Protein sequence alignment and evolution

Tuesday, April 5, 2005

Outline: entire course

T Mar. 29	Introduction to physical properties of amino acids Protein Structure (level of Branden and Tooze)	Prigge Prigge
T Apr. 5	Protein sequence alignment and evolution Principles of mass spectrometry	Pevsner Th Apr. 7
T Apr. 12	Applications of mass spectrometry to proteomics Applications of mass spectrometry to proteomics	Pandey Pandey
Th Apr. 14	Protein structure determination T Apr. 19 Th Apr. 21 proteins, visualization	Prigge
T Apr. 26	Protein secondary structure prediction Protein structure prediction	Ruczinski
Th Apr. 28	Protein structure prediction (CASP) T May 3	Ruczinski
Th May 5	Protein networks	Ruczinski
T May 10	To be announced Protein-protein docking	
Th May 12	Bader	
T May 17	To be announced	Gray
Th May 19	Final exam	

Outline: entire course

T Mar. 29	Introduction to physical properties of amino acids	Prigge
Th Mar. 31	Protein Structure (level of Branden and Tooze)	Prigge
T.Apr. 5	Protein sequence alignment and evolution	Pevsner
Th Apr. 7	Principles of mass spectrometry	Cotter
T Apr. 12	Applications of mass spectrometry to proteomics	Pandey
Th Apr. 14	Applications of mass spectrometry to proteomics	Pandey
T Apr. 19	Protein structure determination	Prigge
Th Apr. 21	Protein databases, structural classification of proteins, visualization	Ruczinski
T Apr. 26	Protein secondary structure prediction	Ruczinski
Th Apr. 28	Protein structure prediction	Ruczinski
T May 3	Protein structure prediction (CASP)	Ruczinski
Th May 5	Protein networks	Bader
T May 10	High throughput approaches to proteomics	Boeke
Th May 12	Protein-protein docking	Gray
T May 17	Lab	
Th May 19	Final exam	

Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)
2. Overview of databases of all proteins: NCBI and SwissProt
3. How to align the sequences of two proteins:

Dayhoff's evolutionary perspective
4. How to align the sequences of two proteins: pairwise alignment

Outline: today's topic

Many of the powerpoints for today's lecture are from
Bioinformatics and Functional Genomics (J. Pevsner, 2003).
The powerpoints are available on-line at www.bioinfbook.org
Chapter 2: Access to sequence data
Chapter 3: Pairwise sequence alignment
Chapter 4: Basic Local Alignment Search Tool (BLAST)
Chapter 8: Protein analysis and proteomics
Chapter 9: Protein structure

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)
2. Overview of databases of all proteins: NCBI and SwissProt
3. How to align the sequences of two proteins:

Dayhoff's evolutionary perspective
4. How to align the sequences of two proteins:
pairwise alignment

http://www.expasy.ch allows queries of Swiss-Prot

ExPASy Proteomics Server

The ExPASy (Expert Protein Analysis System) proteomics server of the Swiss Instiute of Bioirfornatics (SBB) is dedicated to the analysis of protcin scquences and stucturcs as well as 2-D PAGE (Disclaimer (References) Annourcementis Loh openirg dirror Siles

Protein Data Bank (PDB) (http://www.pdb.org)

Search in Swiss-Prot and TrEMBL for: amyloid
Swiss-Prot Release 46.4 of 29-Mar-2005
TrEMBL Release 29.4 of 29-Mar- 2005


```
- Note tat the eselected sequynces can be zaved to a file to be liter retieved: to do so. go to the bottom of ti, page,
- For nore dreeted searches, pou can use the Sequence Remereal Systern SES.
```

Search in Swiss Prot: There are matches to 103 out of 178022 entries
A4 BOVII (Q28053)

A4 Ame=APP)-Canis fariliaris (Dog)
AMPO (Q60495)

CIF(5) (Garmaa-scerctase C-terminal fragnnent 57): C31] (GENEE Nanc=APP) - Cana porcellus (Guinca pie)

melanogster (Fruit fly)

4 HOMMAN PO5067

Central dogma of molecular biology

Central dogma of bioinformatics and genomics

Accession numbers are labels for sequences

NCBI includes databases (such as GenBank) that contain information on DNA, RNA, or protein sequences. You may want to acquire information beginning with a query such as the name of a protein of interest, or the raw nucleotides comprising a DNA sequence of interest.

DNA sequences and other molecular data are tagged with accession numbers that are used to identify a sequence or other record relevant to molecular data.

What is an accession number?

