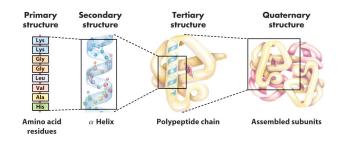

A Foine Reference

Protein Structure: Data Bases and Classification

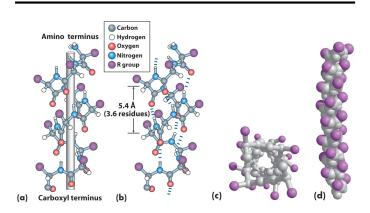
Ingo Ruczinski

Department of Biostatistics, Johns Hopkins University



Bourne and Weissig Structural Bioinformatics Wiley, 2003

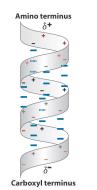
Terminology

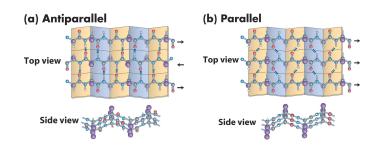

- Primary Structure
- Secondary Structure
- Tertiary Structure
- Quatenary Structure
- Supersecondary Structure
- Domain
- Fold

Hierarchy of Protein Structure

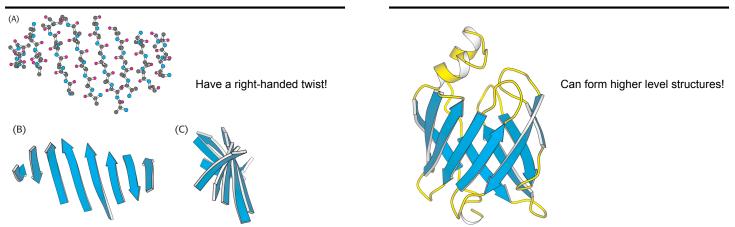
α 3.10 π Φ

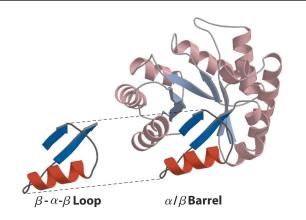
α -helices


α -helices

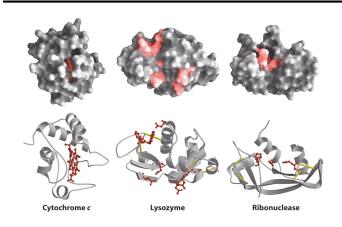

β-sheets

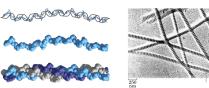
$\alpha\text{-helices}$ have handedness:

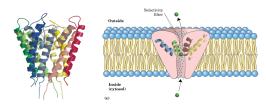

 α -helices have a dipole:

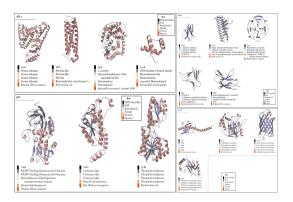


β-sheets


β -sheets

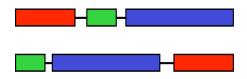



Super Secondary Structure Motifs


Protein Structure and Function

Globular Proteins

What is a Domain?

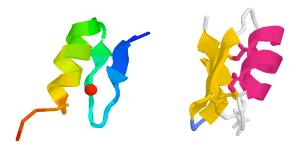

Richardson (1981):

N ithin a single subunit [polypeptide chain], contiguous portions of the polypeptide chain frequently fold into compact, local semi-independent units called domains.

More About Domains

- Independent folding units.
- · Lots of within contacts, few outside.
- Domains create their own hydrophobic core.
- Regions usually conserved during recombination.
- Different domains of the same protein can have different functions.
- Domains of the same protein may or may not interact.

Why Look for Domains?



Domains are the currency of protein function!

Domain Size

- Domains can be between 25 and 500 residues long.
- · Most are less than 200 residues.
- Domains can be smaller than 50 residues, but these need to be stabilized.

Examples are the zinc finger and a scorpion toxin.

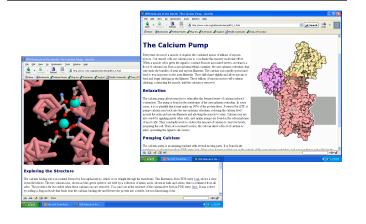
A Humdinger of a Domain

What's the Domain? (Part 1)

What's the Domain? (Part 2)

Homology and Analogy

- Homology: Similarity in characteristics resulting from shared ancestry.
- Analogy: The similarity of structure between two species that are not closely related, attributable to convergent evolution.

