

Our Approach to Modeling Proteins

- Model physical forces when possible: van der Waals, solvation, hydrogen bonding, electrostatics, ...
- Use statistics from the *Protein Data Bank* to compensate for poor physical models
- · Generate large numbers of plausible decoys
- · Model only necessary degrees of freedom
- Employ multi-scale models for both breadth of search and accuracy of discrimination

Although the problem is tremendously complex, e believe that simple fundamental principles will emerge

Residue-scale scoring 🚿						
Score	Representation	Physical Force				
Contacts	$r_{\text{centroid-centroid}} < 6 \text{ Å}$	Attractive van der Waals				
Bumps	$(r - R_{ij})^2$	Repulsive van der Waals				
Residue environment	-In(P _{env})	Solvation				
Residue pair	$-\ln(P_{ij})$	Hydrogen bonding electrostatics, solvation				
Alignment	-1 for interface residues in Antibody CDR	(bioinformatic)				
Constraints	varies	(biochemical)				

Score	Form / Source	Discriminatory z-value
Repulsive van der Waals	Modified Lennard-Jones 6-12	73.0
Attractive van der Waals	Lennard-Jones 6-12	45.0
Surface area solvation	Surface area (see Tsai 2003)	28.5
Gaussian solvent-exclusion	Lazaridis & Karplus, 1999	27.2
Rotamer probability	Dunbrack & Cohen, 1997	19.6
Hydrogen bonding	Empirical, Kortemme et al. 2003	14.9 & 6.8 (BB/BB)
Residue pair probability	Empirical, Kuhlman & Baker 2000	6.9
Electrostatics	Coulomb model with simple charges	0.4-15.1 (LR rep)

Scoring Weights							
Score	Weight (P)	Weight (M)	Weight (D)	z-value			
Repulsive van der Waals	0.80	0.338	0.08	73.0			
Attractive van der Waals	0.80	0.338	0.338	45.0			
Surface area solvation		-	0.344	28.5			
Gaussian solvent-exclusion	0.80	0.279	0.279	27.2			
Rotamer probability	0.79	0.069	0.069	19.6			
Hydrogen bonding SC/SC + SC/BB BB/BB	2.1	0.441	0.441	14.9 6.8			
Residue pair probability	0.66	0.164	0.164	6.9			
Simple electrostatics Short-range repulsive Short-range attractive Long-range repulsive Long-range attractive	- - -	0.025 0.025 0.098 0.0020	0.025 0.025 0.098 0.0020	3.2 8.3 15.1 0.4			

Benchmark Results

	Bound Perturbations	Unbound Perturbations	Global Searches
Enzyme/Inhibitor	21/22	18/22	17/22
Antibody/Antigen	10/16	9/16	8/16
Other	5/10	5/10	3/10
Difficult	6/6	0/6	0/6
TOTAL	42/54	32/54	28/54

Number of successful dockings, starting from either bound or unbound protein backbones and searching either near the native structure or globally.

Benchmark set assembled by R. Chen et al., see Proteins 2003

	sites in 6/10) nor	า-di	fficu	ult ta	arge	ts	
Target	Complex	Туре	Nres	Model	Fnat	_rmsd	I_rmsd	Acc
15*	Colicin D – immD	BB-BB	194	7	0.88	0.547	0.243	***
12	Cohesin-dockerin	U-B	196	1	0.87	0.99	0.51	***
11	Cohesin-dockerin	U-H	196	5	0.42	6.11	1.93	**
19	Ovine prion – fab	H-B	312	2	0.64	3.64	1.27	***
8	Laminin-nidogen	U-B	427	2	0.53	4.63	0.66	***
17*	GH11 xylanase - XIP	H-U	464	5	0.07	12.91	8.78	-
13	sag1-fab	U-B	474	NP	NP	NP	NP	-
18	GH11 xylanase - TAXI	U-B	552	NP	NP	NP	NP	-
16*	GH 10 xylanase – XIP	H-U	575	7	0.14	8.13	11.64	*
14	mypt1-PP1	U-B	600	NP	NP	NP	NP	-
9	LicT homodimer	U-U	412					
10	TBEV envelope trimer	U-U	1146					