An accession number is a label that used to identify a sequence. It is a string of letters and/or numbers that corresponds to a molecular sequence.

Examples (all for retinol-binding protein, RBP4):

X02775
NT_03005
Rs7079946 dbSNP (single nucleotide polymorphism)
N91759.1 An expressed sequence tag (1 of 170)
NM_006744 RefSeq DNA sequence (from a transcript)
NP_007635 RefSeq protein
AAC̄02945 GenBank protein
Q28369
1KT7
SwissProt protein
Protein Data Bank structure record
-

NCBI's important RefSeq project: best representative sequences

RefSeq (accessible via the main page of NCBI) provides an expertly curated accession number that corresponds to the most stable, agreed-upon "reference" version of a sequence.

RefSeq identifiers include the following formats:
Complete genome NC_\#\#\#\#\#\#
Complete chromosome NC_\#\#\#\#\#\#
Genomic contig
mRNA (DNA format)
NT_\#\#\#\#\#
NM_\#\#\#\#\#\# e.g. NM_006744
Protein
NP_\#\#\#\#\#\# e.g. NP_006735

Page 29-30

Click "protein" to find 3419 records for amyloid. Further limit the search to RefSeq only, then to human.

Your query found 354 structures in the current PDB release and you have selected 0 structures so far. (There are currently 1 structures being processed can select specifc structures by clicking on the checkboz next to their id. If you do not select any structures. cettain options will default to all strucurues. the Esplorc lirk!
Full down to select option: $/$ New Search $\quad \square$

$$
14-1-20 \mathrm{pm}
$$

133L	
Title	Role of Arg 115 in the catalytic astion of human lysoryme. X-ray stucture of His 115 and Glu 115 mutants.
Classifcation	Hycrolase(0-Glycosyl)
Compound	Lysoryme (E.C. 3.2 1.17) Mutant With Arg 115 Replaced Ey He (R115H)
-134I	
Tile	Role of Arg 115 in the catalytic action of humen lysozyme. X-ray strucure of His 115 and Glu 115 muxants.
Classiftcation	Hycirclase(C-Glycosyl)
Compound	Lysozyme (E.C. 3.2 1.17) Mutant With Arg 115 Replaced Ey Gua (R115E)
1AAP	T) Depositer: 14 Sep. 1990 gxp . Method: X -ray Diffraction Resolution: 1.50 A
Title	X-ray crystal structure of the protease intibitor domain of Altheimer's anyloid ${ }_{\text {-protein }}$ precursor
Classifcation	Proteinase Irhibitor (Trypsin)
Compound	Proteasc Inlibitor Domain Of Alzheimer'S Amyloid ${ }^{\text {P-Protein }}$ Precursor (AFPI)
1AMB	Til Ioposited: 21. Oct 1991 Exp Method: NMR
Title	Solution stucture of residues $1-28$ of the amylod ${ }^{\beta}$-peptide.
Clussiffcation	Proteinase Irhibitor(Tryp ini)
Compound	Alzheimer'S Disease Annloid ${ }^{3}$-Peptide (Residues $\left.1-28\right)$ (E.C. Number Not Assigned) (TM.R. Minimized Average Stucture)
$\square 1$ AMC	T)
Title	Solution sturcture of residues $1-28$ of the amyloid $\beta_{\text {peptide }}$.
Classifcation	Proteinase Inhibitor(Trypsin)

DNA

GenBank	$\stackrel{\square}{\text { EBI }}$	DDBI
8 ncbi	$\sqrt{\text { MEMBL }}$	DDBI

protein

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)
2. Overview of databases of all proteins: NCBI and SwissProt
3. How to align the sequences of two proteins:

Dayhoff's evolutionary perspective
4. How to align the sequences of two proteins: pairwise alignment

Fig. 2.2
Page 20

Growth of GenBank
Release 146 (Feb 2005) has 46,849,831,226 base pairs

Fig. 2.1
Page 17

The most sequenced organisms in GenBank

Homo sapiens	10.7 billion bases
Mus musculus	6.5 b
Rattus norvegicus	5.6 b
Danio rerio	1.7 b
Zea mays	1.4 b
Oryza sativa	0.8 b
Drosophila melanogaster	0.7 b
Gallus gallus	0.5 b
Arabidopsis thaliana	0.5 b