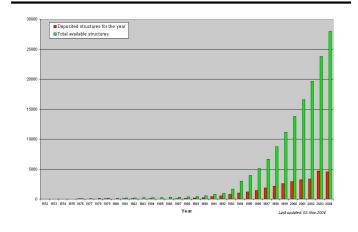

Homologous structures can be devided into orthologues (a result from changes in the same gene between different organisms, such as myoglobin) and paralogues (a result from gene duplication and subsequent changes within an organism and its descendents, such as hemoglobin).

Homology and Analogy

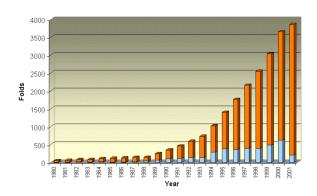
The RCSB Protein Data Bank

PDB File Header

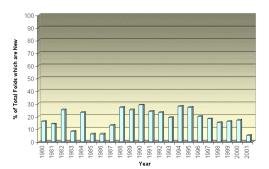
The header contains information about protein and structure, date of the entry, references, crystallographic data, contents and positions of secondary structure elements, etc:


HEADER TITLE TITLE COMPND	ONLIDOREDUCTRE ATOMIC RESOLUTION STRUCTURE OF CHOLESTEROL OXIDASE 2 (STREFORMICES SP. SA-COO) MOL [DL 1.
COMPND	2 MOLECULE: CHOLESTEROL OXIDASE;
COMPND	3 CHAIN: A;
COMPND	4 SYNONYM: CHOD;
COMPND	5 EC: 1.1.3.6;
COMPND	6 ENGINEERED: YES;
COMPND	7 OTHER DETAILS: FAD COFACTOR NON-COVALENTLY BOUND TO THE
COMPND	8 ENZYME
	AUTHOR A.VRIELINK, P.I. LARIO
	REVDAT 1 25-FEB-03 1MXT 0
	JRNL AUTH P.I.LARIO, N.SAMPSON, A.VRIELINK
	JRNL TITL SUB-ATOMIC RESOLUTION CRYSTAL STRUCTURE OF
	JRNL TITL 2 CHOLESTEROL OXIDASE: WHAT ATOMIC RESOLUTION
	JRNL TITL 3 CRYSTALLOGRAPHY REVEALS ABOUT ENZYME MECHANISM AND
	JRNL TITL 4 THE ROLE OF FAD COFACTOR IN REDOX ACTIVITY
	JRNL REF J.MOL.BIOL. V. 326 1635 2003
	JRNL REFN ASTW INOBAK UK ISSN 0022-2836

PDB File Body


The body of the PDB file contains information about the atoms in the structure:

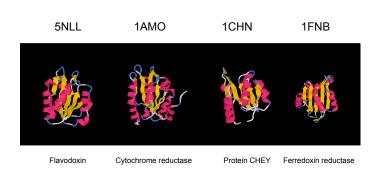
ATOM	76	Ν	PRO .	A 12	31.129	-4.659	43.245	1.00	9.00	N
ATOM	77	CA	PRO .	A 12	32.426	-4.662	42.542	1.00	9.00	C
ATOM	78	С	PRO .	A 12	32.423	-4.009	41.182	1.00	8.02	C
ATOM	79	0	PRO .	A 12	33.267	-3.177	40.892	1.00	8.31	0
ATOM	80	CB	PRO .	A 12	32.791	-6.126	42.592	1.00	10.02	C
ATOM	81	CG	PRO .	A 12	32.190	-6.663	43.857	1.00	10.12	C
ATOM	82	CD	PRO .	A 12	30.850	-5.927	43.925	1.00	9.87	C
ATOM	90	Ν	ALA .	A 13	31.485	-4.468	40.316	1.00	8.06	N
ATOM	91	CA	ALA .	A 13	31.357	-3.854	39.004	1.00	7.28	C
ATOM	92	С	ALA .	A 13	29.947	-3.309	38.814	1.00	7.21	C
ATOM	93	0	ALA .	A 13	28.969	-3.932	39.200	1.00	7.56	0
ATOM	94	CB	ALA .	A 13	31.636	-4.879	37.897	1.00	8.54	C


Growth of Structural Data

Unique Folds in the PDB

New Folds Become Rare

SCOP Structural Classification of Proteins

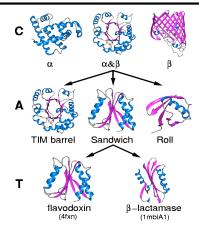

- Proteins are classified (manually!) taking both structural and evolutionary relationship into account.
- There are 7 classes of proteins, the main ones being all alpha, all beta, alpha/beta, and alpha+beta.
- The principle levels in the hierarchy are fold, superfamily, and family.

