Protein sequence alignment and evolution

Tuesday, April 5, 2005

Protein Bioinformatics 260.841 Jonathan Pevsner pevsner@jhmi.edu

	4 -		4		
		Ino'	Ant		Irea
$\mathbf{\nabla}$					

T Mar. 29	Introduction to physical properties of amino acids	Prigge
Th Mar. 31	Protein Structure (level of Branden and Tooze)	Prigge
T Apr. 5	Protein sequence alignment and evolution	Pevsner
Th Apr. 7	Principles of mass spectrometry	Cotter
T Apr. 12	Applications of mass spectrometry to proteomics	Pandey
Th Apr. 14	Applications of mass spectrometry to proteomics	Pandey
T Apr. 19	Protein structure determination	Prigge
In Apr. 21	of proteins, visualization	Ruczinski
T Apr. 26	Protein secondary structure prediction	Ruczinski
Th Apr. 28	Protein structure prediction	Ruczinski
T May 3	Protein structure prediction (CASP)	Ruczinski
Th May 5	Protein networks	Bader
T May 10 Th May 12	To be announced Protein-protein docking	Gray
T May 17 Th May 19	To be announced Final exam	

Outline: entire course

	T Mar. 29	Introduction to physical properties of amino acids	Prigge
	Th Mar. 31	Protein Structure (level of Branden and Tooze)	Prigge
	<u>T Apr. 5</u>	Protein sequence alignment and evolution	Pevsner
	Th Apr. 7	Principles of mass spectrometry	Cotter
	T Apr. 12	Applications of mass spectrometry to proteomics	Pandey
	Th Apr. 14	Applications of mass spectrometry to proteomics	Pandey
•	T Apr. 19	Protein structure determination	Prigge
	111 Apr. 21	of proteins, visualization	Ruczinski
	T Apr. 26	Protein secondary structure prediction	Ruczinski
	Th Apr. 28	Protein structure prediction	Ruczinski
	T May 3	Protein structure prediction (CASP)	Ruczinski
	Th May 5	Protein networks	Bader
	T May 10	High throughput approaches to proteomics	Boeke
	Th May 12	Protein-protein docking	Gray
	<u>T May 17</u> Th May 19	Lab Final exam	

Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)

2. Overview of databases of all proteins: NCBI and SwissProt

3. How to align the sequences of two proteins: Dayhoff's evolutionary perspective

4. How to align the sequences of two proteins: pairwise alignment

Many of the powerpoints for today's lecture are from *Bioinformatics and Functional Genomics* (J. Pevsner, 2003). The powerpoints are available on-line at www.bioinfbook.org

Chapter 2: Access to sequence data Chapter 3: Pairwise sequence alignment Chapter 4: Basic Local Alignment Search Tool (BLAST) Chapter 8: Protein analysis and proteomics Chapter 9: Protein structure

Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)

2. Overview of databases of all proteins: NCBI and SwissProt

3. How to align the sequences of two proteins: Dayhoff's evolutionary perspective

4. How to align the sequences of two proteins: pairwise alignment

S NCBI	C Entre	ez, T	he Life S	ciences Search Engi	ine _e	
HOME SEARCH SITE MA	PubMed Entrez Human	Geno	me	GenBank	Map Viewer	BLAS
	Search across databases amyloid			GO CLEAR	Help	
25512	PubMed: biomedical literature citations and abstracts	?	165 👔	Books: online books		?
1484	PubMed Central: free, full text journal articles	?	192 🕏	OMIM: online Mendelian Inher	itance in Man	2
			10 👿	Site Search: NCBI web and F	TP sites	?
6450	Nucleotide: sequence database (GenBank)	?	219 🔑	UniGene: gene-oriented cluster	s of transcript sequences	?
3419	Protein: sequence database	?	14 🛃	CDD: conserved protein domain	database	?
7 (Genome: whole genome sequences	?	447 🍪	3D Domains: domains from En	trez Structure	2
125	Structure: three-dimensional macromolecular structures	?	353 🏠	UniSTS: markers and mapping	data	?
none	Taxonomy: organisms in GenBank	?	4 🔁	PopSet: population study data	sets	2
6199	SNP: single nucleotide polymorphism	?	36203 🍈	GEO Profiles: expression and i	nolecular abundance profiles	2
534	Gene: gene-centered information	?	4 🥮	GEO DataSets: experimental s	ets of GEO data	2
303	HomoloGene: eukaryotic homology groups	2	none 📳	Cancer Chromosomes: cytog	enetic databases	2
1 (PubChem Compound: small molecule chemical structures	?	none 🗾	PubChem BioAssay: bioactivit substances	y screens of chemical	2
1	PubChem Substance: chemical substances screened for bioactivity	?	70 💽	GENSAT: gene expression atlas system	of mouse central nervous	2
none	Genome Project: genome project information	?				

http://www.expasy.ch allows queries of Swiss-Prot

<u>Site Map</u>			Search E	xPASy				Contact us	
S	Search [Swiss-Prot/TrEMBL	•	for am	nyloid	 Go	Clear		

ExPASy Proteomics Server

The ExPASy (Expert Protein Analysis System) proteomics server of the <u>Swiss Institute of Bioinformatics</u> (SIB) is dedicated to the analysis of protein sequences and structures as well as 2-D PAGE (<u>Disclaimer / References</u>).

[Announcements] [Job opening] [Mirror Sites]

Databases Tools and software packages Swiss-Prot and TrEMBL - Protein knowledgebase PROSITE - Protein families and domains SWISS-2DPAGE - Two-dimensional polyacrylamide gel electrophoresis Proteomics (Aldente (PMF) (PerideMass,]) ENZYME - Enzyme nomenclature Similarity searches (BLAST) SWISS-3DIMAGE - 3D images of proteins and other biological macromolecules Pattern and profile searches (ScanProsite) SWISS-MODEL Repository - Automatically generated protein models Primary structure analysis (ProtParam, pl/MW, ProtScale) GermOnLine - Knowledgebase on germ cell differentiation Ashbya Genome Database Silological text analysis Links to many other molecular biology databases Biological text analysis ImageMaster / Melanie - Software for 2-D PAGE
 Swiss-Prot and TrEMBL - Protein knowledgebase PROSITE - Protein families and domains SWISS-2DPAGE - Two-dimensional polyacrylamide gel electrophoresis ENZYME - Enzyme nomenclature SWISS-3DIMAGE - 3D images of proteins and other biological macromolecules SWISS-MODEL Repository - Automatically generated protein models GermOnLine - Knowledgebase on germ cell differentiation Ashbya Genome Database Links to many other molecular biology databases Final and produce analysis tools Proteomics and sequence analysis tools Proteomics (Aldente (PMF) (New, PeptideMass,] DNA -> Protein [Translate] Similarity searches [BLAST] Pattern and profile searches [ScanProsite] Post-translational modification and topology prediction Primary structure analysis (ProtParam, pl/MW, ProtScale] Secondary and tertiary structure prediction [SWISS- MODEL, Swiss-PdbViewer] Alignment [T-COFFEE, SIM] Biological text analysis ImageMaster / Melanie - Software for 2-D PAGE
anaivsis