www.uniprot.org

SwissProt: 178,022 entries TrEMBL: 1,647,645 entries 3-29-05 update

Welcome to UniProt
Uniprot (Universal Frotein Rescurce) is the world's most comprehensive catalog of information on proteins. Is is a central repositiory of protenn
seauerce and function created hy joining the information contained in Swiss-Prot, TrEMBL, and PIR.
UniProt is comprised of three components, each optimized for bifferent Uses. The Uniprot Knowlodgesasae (Uniprot is the central access point
for extensive curated protein information, inclucing function, classification, for extensive cuated protein niormation, inclucing function, lassilication,
and cross-reference. The UniProt Non-reduntant Reference (UniRef)
datatases conmine closely related senuences into a single recorord to speed databases combine closely related sequerces into a single record to speed
searches. The Uniprot Archive (UniP arc) is a comprehensive repository, refecting the history of all protein sequences.
The sequences and information in Uniirot are accessible via text search, The sequences and ifformation in Un
BLAST similarity search, and FIP.

[^0]
Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)
2. Overview of databases of all proteins: NCBI and SwissProt
[^1][^2]PDB content growth (www.pdb.org)

Definitions

Signature:

- a protein category such as a domain or motif

Definitions

Signature:

- a protein category such as a domain or motif

Domain:

- a region of a protein that can adopt a 3D structure
- a fold
- a family is a group of proteins that share a domain
- examples:
zinc finger domain immunoglobulin domain

Motif (or fingerprint):

- a short, conserved region of a protein
- typically 10 to 20 contiguous amino acid residues

Page 225

Pairwise alignments in the 1950s
β-corticotropin (sheep)

Corticotropin A (pig)

$$
\begin{array}{rr}
\text { Oxytocin } & \text { CYIQNCPLG } \\
\text { Vasopressin } & \text { CYFQNCPRG }
\end{array}
$$

Early alignments revealed
--differences in amino acid sequences between species --differences in amino acids responsible for distinct functions

Page 40

Pairwise sequence alignment is the most fundamental operation of bioinformatics

- It is used to decide if two proteins (or genes) are related structurally or functionally
- It is used to identify domains or motifs that are shared between proteins
- It is the basis of BLAST searching
- It is used in the analysis of genomes

Table 8-3
Page 227

Zn finger, C2H2 type	1093 proteins	
Immunoglobulin	1032	
EGF-like	471	
Zn-finger, RING	458	
Homeobox	417	
Pleckstrin-like	405	
RNA-binding region RNP-1	400	
SH3	394	
Calcium-binding EF-hand	392	
Fibronectin, type III	300	
PDZ/DHR/GLGF	280	
Small GTP-binding protein	261	
BTB/POZ	236	
bHLH	226	
Cadherin	226	Table 8-3
ce: Integr8 program at www.ebi.ac.uk/proteome/	Page 227	

RBP and β-lactoglobulin are homologous proteins that share related three-dimensional structures

retinol-binding protein (NP_006735)

β-lactoglobulin (P02754)

Figure 3.1
Page 42

Definitions

Pairwise alignment

The process of lining up two or more sequences
to achieve maximal levels of identity
(and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.

Definitions

Homology

Similarity attributed to descent from a common ancestor.

Definitions

Homology

Similarity attributed to descent from a common ancestor.

Identity

The extent to which two (nucleotide or amino acid) sequences are invariant.

26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDglycodelin 23 QTKQDLELPKLAGTWHSMAMA-TNNISLMATLKAPLRVHITSLLPTPEDNLEIVLHRWEN 81

Page 44

Definitions: two types of homology

Orthologs

Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function.

Paralogs

Homologous sequences within a single species that arose by gene duplication.

10 changes

Orthologs: members of a gene (protein) family in various organisms.

This tree shows 13 RBP orthologs.

Page 43
Fig. 3.2

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html

Definitions

Similarity

The extent to which nucleotide or protein sequences are related. It is based upon identity plus conservation.

Identity

The extent to which two sequences are invariant.

Conservation

Changes at a specific position of an amino acid or (less commonly, DNA) sequence that preserve the physicochemical properties of the original residue.

Pairwise alignment of retinol-binding protein and β-lactoglobulin

```
I MKWVWALLLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP
1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin
51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBE
: | | |: | .| . || |: || |.
4 5 \text { ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin}
98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV............QYSC 136 RBP
11 11. | :.111 । . |
4 IPAVFKIDALNENKVL........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin
137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP
```


Page 46
Fig. 3.5

Pairwise alignment of retinol-binding protein and β-lactoglobulin

Pairwise alignment of retinol-binding protein and β-lactoglobulin

Pairwise alignment

The process of lining up two or more sequences
to achieve maximal levels of identity
(and conservation, in the case of amino acid sequences)
for the purpose of assessing the degree of similarity and the possibility of homology.

