Investigating mediation when

 counterfactuals are not metaphysical: Does sunlight exposure mediate the effect of eye-glasses on cataracts?Brian Egleston
Fox Chase Cancer Center
Collaborators:
Daniel Scharfstein, Beatriz Munoz, Sheila West Johns Hopkins University

Public Health Goals

- Cataracts are a major source of vision loss in older persons.
- Promoting the use of eye-glasses when people are outdoors might reduce the incidence of cataracts through their reduction in the amount of sunlight that reaches the eye.

Salisbury Eye Evaluation

- Population based study of approximately 2,500 older adults in Salisbury, Maryland.
- Participants asked about their lifetime glasses use, jobs, and leisure activities.
- The current study uses recalled eye-glasses use and sun exposure and presenting cortical cataract data.

Data Structure and Notation

- Z indicates glasses use ($1=$ use, $0=$ no use)
- $Y(z)$ indicates potential cataract outcome (1=cataract, 0 otherwise) under $Z=z$.
- $M(z)$ is potential ocular UV exposure in Maryland Sun Years (MSYs) under $Z=z$.
- Full set of potential outcomes:

$$
\{M(0), Y(0), M(1), Y(1)\}
$$

Data Structure and Notation

- X is a vector of confounding covariates: Age, Type of job in 30s, Race, Sex, Diabetic status, Education level
- $M=M(Z), Y=Y(Z)$ are observed UV and cataract outcomes.
- Observed data:

$$
\{Z, X, M, Y\}
$$

Mediation

- A mediator is the causal mechanism linking an exposure to an outcome.
- Causal hypothesis:

Eye glasses \longrightarrow UV exposure \longrightarrow Cataracts
Age 31
Ages ${ }^{\uparrow}$ 31-34
Age ${ }^{\uparrow} 65+$

Traditional Model

Eye-glass use $(Z) \xrightarrow{\nearrow^{\alpha} \quad \tau^{\prime}}{ }^{\beta}$ Cataracts (Y)

$$
\begin{gather*}
Y=\gamma_{1}+\tau Z+\epsilon_{1} \tag{1}\\
M=\gamma_{2}+\alpha Z+\epsilon_{2} \tag{2}\\
Y=\gamma_{3}+\tau^{\prime} Z+\beta M+\epsilon_{3} \tag{3}
\end{gather*}
$$

- For Y as a continuous measure, $\operatorname{cov}\left(\epsilon_{2}, \epsilon_{3}\right)=0$
- Total effect of Z on Y is τ, direct effect is τ^{\prime}.

Traditional Model

- Under Baron and Kenny, a measure of the indirect (mediated) effect is $\alpha \beta$.

Total effect $=\tau=\tau^{\prime}+\alpha \beta$.

- Stringent assumptions are necessary to give causal meaning to τ^{\prime} and $\alpha \beta$.

"Controlled" Effects

- Effects on outcomes after manipulating $Z, M(Z)$

$$
\rightarrow Y(z, m)
$$

- Exchangeability assumptions needed to identify controlled effects under randomization.
- $Y(z, m) \perp M(z) \mid Z=z$, which implies,
$E[Y(z, m)]=E[Y(z, m) \mid M(z)=m, Z=z]$
- Then, $E[Y(1, m)]-E[Y(0, m)]=\tau^{\prime}$
- Are controlled effects meaningful?

"Natural" Effects

- Proposed by Robins and Pearl.

Total Effect $=E[Y(1)]-E[Y(0)]$

$$
\begin{aligned}
& =\underbrace{E[Y(1, M(1))]-E[Y(0, M(1))]}_{\text {Direct Effect }} \\
& +\underbrace{E[Y(0, M(1))]-E[Y(0, M(0))]}_{\text {Indirect (Mediated) Effect }}
\end{aligned}
$$

"Natural" Effects

- An assumption is needed to identify natural mediational effects in addition to the assumption necessary for controlled effects.
- One assumption: $Y(1, m)-Y(0, m)=B$ is a random variable that does not depend on m.
- Natural effects have become the reference for assigning cause to mediational, surrogate marker, and indirect effect models (e.g. Taylor et al., 2005)

"Natural" Effects

- Are natural effects meaningful?
- How could one ever experimentally observe $Y(1, M(0))$?
- We would need to observe UV exposure in 30s when a person does not wear glasses, then go back in time and assign glasses but exposure under no glasses.

