3,] 3 6 9 7 8 9

46/62

Adding rows and columns
> rbind(m1, m2)

 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
[4,] 1 2 3
[5,] 4 5 6
[6,] 7 8 9

47/62

Adding columns manually
> dat2$riderLevels = NULL
> rider = cut(dat2$daily, breaks = c(0, 10000, 20000, 1e+05))
> dat2 = cbind(dat2, rider)
> dat2[1:2,]

 day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952 NA NA
2 Tuesday 01/12/2010 796 NA NA
 bannerAverage daily rider
1 NA 952 (0,1e+04]
2 NA 796 (0,1e+04]

48/62

Making a data frame
data.frame(col1 = [vector], col2 = [vector], ..., stringsAsFactors=FALSE)

> df = data.frame(Date = dat$day, orangeLine = dat$orangeAverage, purpleLine = dat$purpleAverage)
> df[1:5,]

 Date orangeLine purpleLine
1 Monday 952 NA
2 Tuesday 796 NA
3 Wednesday 1212 NA
4 Thursday 1214 NA
5 Friday 1644 NA

49/62

Data Summarization
Basic statistical summarization

Basic summarization plots

·

mean(x): takes the mean of x

sd(x): takes the standard deviation of x

median(x): takes the median of x

quantile(x): displays sample quantities of x. Default is min, IQR, max

range(x): displays the range. Same as c(min(x), max(x))

-

-

-

-

-

·

plot(x,y): scatterplot of x and y

boxplot(y~x): boxplot of y against levels of x

hist(x): histogram of x

density(X): kernel density plot of x

-

-

-

-

50/62

Data Summarization on matrices/data frames
Basic statistical summarization

Basic summarization plots

·

rowMeans(x): takes the means of each row of x

colMeans(x): takes the means of each column of x

rowSums(x): takes the sum of each row of x

colSums(x): takes the sum of each column of x

summary(x): for data frames, displays the quantile information

-

-

-

-

-

·

matplot(x,y): scatterplot of two matrices, x and y

pairs(x,y): plots pairwise scatter plots of matrices x and y, column by column

-

-

51/62

colMeans and rowMeans
> tmp = dat2[, 3:6]
> colMeans(tmp, na.rm = TRUE)

orangeAverage purpleAverage greenAverage bannerAverage
 2994 4013 1951 964

> head(rowMeans(tmp, na.rm = TRUE))

[1] 952 796 1212 1214 1644 1490

52/62

Other manipulations

(via: http://statmethods.net/management/functions.html)

abs(x): absolute value

sqrt(x): square root

ceiling(x): ceiling(3.475) is 4

floor(x): floor(3.475) is 3

trunc(x): trunc(5.99) is 5

round(x, digits=n): round(3.475, digits=2) is 3.48

signif(x, digits=n): signif(3.475, digits=2) is 3.5

cos(x), sin(x), tan(x) also acos(x), cosh(x), acosh(x), etc.

log(x): natural logarithm

log10(x): common logarithm

exp(x): ex

·

·

·

·

·

·

·

·

·

·

·

53/62

http://statmethods.net/management/functions.html

Apply statements
You can apply more general functions to the rows or columns of a matrix or data frame, beyond the

mean and sum.

X : an array, including a matrix.

MARGIN : a vector giving the subscripts which the function will be applied over. E.g., for a matrix 1

indicates rows, 2 indicates columns, c(1, 2) indicates rows and columns. Where X has named

dimnames, it can be a character vector selecting dimension names.

FUN : the function to be applied: see 'Details'. In the case of functions like +, %*%, etc., the function

name must be backquoted or quoted.

... : optional arguments to FUN.

apply(X, MARGIN, FUN, ...)

54/62

Apply statements
> tmp = dat2[, 3:6]
> apply(tmp, 2, mean, na.rm = TRUE) # column means

orangeAverage purpleAverage greenAverage bannerAverage
 2994 4013 1951 964

> apply(tmp, 2, sd, na.rm = TRUE) # columns sds

orangeAverage purpleAverage greenAverage bannerAverage
 1258.7 1442.4 613.7 527.1

> head(apply(tmp, 2, max, na.rm = TRUE)) # row maxs

orangeAverage purpleAverage greenAverage bannerAverage
 6926 8090 5094 4617

55/62

Other Apply Statements

See more details here: http://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/

tapply(): 'table' apply

lapply(): 'list' apply [tomorrow]

sapply(): 'simple' apply [tomorrow]

Other less used ones...

·

·

·

·

56/62

http://nsaunders.wordpress.com/2010/08/20/a-brief-introduction-to-apply-in-r/

tapply()
From the help file: "Apply a function to each cell of a ragged array, that is to each (non-empty) group of

values given by a unique combination of the levels of certain factors."

Simply put, you can apply functions FUN to X within each categorical level of INDEX. It is very useful

for assessing properties of continuous data by levels of categorical data.

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

57/62

tapply()
For example, we can estimate the highest average daily ridership for each day of the week in 1 line in

the Circulator dataset.

> tapply(dat$daily, dat$day, max, na.rm = TRUE)

 Friday Monday Saturday Sunday Thursday Tuesday Wednesday
 21951 13982 22075 15224 17580 14776 15672

58/62

Lab A
Bike Lanes Dataset: BikeBaltimore is the Department of Transportation's bike program.

https://data.baltimorecity.gov/Transportation/Bike-Lanes/xzfj-gyms

Download as a CSV (like the Monuments dataset) in your current working directory

59/62

https://data.baltimorecity.gov/Transportation/Bike-Lanes/xzfj-gyms

Lab A
1. How many bike "lanes" are currently in Baltimore?

2. How many (a) feet and (b) miles of bike "lanes" are currently in Baltimore?

3. How many types of bike lanes are there? Which type has (a) the most number of and (b) longest

average bike lane length?

4. How many different projects do the "bike" lanes fall into? Which project category has the longest

average bike lane?

5. (a) Numerically and (b) graphically describe the distribution of bike "lane" lengths. Then describe

after stratifying by i) type then ii) number of lanes

60/62

Lab B
Download the CSV: http://biostat.jhsph.edu/~ajaffe/files/indicatordeadkids35.csv

Via: http://www.gapminder.org/data/

Definition of indicator: How many children the average couple had that die before the age 35.

death = read.csv("http://biostat.jhsph.edu/~ajaffe/files/indicatordeadkids35.csv",
 as.is=T,header=TRUE, row.names=1)

61/62

http://biostat.jhsph.edu/~ajaffe/files/indicatordeadkids35.csv
http://www.gapminder.org/data/

Lab B
1. How many countries have data in any year?

2. When did measurements in the US start?

3. How many countries, and which, had data the first year of measuring?

4. Display the average number of children lost per family versus year across all countries.

5. Display the distribution of average country's count across all year.

6. How many entries are less than 1? Which array indices do they correspond to?

7. Bonus: Plot the count for each country across year in a line plot

62/62