- MSight Mass Spectrometry Imager
- Roche Applied Science's Biochemical Pathways

Search in Swiss-Prot and TrEMBL for: amyloid

Swiss-Prot Release 46.4 of 29-Mar-2005 TrEMBL Release 29.4 of 29-Mar-2005

- Number of sequences found in <u>Swiss-Prot</u>(103) and <u>TrEMBL</u>(216): 319
- . Note that the selected sequences can be saved to a file to be later retrieved; to do so, go to the bottom of this page
- For more directed searches, you can use the Sequence Retrieval System <u>SRS</u>

Search in Swiss-Prot: There are matches to 103 out of 178022 entries

A4 BOVIN (Q28053)

Alzheimer's disease amyloid A4 protein homolog [Contains: Beta-amyloid protein (Beta-APP) (A-beta)] (Fragment). (GENE: Name=APP) - Bos taurus (Bovine)

A4 CAEEL (Q10651)

Beta-amyloid-like protein precursor. (GENE: Name=apl-1; ORFNames=C42D8.8) - Caenorhabditis elegans <u>A4 CANFA</u> (Q28280)

Alzheimer's disease amyloid A4 protein homolog [Contains: Beta-amyloid protein (Beta-APP) (A-beta)] (Fragment). (GENE: Name=APP) - Canis familiaris (Dog)

A4 CAVPO (Q60495)

Amyloid beta A4 protein precursor (APP) (ABPP) (Alzheimer's disease amyloid protein homolog) [Contains: Soluble APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); CTF-alpha; CTF-beta; Beta-amyloid protein 42 (Beta-APP42); Betaamyloid protein 40 (Beta-APP40); P3(42); P3(40); Gamma-CTF(59) (Gamma-secretase C-terminal fragment 59); Gamma-CTF(57) (Gamma-secretase C-terminal fragment 57); C31]. (GENE: Name=APP) - Cavia porcellus (Guinea pig) DROME (14590)

A4 DROME (P14599)

Beta-amyloid-like protein precursor. (GENE: Name=Appl; Synonyms=VND; ORFNames=CG7727) - Drosophila melanogaster (Fruit fly)

<u>A4 FUGRU</u> (093279)

Alzheimer's disease amyloid A4 protein homolog precursor [Contains: Beta-amyloid protein (Beta-APP) (A-beta)]. (GENE: Name=APP) - Fugu rubripes (Japanese pufferfish) (Takifugu rubripes)

A4 HUMAN (P05067)

Amyloid beta A4 protein precursor (APP) (ABPP) (Alzheimer's disease amyloid protein) (Cerebral vascular amyloid peptide) (CVAP) (Protease nexin-II) (PN-II) (APPI) (PreA4) [Contains: Soluble APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); C99; Beta-amyloid protein 42 (Beta-APP42); Beta-amyloid protein 40 (Beta-APP40); C83; P3(42); P3(40); Gamma-CTF(59) (Gamma-secretase C-terminal fragment 59) (Amyloid intracellular domain 57) (AID(57)); Gamma-CTF(50) (Gamma-secretase C-terminal fragment 50) (Amyloid intracellular domain 50) (AID(50)); C31]. (GENE: Name=APP; Synonyms=A4, AD1) -

Protein Data Bank (PDB) (http://www.pdb.org)

Central dogma of molecular biology

Central dogma of bioinformatics and genomics

Accession numbers are labels for sequences

NCBI includes databases (such as GenBank) that contain information on DNA, RNA, or protein sequences. You may want to acquire information beginning with a query such as the name of a protein of interest, or the raw nucleotides comprising a DNA sequence of interest.

DNA sequences and other molecular data are tagged with accession numbers that are used to identify a sequence or other record relevant to molecular data.

What is an accession number?

An accession number is a label that used to identify a sequence. It is a string of letters and/or numbers that corresponds to a molecular sequence.

Examples (all for retinol-binding protein, RBP4):

X02775 NT_030059 Rs7079946	GenBank genomic DNA sequence Genomic contig dbSNP (single nucleotide polymorphism)	DNA
N91759.1 NM_006744	An expressed sequence tag (1 of 170) RefSeq DNA sequence (from a transcript)	RNA
NP_007635 AAC02945 Q28369	RefSeq protein GenBank protein SwissProt protein	protein
1KT7	Protein Data Bank structure record	Page 2

NCBI's important RefSeq project: best representative sequences

RefSeq (accessible via the main page of NCBI) provides an expertly curated accession number that corresponds to the most stable, agreed-upon "reference" version of a sequence.

RefSeq identifiers include the following formats:

Complete genome Complete chromosome Genomic contig mRNA (DNA format) Protein NC_###### NC_###### NT_###### NM_######## e.g. NM_006744 NP_####### e.g. NP_006735

Page 29-30

Example: type "amyloid" at NCBI

Click "protein" to find 3419 records for amyloid. Further limit the search to RefSeq only, then to human.

Query Result Browser

Your query found 354 structures in the current PDB release and you have selected 0 structures so far. (There are currently 1 structures being processed can select specific structures by clicking on the checkbox next to their id. If you do not select any structures, certain options will default to all structures. 'The Explore link!