Definitions

Pairwise alignment of retinol-binding protein and β-lactoglobulin

```
1 MKWVWALLLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP
1...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin
51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP
```



```
98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV............@YSC 136 RBP
M4 \| ||. IPAVFKIDALNENKVL.........||DTDYKKYLIFCMENSAEPEQSLAC 135 lactoglobulin
137 RLLNLDGTCADSYSFVFS IGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP
M36 | | | | | : | | | | | | | | | |
```

- Positions at which a letter is paired with a null are called gaps.
- Gap scores are typically negative.
- Since a single mutational event may cause the insertion or deletion of more than one residue, the presence of a gap is ascribed more significance than the length of the gap.
- In BLAST, it is rarely necessary to change gap values from the default.

Pairwise alignment of retinol-binding protein and β-lactoglobulin

1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARESGTWYAMAKKDPEG 50 RBP

```
MKCLILALALTCGAOALTVT ©TMKGLDIOKVAGTWYSLA
. MKCLIALALTGGAQALIVT OTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin
```

1 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP

98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV..............QYSC 136 RBP
94 IPAVFKIDALNENKVL..........VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin
137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP

178 lactoglobulin

Pairwise alignment of retinol-binding protein from human (top) and rainbow trout (O. mykiss)
1.MKWVWALLLLA.AWAAAERDCRVSSFRVKENF DKARFSGTWYAMAKKDP 48
1 MLRICVALCALATCWA...QDCQVSNIQVMQNFDRSRYTGRWYAVAKKDP 4
49 EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED 98
1111 11:11:11111.1.1.111111:1111:.11.1111111
48 VGLFLLDNVVAQFSVDESGKMTATAHGRVIILNNWEMCANMFGTFEDTPD 97
99 PAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADS 148
||||||:||| ||:|| |||||l::|||| ||: |||| ..|||||
98 PAKFKMRYWGAASYLQTGNDDHWVIDTDYDNYAIHYSCREVDLDGTCLDG 147
149 YSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNLL 199
|||:||| | || || |।| :..|:| .|। : | |:।:
148 YSFIFSRHPTGLRPEDQKIVTDKKKEICFLGKYRRVGHTGFCESS...... 192

Multiple sequence alignment of glyceraldehyde 3-phosphate dehydrogenases

fl	GAKKVIISAP	SAD.APM.	VCGVNLDAY	PDMKVVSNAS	Cttwclapla
human	GAKRVIISAP	SAD.APM. . F	VMGVNHEKYD	NSLKIISNAS	Cttwclapla
plant	GAKKVIISAP	SAD.APM.	VVGVNEHTYQ	PNMDIVSNAS	Cttwclapla
bacterium	GAKKVVMTGP	SKDNTPM.	vKGANFDKY.	AGQDIVSNAS	Cttwclapla
yeast	GAKKVVITAP	SS.TAPM. . F	vmgVneekyt	SDLKIVSNAS	Cttwclapla
archaeon	GADKVLISAP	PKGDEPVKQL	VYGVNHDEYD	GE.	VA
fly	KVINDNFEIV	EGLMTTVHAT	TATQKTVDGP	SGKLWRDGRG	AAQNIIPAST
human	KVIHDNFGIV	EGLMTTVHAI	TATQKTVDGP	SGKLWRDGRG	ALQNIIPAST
plant	KVVHEEFGIL	EGLMTTVHAT	TATQKTVDGP	SMKDWRGGRG	ASQNIIPSST
bacterium	KVINDNFGII	EGLMTTVHAT	TATQKTVDGP	SHKDWRGGRG	ASQNIIPSST
yeast	KVINDAFGIE	EGLMTTVHSL	TATQKTVDGP	SHKDWRGGRT	ASGNIIPSST
archaeon	KVLDEEEGIN	AGQLTTVHAY	TGSQNLMDGP	NGKP. RRRRA	AAENIIPTST
$f 1 y$	GAAKAVGKVI	PALNGKLTGM	AFRVPTPNVS	VVDLTVRLGK	GASYDEIKAK
human	GAAKAVGKVI	PELNGKLTGM	AFRVPTANVS	VVDLTCRLEK	PAKYDDIKKV
plant	GAAKAVGKVL	PELNGKLTGM	AFRVPTSNVS	VVdLtcriek	GASYEDVKAA
bacterium	GAAKAVGKVL	PELNGKLTGM	AFRVPTPNVS	VVDLTVRLEK	AATYEQIKAA
yeast	GAAKAVGKVL	PELQGKLTGM	AFRVPTVDVS	vvDLTVkLnk	ettydeikkv
archaeon	GAAQAATEV	LEGKL	AIRVPVPNGS	TEFVVDL	DVTESDVNAA