able 1. Algorithms of some current protein-protein docking methods ^a							
Method (investigator)	Rigid-body search	Re-scoring, ranking, filtering and refinement	Accuracy of CAPRI 1 and 2 submissions				
ICM (Abagyan ^e)	Pseudo-Brownian Monte Carlo with grid- based energy function	Disstering and selection of 400 conformations. Fiexible refinement of interface side-chains and re-scoring with a detailed free-energy function	One high and two medium				
ClusPro (Camacho and Vajda [11])	Fast Fourier transform (FFT) correlation approach using the program DOT [16] with a shape complementarity scoring function	Re-scoring with empirical potentials and clustering. Refinement of the 25 largest clusters by the flexible docking method SmoothDock	Two high and one acceptable				
MolFit (Eisenstein*)	FFT with a weighted shape complementarity target function	Oustering of good solutions, filtering using a priori information and small, local, rigid rotations around selected conformations	One high and two acceptable				
3D-Dock (Sternberg [15])	FFT correlation docking using the program FTDOCK	Complexes re-ranked with a pairwise potential using RPScore. After clustering, side-chains in selected structures are refined using a mean- field approach by Multidock	One high and two acceptable				
DOT (TenEyck [16])	FFT correlation approach with shape complementarity and electrostatics	None	One medium and two acceptable				
(Gray and Baker [10])	Monte-Carlo search using simplified protein geometry and scoring function	Iterative re-packing of side-chains and rigid- body docking repeated until convergence. Final selection by clustering	One high and one medium				
Hex (Ritchie ⁴)	FFT correlation using polar coordinates and Gaussian density representation of protein shape	None	One high and one medium				
ZDOCK (Weng (8))	FFT correlation with shape complementarity, electrostatics and desolvation	Clustering of conformations to avoid redundancies	Two medium				
(Nussinov and Wolfson ²)	Geometric matching using knob/hole	None	One high and one				
GAPDOCK (Gardiner*)	Genetic algorithm with a shape-based test	None	Two acceptable				
GRAMM (Vakser ⁴)	FFT correlation with simplified geometry using share complementarity and hydronhohicity in	Clustering of conformations	One acceptable				

RosettaDock Assumptions

- · Rigid protein backbones
- · Side chains in rotamer conformations
- Native structure is minimum (free) energy
- Entropy captured by clustering *or* convergence compensates for poor energy model
- Energy functions!
 - Linearly separable
 - Choice of contributions
 - Parameters...

What RosettaDock study tells us about Proteins

- · Packing dominates free energy
- Solvation, hydrogen bonding also important
- · Electrostatics not important?
- Energy function is closer to correct than past models
- A short list of probable best docking structures

What it *doesn't* tell you about Proteins

- *THE* energy function
- Unambiguously the "best" conformation
- · How specificity is achieved
- Binding affinities

Side chain movement (Camacho 2004 PNAS)

- Most side chains do not change rotameric conformation upon binding (Weng)
- "Anchor" residue = deeply buried residue at center of interface, usually no conformational change
- "Latch" residue = peripheral interface residue, moves upon binding

Recommended References

- "Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations," Gray, Moughon, Wang, Schueler-Furman, Kuhlman, Rohl & Baker, *J. Mol. Biol.* 2003 331, 281-299.
- "Complementarity of structure ensembles in proteinprotein binding," Grunberg, Leckner & Nilges, *Structure* 2004 12, 2125-2136.
- "Prediction of protein-protein interactions by docking methods," Smith & Sternberg, *Curr. Op. Struct. Biol.* 2002 12, 36-40.
- "Assessment of blind predictions of protein-protein interactions: current status of docking methods," Mendez, Leplae, De Maria & Wodak, *Proteins* 2003 52, 51-67.