Pull down to select option:	New Search	•	Go	

|⊲ ⊴ 1-20 ► ►|

KEY: 🔃 = Download compressed (GNU zipped) PDB file 🗐 = View PDB file 🔯 = Structure viewing options

□ <u>133L</u>	🖸 💽 Deposited: 01-Jun-1993 Exp. Method: X-ray Diffraction Resolution: 1.77 Å
Title	Role of Arg115 in the catalytic action of human lysozyme. X-ray structure of His115 and Glu115 mutants.
Classification	Hydrolase(O-Glycosyl)
Compound	Lysozyme (E.C. 3.2.1.17) Mutant With Arg 115 Replaced By His (R115H)
□ <u>134L</u>	💽 🗊 📧 Deposited: 01-Jun-1993 Exp. Method: X-ray Diffraction Resolution: 1.77 Å
Title	Role of Arg115 in the catalytic action of human lysozyme. X-ray structure of His115 and Glu115 mutants.
Classification	Hydrolase(O-Glycosyl)
Compound	Lysozyme (E.C. 3.2.1.17) Mutant With Arg 115 Replaced By Glu (R115E)
<u>□ 1AAP</u>	💟 🗐 📧 Deposited: 14-Sep-1990 Exp. Method: X-ray Diffraction Resolution: 1.50 Å
Title	X-ray crystal structure of the protease inhibitor domain of Alzheimer's amyloid eta -protein precursor.
Classification	Proteinase Inhibitor (Trypsin)
Compound	Protease Inhibitor Domain Of Alzheimer'S Amyloid β-Protein Precursor (APPI)
□ <u>1AMB</u>	Deposited: 21-Oct-1994 Exp. Method: NMR
Title	Solution structure of residues 1-28 of the amyloid β -peptide.
Classification	Proteinase Inhibitor(Trypsin)
Compound	Alzheimer'S Disease Amyloid β-Peptide (Residues 1 - 28) (E.C. Number Not Assigned) (NMR, Minimized Average Structure)
□ <u>1AMC</u>	Deposited: 14-Nov-1994 Exp. Method: NMR
Title	Solution structure of residues 1-28 of the amyloid β -peptide.
Classification	Proteinase Inhibitor(Trypsin)

Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)

2. Overview of databases of all proteins: NCBI and SwissProt

3. How to align the sequences of two proteins: Dayhoff's evolutionary perspective

4. How to align the sequences of two proteins: pairwise alignment

Page 20

DNA

protein

Growth of GenBank

Release 146 (Feb 2005) has 46,849,831,226 base pairs

Page 6

The most sequenced organisms in GenBank

Homo sapiens	10.7 billion bases
Mus musculus	6.5b
Rattus norvegicus	5.6b
Danio rerio	1.7b
Zea mays	1.4b
Oryza sativa	0.8b
Drosophila melanogaster	0.7b
Gallus gallus	0.5b
Arabidopsis thaliana	0.5b

Updated 8-12-04 GenBank release 142.0 Table 2-2 Page 18

PDB content growth (www.pdb.org)

Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)

2. Overview of databases of all proteins: NCBI and SwissProt

3. How to align the sequences of two proteins: Dayhoff's evolutionary perspective

4. How to align the sequences of two proteins: pairwise alignment

Definitions

Signature:

• a protein category such as a domain or motif

Definitions

Signature:

• a protein category such as a domain or motif

Domain:

- a region of a protein that can adopt a 3D structure
- a fold
- a family is a group of proteins that share a domain
- examples: zinc finger domain immunoglobulin domain

Motif (or fingerprint):

- a short, conserved region of a protein
- typically 10 to 20 contiguous amino acid residues

Page 225

15 most common d	omains (hun	nan)
Zn finger, C2H2 type	1093 prote	ins
Immunoglobulin	1032	
EGF-like	471	
Zn-finger, RING	458	
Homeobox	417	
Pleckstrin-like	405	
RNA-binding region RNP-1	400	
SH3	394	
Calcium-binding EF-hand	392	
Fibronectin, type III	300	
PDZ/DHR/GLGF	280	
Small GTP-binding protein	261	
BTB/POZ	236	
bHLH	226	
Cadherin	226	Table 8-3
ource: Integr8 program at www.ebi.ac.uk/	proteome/	Page 227

Pairwise alignments in the 1950s

β-corticotropin (sheep)ala gly glu asp asp gluCorticotropin A (pig)asp gly ala glu asp glu

Oxytocin CYIQNCPLG Vasopressin CYFQNCPRG

Early alignments revealed --differences in amino acid sequences between species --differences in amino acids responsible for distinct functions

Page 40

Pairwise sequence alignment is the most fundamental operation of bioinformatics

- It is used to decide if two proteins (or genes) are related structurally or functionally
- It is used to identify domains or motifs that are shared between proteins
- It is the basis of BLAST searching
- It is used in the analysis of genomes

<u>NCBI Entrez BLAST 2 sequences BLAST Example Help</u>
BLAST 2 SEQUENCES
This tool produces the alignment of two given sequences using <u>BLAST</u> engine for local alignment. The stand-alone executable for blasting two sequences (bl2seq) can be retrieved from <u>NCBI flp site</u> <u>Reference</u> : Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences - a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250
Program blastp 💌 Matrix BLOSUM62 💌
Parameters used in BLASTN program only: Reward for a match: Penalty for a mismatch: Use Mega BLAST Strand option Not Applicable
Open gap 11 and extension gap 1 penalties
Sequence 1 Enter accession or GI NP_00673 or download from file NP_005494
or sequence in FASTA format from to Human amyloid β
XP 372565
Human neuronal
Sequence 2 Enter accession or GI P02754 or download from file Bro munc18-1-inter-
acting protein 2
Alian Clear bout
Page 73

RBP and β -lactoglobulin are homologous proteins that share related three-dimensional structures

 $\begin{array}{c} \beta \text{-lactoglobulin} \\ (P02754) \end{array}$

Definitions

Pairwise alignment

The process of lining up two or more sequences to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.

Definitions

Homology Similarity attributed to descent from a common ancestor.

Page 42

ſ	Definitions							
Homology Similarity attributed to descent from a common ancestor.								
Identity The extent to which t sequences are invari	wo (nucleotide or amino acid) ant.							
RBP 26 RV K ENFDKARFS GTW Y +K++ +++ GTW+	AMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 +MA + L + A V T + +L+W+							
glycodelin 23 QT K QDLELPKLA GTW H	IS MA MA-TNNIS l MATLK A PLR V HI T SLLPTPEDNLEIV L HRWEN 81							
	Page 44							

Definitions: two types of homology

Orthologs

Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function.

Paralogs

Homologous sequences within a single species that arose by gene duplication.