Proposed Causal Estimand

$$
R R(p, m)=\frac{P[Y(1)=1 \mid P=p, M(0)=m]}{P[Y(0)=1 \mid P=p, M(0)=m]}
$$

- $P=M(1) / M(0) . P$ is the proportion of potential UV that reaches eyes under glasses.
- Relative risk of cataracts with glasses use within strata based on baseline exposure and shielding effect of glasses.

Proposed Causal Estimand

- In a case of complete mediation we would expect that $R R(1, m)=1$ for all m.
- If glasses use does not change an individual's UV exposure then glasses should not be associated with cataracts.

Proposed Causal Estimand

- In a case of mediation, we would expect that,

$$
1 \geq R R(p, m)>R R\left(p^{\prime}, m\right) \text { if } p>p^{\prime}
$$

- The more that glasses prevent UV exposure, the more they prevent cataracts.
- This monotonicity might be broken if the principal stratum defined by $\{p, m\}$ includes individuals who are very different from the principal stratum defined by $\left\{p^{\prime}, m\right\}$.

Local Causal Inference

- Strata are likely similar within neighborhoods of p for given $M(0)$.
- After controlling for $M(0)$, those with very different values of P might have different characteristics, but we did not expect this to be the case a priori.

Hypothesized RR(p,m)

Non-Metaphysical Counterfactual

- $M(0)$ observable on everyone (Duncan et al., 1997)

$$
\begin{array}{ll}
M=\sum_{s=1}^{12} G(s) R(s) \sum_{t=5}^{18} F(t, s) H(t, s) T_{\text {hats }}(t, s) T_{\text {eye }}(t, s) \\
M & =\text { Total UV exposure } \\
s & =\text { Month } \\
t & =\text { Hour of day } \\
G(s) & =\text { Geographic correction factor } \\
R(s) & =\text { Ocular ambient exposure ratio } \\
F(t, s) & =\quad \text { Fraction of time spent outdoors } \\
H(t, s) & =\text { Global ambient exposure } \\
T_{\text {hats }}(t, s) & =\text { Percent of UV penetrating hats } \\
T_{\text {eye }}(t, s) & =\text { Percent UV penetrating glasses; Set to } 1 \text { to identify } \mathrm{M}(0)
\end{array}
$$

Identification of Estimand

Assumption 1: Stable Unit Treatment Value

- An individual's potential outcomes are unrelated to glasses use of other study participants and there are only two well-defined treatment arms.

Assumption 2:
$Z \perp\{Y(0), Y(1), M(1)\} \mid M(0), X$

- This is an observational study equivalent of the randomization assumption in randomized trials.

Identification of Estimand

Assumption 3: $\quad Y(0) \perp M(1) \mid Z, M(0), X$

- If we already know someone's glasses use status, baseline UV exposure and set of confounding covariates, knowing UV exposure that would occur when a person wears glasses gives us no additional information about baseline cataract outcomes.

Identification of Estimand

- For a neighborhood $d p$ of $P=p$,

$$
\begin{aligned}
& P[Y(1)=1 \mid P \in d p, M(0)] \\
& \quad=E\left[\left.\frac{P[Y=1 \mid Z=1, P \in d p, M(0), X] P[P \in d p \mid Z=1, M(0), X]}{E[P[P \in d p \mid Z=1, M(0), X]]} \right\rvert\, M(0)\right] \\
& \quad P[Y(0)=1 \mid P \in d p, M(0)] \\
& \quad=E\left[\left.\frac{P[Y=1 \mid Z=0, M(0), X] P[P \in d p \mid Z=1, M(0), X]}{E[P[P \in d p \mid Z=1, M(0), X]]} \right\rvert\, M(0)\right]
\end{aligned}
$$

- Use assumption 2 for first equality, assumptions 2 and 3 for second.