Page 48
Fig. 3.7

Outline: today's topic

1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)
2. Overview of databases of all proteins: NCBI and SwissProt
3. How to align the sequences of two proteins: Dayhoff's evolutionary perspective
4. How to align the sequences of two proteins: pairwise alignment

An early substitution matrix from 1965

Zuckerkandl and Pauling aligned several dozen available globin protein sequences, and derived the following substitution matrix.

Dayhoff's 34 protein superfamilies

Dayhoff and colleagues defined "accepted point mutation" (PAM) as a replacement of one amino acid by another residue that has been "accepted" by natural selection.

A PAM occurs when
[1] a gene undergoes a DNA mutation that changes
the encoded amino acid
[2] the entire species adopts that change as the predominant form of the protein.

Dayhoff's numbers of "accepted point mutations": what amino acid substitutions occur in proteins?

	Ar	NAsnD	spC	sQG	GlnEGIl	GGly	$\mathrm{R}^{30} \mathrm{~N}$	${ }^{10917}$ D

Fig. 3.10
Page 52

Dayhoff's 34 protein superfamilies

Protein	PAMs per $\mathbf{1 0 0}$ million years
Ig kappa chain	37
Kappa casein	33
Lactalbumin	27
Hemoglobin α	12
Myoglobin	8.9
Insulin	4.4
Histone H4	0.10
Ubiquitin	0.00

(Percentage of total residue sites at which the substituent occurs)
ARN DC Q E G H I L K M F P S T W Y V

(e.g. glyceraldehyde 3-phosphate dehydrogenases) to generate tables of accepted point mutations
fly GakkVIISAP SAD.APM F VCGVNLDAYK PDMKVVSNAS CTTNCLAPIA AKRVITSAP SAD. APM . F VMGVNHEKYD NSLKITSNAS CTTNCLAPI
\qquad GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA
human KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAS
plant
bacteriu
yeast
archaeon
Kldeefgin agqlutvhay tgsqnlmdgr ngkp. RRRRA AAENIIPTST
human GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK
plant GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV
bacterium GAMKAVGVVI PELNGKITGM AFRVPTPNVS VVDITVRIEK GAYEDVKA
east GAAKAVGKVL PELOGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDETKKV
archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA
Page 48
Fig. 3.7

Dayhoff et al. estimated the relative mutability of amino acids

Asn 134	His	66	
Ser	120	Arg	65
Asp 106	Lys	56	
Glu 102	Pro	56	
Ala 100	Gly	49	
Thr 97	Tyr	41	
Ile 96	Phe 41		
Met 94	Leu 40		
Gln 93	Cys	20	
Val 74	Trp	18	

Normalized frequencies of amino acids: variations in frequency of occurrence

Gly	8.9%	Arg	4.1%
Ala	8.7%	Asn	4.0%
Leu	8.5%	Phe	4.0%
Lys	8.1%	Gln 3.8%	
Ser	7.0%	Ile	3.7%
Val	6.5%	His	3.4%
Thr	5.8%	Cys	3.3%
Pro	5.1%	Tyr 3.0%	
Glu	5.0%	Met	1.5%
Asp	4.7%	Trp	1.0%

blue=6 codons; red=1 codon
Page 53

Dayhoff's PAM1 mutation probability matrix

- All the PAM data come from alignments of closely related proteins (>85\% amino acid identity)
- PAM matrices are based on global sequence alignments.
- The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence.
- Each element of the matrix shows the probability that an original amino acid (columns) will be replaced by another amino acid (rows) over an evolutionary interval.
- For the PAM1 matrix, that interval is 1% amino acid Divergence; note that the interval is not in units of time.

Dayhoff's numbers of "accepted point mutations": what amino acid substitutions occur in proteins?