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html

Pairwise alignment of retinol-binding protein and β -lactoglobulin

1	MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG	50 RBP
1	MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASD.	44 lactoglobulin
51	LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWDVCADMVGTFTDTE	97 RBP
45	ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK	93 lactoglobulin
98	DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSC	136 RBP
94	IPAVFKIDALNENKVLVLDTDYKKYLLFCMENSAEPEQSLAC	135 lactoglobulin
94 137	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	135 lactoglobulin 185 RBP

Definitions

Similarity

The extent to which nucleotide or protein sequences are related. It is based upon identity plus conservation.

Identity

The extent to which two sequences are invariant.

Conservation

Changes at a specific position of an amino acid or (less commonly, DNA) sequence that preserve the physicochemical properties of the original residue.

Page 47

Pairwise alignment of retinol-binding protein and β -lactoglobulin

1	MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG	50	RBP
	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot $		
1	MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASD.	44	lactoglobulin
51	LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD.ADMVGTFTDTE	97	RBP
	: :: . . : .		
45	ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENC CAQKKIIAEKTK	93	lactoglobulin
98	DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV.	136	5 RBP
94	IPAVFKIDALNENKVLVLDTDYKKYLLFC ENSAEPEQSLAC	135	j lactoglobulin
	Identity		
137	RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIV RQYRLIV	185	RBP
	\cdot $ $ $ $ $ $ \cdot $ $ \cdot (bar)		
136	QCLVRTPEVDDEALEKFDKALKALPMHIRLSF	178	3 lactoglobulin

Page 46 Fig. 3.5

Pairwise alignment of retinol-binding protein and β -lactoglobulin

Page 46 Fig. 3.5

Pairwise alignment of retinol-binding protein and β -lactoglobulin

Pairwise alignment of retinol-binding protein and β -lactoglobulin

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | . |. . | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | : | . | . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV.....QYSC 136 RBP || ||. | . | ...||| | . 94 IPAVFKIDALNENKVL.....VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || . | 111 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI..... 178 lactoglobulin

> Page 46 Fig. 3.5

Pairwise alignment of retinol-binding protein from human (top) and rainbow trout (*O. mykiss*)

1	.MKWVWALLLLA.AWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP	48
1	:: . . . :. :. . MLRICVALCALATCWAQDCQVSNIQVMQNFDRSRYTGRWYAVAKKDP	47
49	EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED	98
48	VGLFLLDNVVAQFSVDESGKMTATAHGRVIILNNWEMCANMFGTFEDTPD	97
99	PAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADS	148
98	PAKFKMRYWGAASYLQTGNDDHWVIDTDYDNYAIHYSCREVDLDGTCLDG	147
149	YSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNLI	199
148	YSFIFSRHPTGLRPEDQKIVTDKKKEICFLGKYRRVGHTGFCESS	192

Multiple sequence alignment of glyceraldehyde 3-phosphate dehydrogenases

fly human plant bacterium yeast archaeon	GAKKVIISAP GAKRVIISAP GAKKVIISAP GAKKVVMTGP GAKKVVITAP GADKVLISAP	SAD.APMF SAD.APMF SAD.APMF SKDNTPMF SS.TAPMF PKGDEPVKQL	VCGVNLDAYK VMGVNHEKYD VVGVNEHTYQ VKGANFDKY. VMGVNEEKYT VYGVNHDEYD	PDMKVVSNAS NSLKIISNAS PNMDIVSNAS AGQDIVSNAS SDLKIVSNAS GE.DVVSNAS	CTTNCLAPLA CTTNCLAPLA CTTNCLAPLA CTTNCLAPLA CTTNCLAPLA CTTNSITPVA
fly human plant bacterium yeast archaeon	KVINDNFEIV KVIHDNFGIV KVVHEEFGIL KVINDNFGII KVINDAFGIE KVLDEEFGIN	EGLMTTVHAT EGLMTTVHAI EGLMTTVHAT EGLMTTVHAT AGQLTTVHAY	TATQKTVDGP TATQKTVDGP TATQKTVDGP TATQKTVDGP TATQKTVDGP TGSQNLMDGP	SGKLWRDGRG SGKLWRDGRG SMKDWRGGRG SHKDWRGGRG SHKDWRGGRT NGKP.RRRA	AAQNIIPAST ALQNIIPAST ASQNIIPSST ASQNIIPSST ASGNIIPSST AAENIIPTST
fly human plant bacterium yeast archaeon	GAAKAVGKVI GAAKAVGKVI GAAKAVGKVL GAAKAVGKVL GAAQAATEVL	PALNGKLTGM PELNGKLTGM PELNGKLTGM PELQGKLTGM PELEGKLDGM	AFRVPTPNVS AFRVPTANVS AFRVPTSNVS AFRVPTPNVS AFRVPTVDVS AIRVPVPNGS	VVDLTVRLGK VVDLTCRLEK VVDLTVRLEK VVDLTVRLEK ITEFVVDLDD	GASYDEIKAK PAKYDDIKKV GASYEDVKAA AATYEQIKAA ETTYDEIKKV DVTESDVNAA

Page 48 Fig. 3.7

Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)

2. Overview of databases of all proteins: NCBI and SwissProt

3. How to align the sequences of two proteins: Dayhoff's evolutionary perspective

4. How to align the sequences of two proteins: pairwise alignment

An early substitution matrix from 1965

Zuckerkandl and Pauling aligned several dozen available globin protein sequences, and derived the following substitution matrix.

Page 80

Substituent residue (Percentage of total residue sites at which the substituent occurs)

Sequence (original amino acid)

Page 80

Dayhoff's 34 protein superfamilies

Dayhoff and colleagues defined "accepted point mutation" (PAM) as a replacement of one amino acid by another residue that has been "accepted" by natural selection.

A PAM occurs when [1] a gene undergoes a DNA mutation that changes the encoded amino acid [2] the entire species adopts that change as the predominant form of the protein.