Models

- Models of primary interest:

$$
\begin{aligned}
\operatorname{logit} P[Y(0) & =1 \mid P, M(0)]
\end{aligned}=g_{0}\left(P, M(0) ; \boldsymbol{\beta}_{0}^{*}\right), ~(0) ; g_{1}\left(P, M(0) ; \boldsymbol{\beta}_{1}^{*}\right)
$$

- Propensity model used for assumption 2 :

$$
\operatorname{logit} P[Z=1 \mid M(0), X]=h\left(M(0), X ; \boldsymbol{\gamma}^{*}\right)
$$

Models

- Beta regression of P since we do not observe $M(1)$ on those who did not wear glasses.

$$
\begin{aligned}
& \operatorname{logit} E[P \mid M(0), X]=k\left(M(0), X ; \boldsymbol{\eta}^{*}\right) \\
& \quad E[P \mid M(0), X]=\mu\left(M(0), X ; \boldsymbol{\eta}^{*}\right) \\
& \operatorname{Var}[P \mid M(0), X]= \\
& \quad \frac{\mu\left(M(0), X ; \boldsymbol{\eta}^{*}\right)\left(1-\mu\left(M(0), X ; \boldsymbol{\eta}^{*}\right)\right)}{1+\phi^{*}}
\end{aligned}
$$

Estimation

- Maximum likelihood estimates can be used for $\boldsymbol{\beta}_{1}^{*}, \boldsymbol{\gamma}^{*}, \eta^{*}$, and ϕ^{*}.
- Unbiased estimating equation for $\boldsymbol{\beta}_{0}^{*}$:

$$
\begin{aligned}
& \boldsymbol{U}_{\boldsymbol{\beta}_{0}}\left(O^{\dagger} ; \boldsymbol{\psi}^{*}\right) \\
& =E\left[\left.\frac{(1-Z) g_{0}^{\prime}\left(P, M(0) ; \boldsymbol{\beta}_{0}^{*}\right)\left(Y-\text { expit }\left\{g_{0}\left(P, M(0) ; \boldsymbol{\beta}_{0}^{*}\right)\right\}\right)}{\left(1-\operatorname{expit}\left\{h\left(M(0), X ; \boldsymbol{\gamma}^{*}\right)\right)\right\}} \right\rvert\, O^{\dagger}\right] \\
& =\frac{\int_{0}^{1}(1-Z) g_{0}^{\prime}\left(p, M(0) ; \boldsymbol{\beta}_{0}^{*}\right) Y(0) f\left(p \mid M(0), Z=1, X ; \boldsymbol{\eta}^{*}, \phi^{*}\right) d p-}{\left(1-\operatorname{expit}\left\{h\left(M(0), X ; \boldsymbol{\gamma}^{*}\right)\right)\right\}} \\
& \quad \frac{\int_{0}^{1}(1-Z) g_{0}^{\prime}\left(p, M(0) ; \boldsymbol{\beta}_{0}^{*}\right) \text { expit }\left\{g_{0}\left(p, M(0) ; \boldsymbol{\beta}_{0}^{*}\right)\right\} f\left(p \mid M(0), Z=1, X ; \boldsymbol{\eta}^{*}, \phi^{*}\right) d p}{\left(1-\operatorname{expit}\left\{h\left(M(0), X ; \boldsymbol{\gamma}^{*}\right)\right)\right\}} \\
& \text { where } O^{\dagger}=\{Z, X, M(0), M, Y\} .
\end{aligned}
$$

Estimation

$$
\begin{gathered}
\widehat{P}[Y(z)=1 \mid P=p, M(0)=m] \\
=\frac{\exp \left\{g_{z}\left(p, m ; \widehat{\boldsymbol{\beta}}_{z}\right)\right\}}{1+\exp \left\{g_{z}\left(p, m ; \widehat{\boldsymbol{\beta}}_{z}\right)\right\}} \\
\widehat{R R}(p, m)=\frac{\widehat{P}[Y(1)=1 \mid P=p, M(0)=m]}{\widehat{P}[Y(0)=1 \mid P=p, M(0)=m]}
\end{gathered}
$$