Hubbard, Murzin, Brenner and Chothia (1997)

SCOP Levels

- **Family**: Clear evolutionarily relationship. In general >30% pairwise residue identities between the proteins.
- **Superfamily**: Probable common evolutionary origin. Proteins have low sequence identities, but structural and functional features suggest that a common evolutionary origin is probable.
- Fold: Major structural similarity. Proteins have the same major secondary structures in same arrangement and with the same topological connections.

	Bookmarks Icools Window Help					
🔹 🚽 🌲 🚽	Reload 3top	.k/scop/count.html		•	Search	A Print
🚹 Home 🛛 🤙 Bookmark	s 🦧 Release Notes 🦧 Plug-ins 🦧 Extensions 🦧 Sup	iport 📫 Mozilla Commu	nity 🗶 Drop_Off Locator			
tructural Classific	ation of Proteins					
₽ ⊘ ?	SCOP: Strue 20619 PDB Entries (1	tural Classification August 2003), 547	t ion Statistic of Proteins 1.65 release 145 Domains. 1 Literature R diecortical models)			
		-				
	Class	Number of folds	Number of superfamilies	Number of families	1	
					5	
	All alpha proteins	179	299	480	5	
					5	
	All alpha proteins	179	299	480	5 	
	All alpha proteins All beta proteins	179 126	299 248	480 462	5	
	All alpha proteins All beta proteins Alpha and beta proteins (a/b)	179 126 121	299 248 199	480 462 542	5	
	All alpha proteins All beta proteins Alpha and beta proteins (a/b) Alpha and beta proteins (a+b)	179 126 121 234	299 248 199 349	480 462 542 567	5 	
	All alpha proteins All beta proteins Alpha and beta proteins (a/b) Alpha and beta proteins (a+b) Multi-domain proteins	179 126 121 234 38	299 248 199 349 38	480 462 542 567 53	5 	
	All alpha proteins All beta proteins Alpha and beta proteins (a/b) Alpha and beta proteins (a't-b) Multi-domain proteins Membrane and cell surface proteins	179 126 121 234 38 36	299 248 199 349 38 66	480 462 542 567 53 73		


Some Maybe Surprising Results

CATH Protein Structure Classification

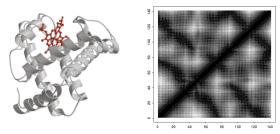
- The CATH database is a hierarchical domain classification of protein structures in the Brookhaven protein databank. Only NMR structures and crystal structures solved to resolution better than 3.0 angstroms are considered.
- There are four major levels in this hierarchy: Class, Architecture, Topology (fold family) and Homologous superfamily.
- Multidomain proteins are subdivided into their domains using a consensus procedure. All the classification is performed on individual protein domains.

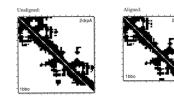
Orengo, Michie, Jones, Jones, Swindells, Thornton (1997)

The CATH Hierarchy

SCOP versus CATH

SCOP	CATH
Class	Class
	Architecture
Fold	Topology
	Homologous superfamily
Superfamily	
Family	Sequence family
Domain	Domain