A	ArgN	AsnD	AspC	ysQG	nEGI\|	UGGIy	AR^{30}	10917

Dayhoff's PAM1 mutation probability matrix
Original amino acid

Substitution Matrix

A substitution matrix contains values proportional to the probability that amino acid i mutates into amino acid j for all pairs of amino acids．

Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments （or multiple sequence alignments）of amino acids．

Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution．

The two major types of substitution matrices are PAM and BLOSUM．

Dayhoff＇s PAM1 mutation probability matrix

Dayhoff＇s PAM2000 mutation probability matrix： the rules for very distantly related proteins

PAM ∞	$\begin{aligned} & \hline \text { A } \\ & \text { Ala } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{Arg} \end{aligned}$	$\begin{aligned} & \hline \mathrm{N} \\ & \text { Asn } \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \text { Asp } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{Cys} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Q} \\ & \text { Gln } \end{aligned}$	E Glu	$\begin{array}{\|l\|} \hline \text { G } \\ \text { Gly } \\ \hline \end{array}$
A	8．7\％	8.78	8.7 年	8.79	8．79	8.74	8.79	8.7
R	4．1\％	4.19	4.1 \％	4.1	4.10	4．1类	4.10	4.1
N	4．0\％	4.05	4．0\％	4.05	4.0%	4.0%	4.01	4.0
D	4．7\％	4.79	4．7年	4.7	4．7\％	4.7	4．7年	4.7
C	3．3\％	3.3	3．3和	3.3	3．3을	3．3号	3．3号	3.3
Q	3．8\％	3.8	3．8年	3.8	3．8\％	3．8\％	3．8\％	3.8
E	5．0\％	5.0	5．0年	5.0	5．0\％	5．0\％	5.0%	5.0
G	8．9\％	8.99	8．9年	8.9	8．9\％	8．9\％	8．99	8.9

Top：original amino acid
Fig． 3.12
Side：replacement amino acid

PAM matrices are based on global alignments of closely related proteins．

The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence．

Other PAM matrices are extrapolated from PAM1．

All the PAM data come from closely related proteins （＞85\％amino acid identity）

Dayhoff＇s PAM0 mutation probability matrix： the rules for extremely slowly evolving proteins

PAM0AAlaRArgNAsnDAspCCysQGInEGluGGlyA $100 \% 0 \% 0 \% 0 \% 0 \% 0 \% 0 \% 0 \%$ R

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |

PAM matrices： Point－accepted mutations

The PAM250 mutation probability matrix

The PAM250 matrix is of particular interest because it corresponds to an evolutionary distance of about 20% amino acid identity (the approximate limit of detection for the comparison of most proteins).

Note the loss of information content along the main diagonal, relative to the PAM1 matrix.

Fig. 3.14
Page 58

PAM250 mutation probability matrix

Top: original amino acid
Side: replacement amino acid
Fig. 3.13
Page 57

Why do we go from a mutation probability matrix to a log odds matrix?

- We want a scoring matrix so that when we do a pairwise alignment (or a BLAST search) we know what score to assign to two aligned amino acid residues.
- Logarithms are easier to use for a scoring system. They allow us to sum the scores of aligned residues (rather than having to multiply them).

How do we go from a mutation probability matrix to a log odds matrix?

- The cells in a log odds matrix consist of an "odds ratio": $\frac{\text { the probability that an alignment is authentic }}{\text { the probability that the alignment was random }}$

The score S for an alignment of residues a, b is given by:
$S(a, b)=10 \log _{10}\left(M_{a b} / p_{b}\right)$
As an example, for tryptophan,
$S(a$, tryptophan $)=10 \log _{10}(0.55 / 0.010)=17.4$
$S(a$, tryptophan $)=10 \log _{10}(0.55 / 0.010)=17.4$
A score of +17 for tryptophan means that this alignment is 50 times more likely than a chance alignment of two Trp residues.
$S(a, b)=17$
Probability of replacement $\left(\mathrm{M}_{\mathrm{ab}} / \mathrm{p}_{\mathrm{b}}\right)=x$
Then
$17=10 \log _{10} x$
$1.7=\log _{10} x$
$10^{1.7}=\mathrm{x}=50$

What do the numbers mean in a log odds matrix?

What do the numbers mean in a log odds matrix?

A score of +2 indicates that the amino acid replacement occurs 1.6 times as frequently as expected by chance.

A score of 0 is neutral.
A score of -10 indicates that the correspondence of two amino acids in an alignment that accurately represents homology (evolutionary descent) is one tenth as frequent as the chance alignment of these amino acids.

Fig. 3.15
Page 59

Comparing two proteins with a PAM1 matrix gives completely different results than PAM250!

Consider two distantly related proteins. A PAM40 matrix is not forgiving of mismatches, and penalizes them severely. Using this matrix you can find no real match.