Large Sample Theory

- Stack the score equations and $\boldsymbol{U}_{\boldsymbol{\beta}_{0}}\left(O^{\dagger} ; \boldsymbol{\psi}^{*}\right)$.

$$
\begin{gathered}
\boldsymbol{U}\left(O^{\dagger} ; \boldsymbol{\psi}\right)= \\
{\left[\boldsymbol{U}_{\boldsymbol{\beta}_{0}}\left(O^{\dagger} ; \boldsymbol{\psi}\right)^{\prime}, \boldsymbol{U}_{\boldsymbol{\beta}_{1}}\left(O^{\dagger} ; \boldsymbol{\psi}\right)^{\prime}, \boldsymbol{U}_{\boldsymbol{\gamma}}\left(O^{\dagger} ; \boldsymbol{\psi}\right)^{\prime}, \boldsymbol{U}_{\boldsymbol{\eta}}\left(O^{\dagger} ; \boldsymbol{\psi}\right)^{\prime}, \boldsymbol{U}_{\phi}\left(O^{\dagger} ; \boldsymbol{\psi}\right)\right]^{\prime}}
\end{gathered}
$$

- Under mild regularity conditions (Huber, 1964),

$$
\begin{gathered}
\sqrt{n}\left(\widehat{\boldsymbol{\psi}}-\boldsymbol{\psi}^{*}\right) \xrightarrow{D} \operatorname{Normal}\left(0, \Sigma^{*}\right) \\
\Sigma^{*}=E\left[\frac{\partial \boldsymbol{U}\left(O^{\dagger} ; \boldsymbol{\psi}^{*}\right)}{\partial \boldsymbol{\psi}}\right]^{-1} E\left[\boldsymbol{U}\left(O^{\dagger} ; \boldsymbol{\psi}^{*}\right) \boldsymbol{U}\left(O^{\dagger} ; \boldsymbol{\psi}^{*}\right)^{\prime}\right] E\left[\frac{\partial \boldsymbol{U}\left(O^{\dagger} ; \boldsymbol{\psi}^{*}\right)}{\partial \boldsymbol{\psi}}\right]^{-1^{\prime}}
\end{gathered}
$$

- By the δ-method,

$$
\sqrt{n}\left(R R(p, m ; \widehat{\boldsymbol{\psi}})-R R\left(p, m ; \boldsymbol{\psi}^{*}\right)\right) \xrightarrow{D} N\left(0, \frac{\partial R R\left(p, m ; \boldsymbol{\psi}^{*}\right)}{\partial \boldsymbol{\psi}} \Sigma^{*} \frac{\partial R R\left(p, m ; \boldsymbol{\psi}^{*}\right)^{\prime}}{\partial \boldsymbol{\psi}}\right)
$$

Analysis

Table 1: Characteristics of sample

Variable	No Eye-glass Use	Eye-glass Use
Number of participants	$830(42 \%)$	$1125(58 \%)$
Cortical cataracts	16.1%	11.6%
Sun exposure if glasses worn, M(1)	-	0.06
Sun exposure if glasses never worn, M(0)	$.17(.11)$	$.16(.11)$
Age	$73.5(5.0)$	$72.7(4.8)$
Diabetic	17.4%	17.2%
Male	54.6%	39.9%
Black	30.7%	22.1%
Not high school graduate	58.0%	45.6%
Job characteristics		
Worked over water	1.7%	1.2%
Worked outside on land	41.1%	28.5%
Worked inside	38.9%	44.2%
Worked as homemaker	18.3%	26.1%

Analysis: Baron and Kenny's Method

Table 2: Logistic models of cataract development (coefficients as odds ratios).