Page 50

Dayhoff's 34 protein superfamilies

<u>Protein</u>	PAMs per 100 million years
lg kappa chain	37
Kappa casein	33
Lactalbumin	27
Hemoglobin α	12
Myoglobin	8.9
Insulin	4.4
Histone H4	0.10
Ubiquitin	0.00

Page 50

C V	Dayhoff's numbers of "accepted point mutations": what amino acid substitutions occur in proteins?									
Α	AI	aRArg	NAsnL	AspC	CysQC	ilnEGl	uGGly	AR ³⁰ ľ	10917) 1
\vdash										
_										
_										
								I	-ig. 3.10	0
								I	Page 52	2

Dayhoff et al. examined multiple sequence alignments (e.g. glyceraldehyde 3-phosphate dehydrogenases) to generate tables of accepted point mutations

fly	GAKKVIISAP	SAD.APMF	VCGVNLDAYK	PDMKVVSNAS	CTTNCLAPLA
human	GAKRVIISAP	SAD.APMF	VMGVNHEKYD	NSLKIISNAS	CTTNCLAPLA
plant	GAKKVIISAP	SAD.APMF	VVGVNEHTYQ	PNMDIVSNAS	CTTNCLAPLA
bacterium	GAKKVVMT <mark>G</mark> P	SKDNTPMF	VKGANFDKY.	AGQDIVSNAS	CTTNCLAPLA
yeast	GAKKVVITAP	SS.TAPMF	VMGVNEEKYT	SDLKIVSNAS	CTTNCLAPLA
archaeon	GADKVLISAP	PKGDEPVKQL	VYGVNHDEYD	GE.DVVSNAS	CTTNSITPVA
fly	KVINDNFEIV	EGLMTTVHAT	TATQKTVDGP	SGKLWRDGRG	AAQNIIPAST
human	KVIHDNFGIV	EGLMTTVHAI	TATQKTVDGP	SGKLWRDGRG	ALQNIIPAST
plant	KVVHEEFGIL	EGLMTTVHAT	TATQKTVDGP	SMKDWRGGRG	ASQNIIPSST
bacterium	KVINDNFGII	EGLMTTVHAT	TATQKTVDGP	SHKDWRGGRG	ASQNIIPSST
yeast	KVINDAFGIE	EGLMTTVHSL	TATQKTVDGP	SHKDWRGGRT	ASGNIIPSST
archaeon	KVLDEEFGIN	AGQLTTVHAY	TGSQNLMDGP	NGKP.RRRRA	AAENIIPTST
fly	GAAKAVGKVI	PALNGKLTGM	AFRVPTPNVS	VVDLTVRLGK	G ASYDEIKAK
human	GAAKAVGKVI	PELNGKLTGM	AFRVPTANVS	VVDLTCRLEK	PAKYDDIKKV
plant	GAAKAVGKVL	PELNGKLTGM	AFRVPTSNVS	VVDLTCRLEK	G ASYEDVKAA
bacterium	GAAKAVGKVL	PELNGKLTGM	AFRVPTPNVS	VVDLTVRLEK	<mark>A</mark> ATYEQIKAA
yeast	GAAKAVGKVL	PELQGKLTGM	AFRVPTVDVS	VVDLTVKLNK	ETTYDEIKKV
archaeon	GAAQAATEVL	PELEGKLDGM	AIRVPVPNGS	ITEFVVDLDD	DVTESDVNAA

Page 48 Fig. 3.7

Dayhoff et al. estimated the relative mutability of amino acids						
Asn	134	His	66			
Ser	120	Arg	65			
Asp	106	Lys	56			
Glu	102	Pro	56			
Ala	100	Gly	49			
Thr	97	Tyr	41			
lle	96	Phe	41			
Met	94	Leu	40			
Gln	93	Cys	20			
Val	74	Trp	18			
				Table 3.1 Page 53		

Normalize variation	ed freque s in freq	encies of a uency of o	mino a ccurre	cids: nce
Gly	8.9%	Arg	4.1%	
Ala	8.7%	Asn	4.0%	
Leu	8.5%	Phe	4.0%	
Lys	8.1%	Gln	3.8%	
Ser	7.0%	lle	3.7%	
Val	6.5%	His	3.4%	
Thr	5.8%	Cys	3.3%	
Pro	5.1%	Tyr	3.0%	
Glu	5.0%	Met	1.5%	
Asp	4.7%	Trp	1.0%	
blue	Page 53			

Second letter							
	U	С	А	G			
U	UUU UUC UUA UUG Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp			
C	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAG GIn	CGU CGC CGA CGG	U C A G		
A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGA AGG	U C A G		
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC Asp GAA GAG Glu	GGU GGC GGA GGG	U C A G		

Dayhoff's numbers of "accepted point mutations": what amino acid substitutions occur in proteins? AAlaRArgNAsnDAspCCysQGInEGluGGlyAR³⁰N¹⁰⁹¹⁷L Herein and the second state of the second s

L	1		1	I		Page 52

D	ayho	ff's P	AM1	muta	ation	prob	abili	ty ma	atrix
			O	riginal an	nino acio	ł			
AAl	aRArgl	NAsnE	AspC	CysQC	InEGl	uGGly	HHisI	IleA ⁹⁸	6729103
	C								
Fac	h eleme	nt of the	natriv	shows	the nroł	nahility	that an	<u> </u>	
ami	no acid	(top) wi	ill be rep	placed b	by anoth	er resid	lue (side		Page 55

Substitution Matrix

A substitution matrix contains values proportional to the probability that amino acid *i* mutates into amino acid *j* for all pairs of amino acids.

Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids.

Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution.

The two major types of substitution matrices are PAM and BLOSUM.

Page 53

PAM matrices: Point-accepted mutations

PAM matrices are based on global alignments of closely related proteins.

The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence.

Other PAM matrices are extrapolated from PAM1.

All the PAM data come from closely related proteins (>85% amino acid identity)

PAM0 and PAM[∞] mutation probability matrices

Consider a PAM0 matrix. No amino acids have changed, so the values on the diagonal are 100%.

Consider a PAM2000 (nearly infinite) matrix. The values approach the background frequencies of the amino acids (given in Table 3-2).