🔠 CATH Releases - Mozilla											
Elle Edit View Go Bookmarks Icols Wi	ndow Belp										
Back Forward Reload Stop	ktp://www.biochem.ucl.ac.uk/bsm/cath/releases.html 🔍 🌌 Search 📑 👻 🔟							m			
🚮 Home 🛛 📲 Bookmarks 🦧 Release Notes 🦧 Plug-	ins 🥒 Extensions 🥒 Support 🖆 Mozilia Community 🥒	Drop_	Off Locat	or							
Search	Home > Top Releases	ne3D	Impai	la FTF	P Interr	nal					^
PDB Code CATH Code General Text	This page provides information on the off CATH v2.5.1		CATH N	eleases							H
Goto		5.1									
SSAP Server GRATH Server	Date 28	Date 28-01-2004									
	0	٩	0	٢	0	٢	0	D			
	Mainly Alpha	5	227	428	948	1713	3946	10155			
Navigation	Mainly Beta	19	139	292	951	2344	5011	14259			
Home	Alpha Beta	12	368	648	2010	3631	8639	23025			
Top of hierarchy	Few Secondary Structures	1	86	91	114	225	378	952			
	Multi-domain chains	1	1053	1057	1071	2186	5801	12471			
	Preliminary single domain assigments	1	371	374	422	479	789	1663			
	Multi-domain domains	2	31	31	49	67	139	287			
	CATH-35 Sequence families	1	997	997	997	1108	2154	3431			
	Fragments from multi-chain domains	1	28	28	30	33	56	106			
🐝 🖾 🏑 🖾 🕫 Done			_	_	_	_	_				<u>∼</u> • • • • •
) RealOne Player: Strai 🙀 CATH Releases - Mite	-			erver: Id		10	ht - Paint		-	4:36 PM


DALI
Distance Matrix Alignment

- DALI generates alignments of structural fragments, and is able to find alignments involving chain reversals and different topologies.
- The algorithm uses distance matrices to represent each structure to be compared.
- Application of DALI to the entire PDB produces two classifications of structures: FSSP and DDD (3D).

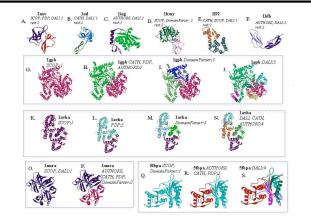
Holm and Sander (1993)

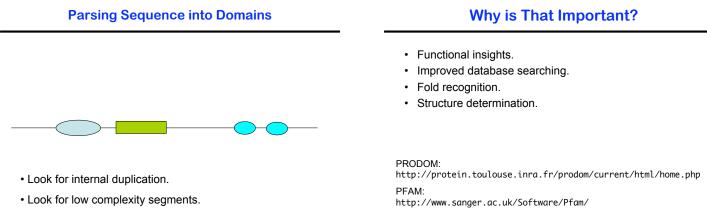
DALI

FSSP and **DDD**

- The families of structurally similar proteins (FSSP) is a database of structural alignments of proteins in the protein data bank (PDB). It presents the results of applying DALI to (almost) all chains of proteins in the PDB.
- The DALI domain dictionary (DDD) is a corresponding classification of recurrent domains automatically extracted from known proteins.

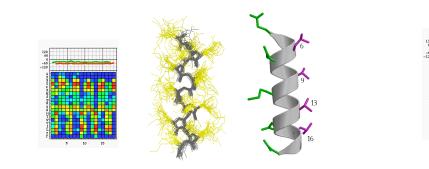
References: Holm and Sander

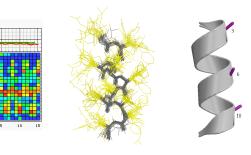

- Protein Structure Comparison by Alignment of Distance Matrices, Journal of Molecular Biology 233, pp 123-138, 1993.
- The FSSP Database of Structurally Aligned Protein Fold Families, Nucleic Acids Research 22 (17), pp 3600-3609, 1994.
- *Mapping the Universe*, Science 273 (5275), pp 595-602, 1996.
- Touring Protein Fold Space with Dali/FSSP, Nucleic Acids Research 26 (1), pp 316-319, 1998.


Other Algorithms for Domain Decomposition

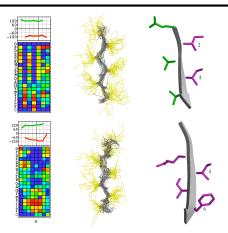
- The Protein Domain Parser (PDP) uses compactness as a chief principle.
 - http://123d.ncifcrf.gov/pdp.html
- DomainParser is graph theory based. The underlying principle used is that residue-residue contacts are denser within a domain than between domains.

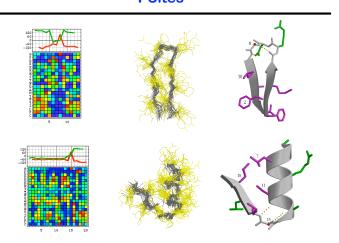
http://compbio.ornl.gov/structure/domainparser/


Oh Dear...



• Look for transmembrane segments.


I-Sites



I-Sites

I-Sites