A PAM250 matrix is very tolerant of mismatches.

```
24.7% identity in 81 residues overlap; Score: 77.0; Gap frequency: 3.7%
hsrbp, 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDV
btlact, 21 QTMKGLDIQKVAGTWYSLAMAASD-ISLLDAQSAPLRVYVEELKPTPEGDLEILLLQKWEN
    * **** *
hsrbp, 86 --CADMVGTFTDTEDPAKFKM
btlact, 80 GECAQKKIIAEKTKIPAVFKI


Fig. 3.14
Page 58
\begin{tabular}{lllc|} 
BLOSUM90 \\
PAM30 & BLOSUM80 \\
PAM120
\end{tabular}
\begin{tabular}{|lcc|}
\hline \begin{tabular}{l} 
BLOSUM 80 \\
PAM 1
\end{tabular} & BLOSUM62
\end{tabular}
\begin{tabular}{c} 
BLOSUM45 \\
PAM 62
\end{tabular}
PAM240

Rat versus
Rat versus
mouse RBP
bacterial
lipocalin

\section*{PAM matrices: Point-accepted mutations}

PAM matrices are based on global alignments of closely related proteins.

The PAM1 is the matrix calculated from comparisons of sequences with no more than \(1 \%\) divergence.

Other PAM matrices are extrapolated from PAM1.
All the PAM data come from closely related proteins (>85\% amino acid identity)

Two randomly diverging protein sequences change in a negatively exponential fashion

\author{
 \\ Evolutionary distance in PAMs
}

Fig. 3.19 Page 62

At PAM1, two proteins are 99\% identical At PAM10.7, there are 10 differences per 100 residues At PAM80, there are 50 differences per 100 residues At PAM250, there are 80 differences per 100 residues


PAM matrices reflect different degrees of divergence


\section*{PAM: "Accepted point mutation"}
- Two proteins with \(50 \%\) identity may have 80 changes per 100 residues. (Why? Because any residue can be subject to back mutations.)
- Proteins with \(20 \%\) to \(25 \%\) identity are in the "twilight zone" and may be statistically significantly related.
- PAM or "accepted point mutation" refers to the "hits" or matches between two sequences (Dayhoff \& Eck, 1968)


Percent identity between two proteins: What percent is significant?


\section*{Outline: today's topic}
1. How to access the sequence and structure of a protein at NCBI and the Protein Data Bank (PDB)
2. Overview of databases of all proteins: NCBI and SwissProt
3. How to align the sequences of two proteins:

Dayhoff's evolutionary perspective
4. How to align the sequences of two proteins: pairwise alignment

\section*{General approach to pairwise alignment}
- Choose two sequences
- Select an algorithm that generates a score
- Allow gaps (insertions, deletions)
- Score reflects degree of similarity
- Alignments can be global or local
- Estimate probability that the alignment occurred by chance

\section*{An alignment scoring system is required to evaluate how good an alignment is}
- positive and negative values assigned
- gap creation and extension penalties
- positive score for identities
- some partial positive score for conservative substitutions
- global versus local alignment
- use of a substitution matrix

Two kinds of sequence alignment: global and local

\section*{Global alignment with the algorithm of Needleman and Wunsch (1970)}
- Two sequences can be compared in a matrix along \(x\) - and \(y\)-axes.
- If they are identical, a path along a diagonal can be drawn
- Find the optimal subpaths, and add them up to achieve the best score. This involves
--adding gaps when needed
--allowing for conservative substitutions
--choosing a scoring system (simple or complicated)
- N-W is guaranteed to find optimal alignment(s)

Three steps to global alignment with the Needleman-Wunsch algorithm
[1] set up a matrix
[2] score the matrix
[3] identify the optimal alignment(s)

Four possible outcomes in aligning two sequences

[1] identity (stay along a diagonal)
[2] mismatch (stay along a diagonal)
[3] gap in one sequence (move vertically!)
[4] gap in the other sequence (move horizontally!)
Fig. 3.20
Page 64

Start Needleman-Wunsch with an identity matrix


Fig. 3.21
Page 65

Fill in the matrix starting from the bottom right

\[
\begin{aligned}
& \text { sequence } 1 \mathrm{ABCNJ}-\mathrm{RQCLCR}-\mathrm{PM} \\
& \text { sequence } 2 \mathrm{AJC-JNR-CKCRBP-} \\