Page 55-56

	Dayh	off's I	PAM1	muta	tion p	orobał	oility ı	natrix	ζ.
AA1	aRArg	NAsnE	AspC	CysQC	InEGl	uGGly	HHisI	IleA ⁹⁸	6729103
								Pa	ge 55

	Dayho the rul	off's PA les for	AM0 m extrer	utatio nely s	n prob lowly e	ability evolvir	r matri ng pro	x: teins
PA	M0AAlaR	ArgNAsn	DAspCCy	sQGlnEC	lluGGlyA	100%0%	\$08080	%0%0% R
			Top: or Side: re	iginal an placeme	nino acid nt amino	l o acid	Fi P	ig. 3.12 age 56

Dayhoff's PAM2000 mutation probability matrix: the rules for very distantly related proteins

PAM∞	А	R	Ν	D	С	Q	E	G
	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly
А	8.7%	8.78	8.78	8.78	8.78	8.78	8.78	8.7
R	4.1%	4.18	54 . 18	4.18	4.18	4.18	4.18	4.1
Ν	4.0%	4.08	4.08	4.0%	4.0%	4.0%	4.0%	4.0
D	4.7%	4.78	4.78	4.78	4.78	4.78	4.78	4.7
С	3.3%	3.3°	53.3°	3.3°	3.3%	3.3%	3.3%	3.3
Q	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8%	3.8
E	5.0%	5.08	5.0%	5.0%	5.0%	5.0%	5.0%	5.0
G	8.9%	8.98	8.98	8.98	8.98	8.98	8.98	8.9
	Т	on: ori	ainal a	mino	sid		Eia	2 1 2
	S	ide: rej	placeme	ent ami	no acid		Pag	e 56

The PAM250 mutation probability matrix

The PAM250 matrix is of particular interest because it corresponds to an evolutionary distance of about 20% amino acid identity (the approximate limit of detection for the comparison of most proteins).

Note the loss of information content along the main diagonal, relative to the PAM1 matrix.

Page 56-57

	А	R	Ν	D	С	Q	Е	G	Η	Ι	L	Κ	М	F	Р	S	Т	W	Y	V
А	13	6	9	9	5	8	9	12	6	8	6	7	7	4	11	11	11	2	4	9
R	3	17	4	3	2	5	3	2	6	3	2	9	4	1	4	4	3	7	2	2
Ν	4	4	6	7	2	5	6	4	6	3	2	5	3	2	4	5	4	2	3	3
D	5	4	8	11	1	7	10	5	6	3	2	5	3	1	4	5	5	1	2	3
С	2	1	1	1	52	1	1	2	2	2	1	1	1	1	2	3	2	1	4	2
Q	3	5	5	6	1	10	7	3	7	2	3	5	3	1	4	3	3	1	2	3
E	5	4	7	11	1	9	12	5	6	3	2	5	3	1	4	5	5	1	2	3
G	12	5	10	10	4	7	9	27	5	5	4	6	5	3	8	11	9	2	3	7
Н	2	5	5	4	2	7	4	2	15	2	2	3	2	2	3	3	2	2	3	2
Ι	3	2	2	2	2	2	2	2	2	10	6	2	6	5	2	3	4	1	3	9
L	6	4	4	3	2	6	4	3	5	15	34	4	20	13	5	4	6	6	7	13
Κ	6	18	10	8	2	10	8	5	8	5	4	24	9	2	6	8	8	4	3	5
Μ	1	1	1	1	0	1	1	1	1	2	3	2	6	2	1	1	1	1	1	2
F	2	1	2	1	1	1	1	1	3	5	6	1	4	32	1	2	2	4	20	3
Р	7	5	5	4	3	5	4	5	5	3	3	4	3	2	20	6	5	1	2	4
S	9	6	8	7	7	6	7	9	6	5	4	7	5	3	9	10	9	4	4	6
Т	8	5	6	6	4	5	5	6	4	6	4	6	5	3	6	8	11	2	3	6
W	0	2	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	55	1	0
Y	1	1	2	1	3	1	1	1	3	2	2	1	2	15	1	2	2	3	31	2
V	7	4	4	4	4	4	4	5	4	15	10	4	10	5	5	5	7	2	4	17

PAM250 mutation probability matrix

Top: original amino acid Side: replacement amino acid Fig. 3.13 Page 57

Fig. 3.14 Page 58

Why do we go from a mutation probability matrix to a log odds matrix?

- We want a scoring matrix so that when we do a pairwise alignment (or a BLAST search) we know what score to assign to two aligned amino acid residues.
- Logarithms are easier to use for a scoring system. They allow us to sum the scores of aligned residues (rather than having to multiply them).

How do we go from a mutation probability matrix to a log odds matrix?

 The cells in a log odds matrix consist of an "odds ratio": <u>the probability that an alignment is authentic</u> the probability that the alignment was random

The score S for an alignment of residues a,b is given by:

 $S(a,b) = 10 \log_{10} (M_{ab}/p_b)$

As an example, for tryptophan,

 $S(a,tryptophan) = 10 \log_{10} (0.55/0.010) = 17.4$

Page 57

What do the numbers mean in a log odds matrix?

 $S(a,tryptophan) = 10 \log_{10} (0.55/0.010) = 17.4$

A score of +17 for tryptophan means that this alignment is 50 times more likely than a chance alignment of two Trp residues.

S(a,b) = 17Probability of replacement $(M_{ab}/p_b) = x$ Then $17 = 10 \log_{10} x$ $1.7 = \log_{10} x$ $10^{1.7} = x = 50$

Page 58

What do the numbers mean in a log odds matrix?

A score of +2 indicates that the amino acid replacement occurs 1.6 times as frequently as expected by chance.

A score of 0 is neutral.

A score of -10 indicates that the correspondence of two amino acids in an alignment that accurately represents homology (evolutionary descent) is one tenth as frequent as the chance alignment of these amino acids.

Page 58

Fig. 3.14 Page 58

Fig. 3.15 Page 59

BLOSUM90 PAM30	BLOSUM80 PAM120	BLOSUM62 PAM180	BLOSUM45 PAM240
BLOSUM 8 PAM 1 Less diverge	30 BLOS PAI	SUM 62 M 120 ➤	BLOSUM 45 PAM 250 More divergent
Rat versus mouse RBP			Rat versus bacterial lipocalin
			Fig. 3.18 Page 61

PAM matrices: Point-accepted mutations

PAM matrices are based on global alignments of closely related proteins.

The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence.

Other PAM matrices are extrapolated from PAM1.

All the PAM data come from closely related proteins (>85% amino acid identity)

Two randomly diverging protein sequences change in a negatively exponential fashion

Evolutionary distance in PAMs

Fig. 3.19 Page 62

At PAM1, two proteins are 99% identical At PAM10.7, there are 10 differences per 100 residues At PAM80, there are 50 differences per 100 residues At PAM250, there are 80 differences per 100 residues

Differences per 100 residues

Fig. 3.19 Page 62

PAM matrices reflect different degrees of divergence

PAM: "Accepted point mutation"

• Two proteins with 50% identity may have 80 changes per 100 residues. (Why? Because any residue can be subject to back mutations.)