& \text { sequence } 1 \mathrm{ABC}-\mathrm{NJRQCLCR-PM} \\
& \text { sequence } 2 A J C J N-R-C K C R B P-
\end{aligned}
\]



Fig. 3.21
Page 65


Fig. 3.21
Page 65


Fig. 3.21
Page 65




Fig. 3.22
Page 66



Rule for assigning score in position \(\mathbf{i}, \mathbf{j}\) :


Fig. 3.22
Fig. 3.22
Page 66


After you've filled in the matrix, find the optimal path(s) by a "traceback" procedure

sequence 1 ABCNJ-RQCLCR-PM sequence 2 AJC-JNR-CKCRBP-
sequence 1 ABC-NJRQCLCR-PM sequence 2 AJCJN-R-CKCRBP-

\section*{Needleman-Wunsch: dynamic programming}
\(\mathrm{N}-\mathrm{W}\) is guaranteed to find optimal alignments, although the algorithm does not search all possible alignments.

It is an example of a dynamic programming algorithm: an optimal path (alignment) is identified by incrementally extending optimal subpaths.
Thus, a series of decisions is made at each step of the alignment to find the pair of residues with the best score.



51 LFLqDHIUAEFSUDETGQMSATAKGRUR. LLNNAD . .UCADMUGTFTDTE 97

98 DPAKFKMKYMGUASFLQKGMDDHU IUDTDYDTYAU . . . . . . . . . . QYSC 136
94 IPAUFKIDALHENKUL. . . . . . . ULDTDYKKYLLFCMENSAEPEQSLAC 135
137 RLLMLDGTCADSYSFUFSRDPNGLPPEAQKiURQRQ.EELCLARQYRLIU 185
136 QCLURTPEUDDEALEKFDKALKALPMHIRLSFMPTQLEEQCHI .
Fig. 3.24

\section*{> gap}

Gap uses the algorithm of Needleman and Wunsch to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps
GAP of what sequence 1 ? hsrbp.pep
\[
\left.\begin{array}{c}
\text { Eegin }\left(\begin{array}{cc}
* & 1
\end{array}\right) ? \\
\text { End (* } \\
199 \\
*
\end{array}\right) ?
\]
to what sequence 2 (* hsrbp.pep *) ? btlacto.pep
\[
\begin{aligned}
& \text { Eegin }(* 1 *) ? \\
& \text { End }(* \quad 178 *) ?
\end{aligned}
\]

What is the gap creation penalty (* 8 *) ?
What is the gap extension penalty (\% 2 \%) ?
What should \(I\) call the paired output display file (* nstbp.pair *) ?
Aligning
Aligning


Fig. 3.23
Page 68


Fig. 3.26
Page 69


Fig. 3.26
Page 71

\section*{Global alignment versus local alignment}

Global alignment (Needleman-Wunsch) extends from one end of each sequence to the other

Local alignment finds optimally matching regions within two sequences ("subsequences")

Local alignment is almost always used for database searches such as BLAST. It is useful to find domains (or limited regions of homology) within sequences

Smith and Waterman (1981) solved the problem of performing optimal local sequence alignment. Other methods (BLAST, FASTA) are faster but less thorough.

Page 69

\section*{How the Smith-Waterman algorithm works}

Set up a matrix between two proteins (size \(\mathrm{m}+1, \mathrm{n}+1\) )
No values in the scoring matrix can be negative! \(\mathrm{S} \geq 0\)
The score in each cell is the maximum of four values:
\([1] s(i-1, j-1)+\) the new score at \([i, j]\) (a match or mismatch)
[2] \(s(i, j-1)\) - gap penalty
[3] s(i-1,j) - gap penalty
[4] zero

Page 69

\section*{Rapid, heuristic versions of Smith-Waterman: FASTA and BLAST}

Smith-Waterman is very rigorous and it is guaranteed to find an optimal alignment.

But Smith-Waterman is slow. It requires computer space and time proportional to the product of the two sequences being aligned (or the product of a query against an entire database).

Gotoh (1982) and Myers and Miller (1988) improved the algorithms so both global and local alignment require less time and space.

FASTA and BLAST provide rapid alternatives to S-W

\section*{Pairwise alignment: BLAST 2 sequences}
- Go to http://www.ncbi.nIm.nih.gov/BLAST
- Choose BLAST 2 sequences
- In the program,
[1] choose blastp or blastn
[2] paste in your accession numbers
(or use FASTA format)
[3] select optional parameters
--3 BLOSUM and 3 PAM matrices
--gap creation and extension penalties
--filtering
--word size
[4] click "align"


```


[^0]: HOME / HELP I STIE MAP COpyright © 2002 -2004 Uniprot TERMS OF USE

[^1]: 3. How to align the sequences of two proteins:

 Dayhoff's evolutionary perspective

[^2]: 4. How to align the sequences of two proteins:
 pairwise alignment