• Proteins with 20% to 25% identity are in the "twilight zone" and may be statistically significantly related.

• PAM or "accepted point mutation" refers to the "hits" or matches between two sequences (Dayhoff & Eck, 1968)

Page 62

Percent identity between two proteins: What percent is significant?

> 100% 80% 65% 30% 23% 19%

Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)

2. Overview of databases of all proteins: NCBI and SwissProt

3. How to align the sequences of two proteins: Dayhoff's evolutionary perspective

4. How to align the sequences of two proteins: pairwise alignment

General approach to pairwise alignment

- Choose two sequences
- Select an algorithm that generates a score
- Allow gaps (insertions, deletions)
- Score reflects degree of similarity
- Alignments can be global or local
- Estimate probability that the alignment occurred by chance

An alignment scoring system is required to evaluate how good an alignment is

- gap creation and extension penalties
- positive score for identities
- some partial positive score for conservative substitutions
- global versus local alignment
- use of a substitution matrix

Page 62

Calculation of an alignment score

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Alignment_Scores2.html

Two kinds of sequence alignment: global and local

We will first consider the global alignment algorithm of Needleman and Wunsch (1970).

We will then explore the local alignment algorithm of Smith and Waterman (1981).

Finally, we will consider BLAST, a heuristic version of Smith-Waterman.

Page 63

Global alignment with the algorithm of Needleman and Wunsch (1970)

- Two sequences can be compared in a matrix along x- and y-axes.
- If they are identical, a path along a diagonal can be drawn
- Find the optimal subpaths, and add them up to achieve the best score. This involves
 - --adding gaps when needed
 - --allowing for conservative substitutions
 - --choosing a scoring system (simple or complicated)
- N-W is guaranteed to find optimal alignment(s)

Page 63

Three steps to global alignment with the Needleman-Wunsch algorithm

- [1] set up a matrix
- [2] score the matrix
- [3] identify the optimal alignment(s)

Page 63

Four possible outcomes in aligning two sequences

- [1] identity (stay along a diagonal)
- [2] mismatch (stay along a diagonal)
- [3] gap in one sequence (move vertically!)
- [4] gap in the other sequence (move horizontally!)

Fig. 3.20 Page 64

Start Needleman-Wunsch with an identity matrix

Start Needleman-Wunsch with an identity matrix

sequence 1 ABCNJ-RQCLCR-PM sequence 2 AJC-JNR-CKCRBP-

sequence 1 ABC-NJRQCLCR-PM sequence 2 AJCJN-R-CKCRBP-

> Fig. 3.21 Page 65

Fill in the matrix starting from the bottom right

	А	В	С	Ν	J	R	Q	С	L	С	R	Ρ	М
А	1												
J					1								
С			1					1		1			
J					1								
Ν				1									
R						1					1		
С			1					1		1			
Κ													
С			1					1		1			
R						1					1		
В		1											
Ρ	0	0	0	0	0	0	0	0	0	0	0	1	0

Fig. 3.21 Page 65

ABCNJRQCLCRPM

А	1										
J					1						
С			1				1	1			
J					1						
Ν				1							
R						1			1		
С			1				1	1			
Κ											
С			1				1	1			
R						1			1		
В		1									
Ρ										1	

	А	В	С	Ν	J	R	Q	С	L	С	R	Ρ	Μ
А	1												
J					1								
С			1					1		1			
J					1								
Ν				1									
R						1					1		
С			1					1		1			
Κ													
С			1					1		1			
R						1					1		
В		1											
Ρ	0	0	0	0	0	0	0	0	0	0	0	1	0

Fig. 3.21 Page 65

A B C N J R Q C L C R P M

~										
J				1						
С		1				1	1			
J				1						
Ν			1							
R					1			1		
С		1				1	1			
Κ										
С		1				1	1			
R					1			1		
В	1									
Ρ									1	

ABCNJRQCLCRPM

Fig. 3.21 Page 65

Fig. 3.21 Page 65

Fig. 3.22 Page 66

Fig. 3.22 Page 66

Fig. 3.22 Page 66

After you've filled in the matrix, find the optimal path(s) by a "traceback" procedure

Page 66

Fig. 3.22 Page 66

Needleman-Wunsch: dynamic programming

N-W is guaranteed to find optimal alignments, although the algorithm does not search all possible alignments.

It is an example of a dynamic programming algorithm: an optimal path (alignment) is identified by incrementally extending optimal subpaths. Thus, a series of decisions is made at each step of the alignment to find the pair of residues with the best score.

Page 67

```
> qap
Gap uses the algorithm of Needleman and Wunsch to find the alignment of
two complete sequences that maximizes the number of matches and minimizes
the number of gaps.
 GAP of what sequence 1 ? hsrbp.pep
                    Begin (* 1 *) ?
End (* 199 *) ?
 to what sequence 2 (* hsrbp.pep *) ? btlacto.pep
                    Begin (* 1 *) ?
End (* 178 *) ?
 What is the gap creation penalty (* 8 *) ?
 What is the gap extension penalty (* 2 *) ?
 What should I call the paired output display file (* hsrbp.pair *)?
 Aligning ....-.
 Aligning ....-.
            Gaps:
                         8
Quality: 37
Quality Ratio: 0.208
% Similarity: 31.902
Length: 214
                                                                                       Fig. 3.23
                                                                                       Page 68
```

Gap Weight: 8 Average Match: 2.912 Length Weight: 2 Average Mismatch: -2.003 Quality: 37 214 Length: Ratio: 0.208 Gaps: Percent Identity: 26.380 Percent Similarity: 31.902 Match display thresholds for the alignment(s): = IDENTITY 2 1 hsrbp.pep x btlacto.pep July 16, 2001 14:45 .. 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 . ||| | . |. . I : .||||.:| : .MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 45 ISLLDAQSAPLRU.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV.....QYSC 136 :....ULDTDYKKYLLFCMENSAEPEQSLAC 135 94 IPAUFKIDALNENKUL. 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 136 QCLURTPEUDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI.. 178 Fig. 3.24 Page 69

Global alignment versus local alignment

Global alignment (Needleman-Wunsch) extends from one end of each sequence to the other

Local alignment finds optimally matching regions within two sequences ("subsequences")

Local alignment is almost always used for database searches such as BLAST. It is useful to find domains (or limited regions of homology) within sequences

Smith and Waterman (1981) solved the problem of performing optimal local sequence alignment. Other methods (BLAST, FASTA) are faster but less thorough.

Page 69

How the Smith-Waterman algorithm works

Page 69

Smith-Waterman local alignment algorithm

Fig. 3.25 Page 70

Rapid, heuristic versions of Smith-Waterman: FASTA and BLAST

Smith-Waterman is very rigorous and it is guaranteed to find an optimal alignment.

But Smith-Waterman is slow. It requires computer space and time proportional to the product of the two sequences being aligned (or the product of a query against an entire database).

Gotoh (1982) and Myers and Miller (1988) improved the algorithms so both global and local alignment require less time and space.

FASTA and BLAST provide rapid alternatives to S-W

Page 71

Pairwise alignment: BLAST 2 sequences

Go to http://www.ncbi.nlm.nih.gov/BLAST

Choose BLAST 2 sequences

• In the program,

[1] choose blastp or blastn

- [2] paste in your accession numbers
 - (or use FASTA format)
- [3] select optional parameters
 - --3 BLOSUM and 3 PAM matrices
 - --gap creation and extension penalties
 - --filtering
 - --word size

[4] click "align"

Page 72

<u>NCBI Entrez BLAST 2 sequences BLAST</u>	<u>Example</u> <u>Help</u>
BLAST 2 SEQUENCES	
This tool produces the alignment of two given sequences using <u>BLAST</u> engine for loc The stand-alone executable for blasting two sequences (bl2seq) can be retrieved fron <u>Reference:</u> Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences - and nucleotide sequences", FEMS Microbiol Lett. 174:247-250	al alignment. n <u>NCBI ftp site</u> a new tool for comparing protein
Program blastp 💌 Matrix BLOSUM62 💌	
Parameters used in <u>BLASTN</u> program only: Reward for a match: Penalty for a mismatch: Use <u>Mega BLAST</u> Strand option Not Applicable •	
Open gap 11 and extension gap 1 penalties gap x_dropoff 50 <u>expect</u> 10 word size 3 <u>Filter</u> 🔽	
Sequence 1 Enter accession or GI NP_00673 or download from file	Browse
or sequence in FASTA format from to to	
	Browse
or sequence in FASTA format from to:	DIUWSC
∢ Align Clear Input	Fig. 3.27 Page 73

BLAST 2 SEQUENCES RESULTS V	ERSION BLASTP 2.2.1 [Jul-12-2001]	
Matrix DAMOSO		
Mamx PAW250 gap open: 15 g	ap extension: 1	
x_dropoff 50 expect 10.0 wordsize:	2 Filter 🔽 Align	
Sequence 1 gi <u>5803139</u>	Length 199 (1199	9)
BETA-LACT	OGLOBULIN PRECURSOR (BETA-LG) (ALLERGEN BOS D	
Sequence 2 gr <u>125910</u> 5).	Length 1/8 (11/4	3)
NOTE: The statistics (bitscore and expec	value) is calculated based on the size of nr database	
Group - OC Childre (DO) - Durant	- 7.0	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%)	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%)	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%)	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 > 35	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 > 35 26 ************************************	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct:	<pre>= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%)</pre>	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB	<pre>= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 > 35 + +D + +GTWY++A +++ L D A + V ++ + LL++W+ 21 QTMKGLDIQKVAGTWYSLAMAASD-ISLLDAQSAPLRVYVEELKPTPEGDLEILLQKWEN 79 21 ++++++++++++++++++++++++++++++++++++</pre>	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Nature chain	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 EVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 > 35 ***********************************	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant	<pre>= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%)</pre>	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant Variant	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 36 ************************************	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant Variant Variant	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 RVKENFDKARFSGTWVAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 > 35 + +D + +GTWY++A ++ + L D A + V ++ + LL++W+ 21 QTMKGLDIQKVAGTWYSLAMAASD-TSLLDAQSAPLRVVVELKPTPEGDEILLQKWN 79 21 ++++++++++++++++++++++++++++++++++++	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant Variant Query:	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 EVKENFDKARFSGTWVAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD- 84 35 ************************************	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant Variant Variant Query: Lipocalin / cytosolic fatty-aci	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQNSATAKGRVRLLNNWD- 84 > 35 ************************************	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjet: LGB Mature chain Variant Variant Variant Query: Lipocalin / cytosolic fatty-aci retinol binding protein	<pre>= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%)</pre>	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant Variant Query: Lipocalin / cytosolic fatty-aci retinol binding protein	= 7.9 ives = 31/81 (374), Gaps = 3/81 (34) 	
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LG8 Mature chain Variant Variant Variant Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct:	<pre>= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%)</pre>	Fig. 2
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant Variant Variant Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: Variant	<pre>= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQNSATAKGRVRLLNNWD- 84 >35 +++D++GTWY++A+++LDA++++LL++W+ 21 QTMKGLDIQKVAGTWYSLAMAASD-ISLLDAQSAPLRVYVEELKPTPEGDLEILLQKWEN 79 21 ++++++++++++++++++++++++++++++++++++</pre>	Fig. 3
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant Variant Variant Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: Variant LGB Mature chain Kature chain	= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%) 	Fig. 3
Score = 26.6 bits (78), Expect Identities = 20/81 (24%), Posit Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: LGB Mature chain Variant Variant Query: Lipocalin / cytosolic fatty-aci retinol binding protein Sbjct: Variant LGB Mature chain disulfide	<pre>= 7.9 ives = 31/81 (37%), Gaps = 3/81 (3%)</pre>	Fig. 3

Sequences reported as related	True positives	False positives	
Sequences reported as unrelated	False negatives	True negatives	
		Fig Pa	g. 3.29 ge 76

	homologous sequences	non-homologous sequences
Sequences reported as related	True positives	False positives
Sequences reported as unrelated	False negatives	True negatives

Fig. 3.29 Page 76

	homologous sequences	non-homologous sequences
Sequences reported as related	True positives	False positives
Sequences reported as unrelated	False negatives	True negatives
	Sensitivity: ability to find true positives	Specificity: ability to minimize false positives