Variable	Model 1	$95 \% \mathrm{Cl}$	Model 2	$95 \% \mathrm{Cl}$
Cataract Models				
Age	1.17	$(1.07,1.28)$	1.17	$(1.07,1.28)$
Age spline term	0.89	$(0.78,1.03)$	0.89	$(0.78,1.03)$
Diabetic	1.43	$(1.02,2.00)$	1.43	$(1.02,2.00)$
Male	0.64	$(0.45,0.92)$	0.63	$(0.44,0.91)$
Black	4.23	$(3.13,5.72)$	4.22	$(3.12,5.71)$
Not high school grad	1.10	$(0.81,1.48)$	1.09	$(0.81,1.48)$
Worked over water	Reference		Reference	
Worked outside	0.50	$(0.20,1.27)$	0.52	$(0.20,1.32)$
Worked inside	0.64	$(0.25,1.66)$	0.70	$(0.26,1.90)$
Worked as homemaker	0.54	$(0.19,1.51)$	0.57	$(0.20,1.61)$
GlaSSeS	0.74	$(0.56,0.99)$	0.78	$(0.57,1.09)$
UV			1.80	$(0.30,10.76)$

Analysis

Figure 1: Estimates of $P[Y(0)=1 \mid P=p, M(0)=m]$: Probabilities of developing cataracts under no glasses within strata.

Analysis: Relative Risk

Analysis: Relative Risk

P-value

Analysis: Relative Risk

Figure 2: $R R(p, m)$ and P vs. $M(0)$ among glasses wearers; Red=Non-sunglasses users

Analysis: Relative Risk

Figure 3: $R R(p, m)$ and P vs. $M(0)$ among glasses wearers; Red=Black

Discussion

- The RR is approximately 1 when $\mathrm{P}=1$.
- The RR decreases as P decreases, suggesting a protective effect of glasses.
- The decrease in the RR is not monotone; this might be due to differences in principal strata. Sunglass users have higher values of P.
- These results are consistent with mediation.

Discussion

- The traditional method of analysis provided only marginal evidence of mediation.
- Our causal estimand provides a richer analysis.

Discussion

- This work presents how one might develop, identify, and estimate a scientifically meaningful causal estimand.
- The results suggest that encouraging people to wear eyeglasses in mid-life can reduce cataracts later in life.

Figure 4: Boxplots of Propensity of Wearing Glasses

$P($ Wore Glasses | X)

Analysis: Relative Risk

Figure 5: $R R(p, m)$ and P vs. $M(0)$ among glasses wearers; Red=Cataracts

Table 3: Characteristics of sample after weighting by estimated probability of observed glasses use.

Variable	No Eye-glass Use	Eye-glass Use
Number of participants	$830(42 \%)$	$1125(58 \%)$
Cortical cataracts	15.0%	12.2%
Sun exposure if glasses never worn, M(0)	.17	.17
Age	73.0	73.0
Diabetic	17.3%	17.4%
Male	46.3%	46.1%
Black	25.5%	25.5%
Not high school graduate	51.1%	50.9%
Job characteristics		
\quad Worked over water	1.4%	1.4%
Worked outside on land	33.4%	33.4%
Worked inside	42.2%	42.3%
Worked as homemaker	23.1%	22.9%

Figure 6: Histogram of $M(0)$.

Figure 7: Scatterplot of $\mathrm{M}(1)$ vs. $\mathrm{M}(0)$ among participants who wore glasses; jitter added.

Table 4: Results from logistic model of outdoor glasses use at age 31.

Variable	Estimate	$95 \% \mathrm{Cl}$
Intercept	2.82	$(-1.15,6.80)$
Age	-0.03	$(-0.09,0.02)$
Age spline term	0.00	$(-0.09,0.09)$
Diabetic	0.12	$(-0.13,0.36)$
Male	-0.53	$(-0.78,-0.29)$
Black	0.39	$(0.16,0.61)$
Not high school grad	-0.39	$(-0.58,-0.19)$
Worked over water	Reference	
Worked outside	-0.44	$(-1.24,0.35)$
Worked inside	-0.25	$(-1.10,0.59)$
Worked as homemaker	-0.26	$(-1.11,0.60)$
UV	3.96	$(-1.72,9.63)$
UV cubic spline term 1	-24.70	$(-52.11,2.72)$
UV cubic spline term 2	59.02	$(-3.02,121.07)$

Table 5: Results from Beta regression of $P=M(1) / M(0)$

Variable	Estimate	$95 \% \mathrm{Cl}$
Intercept	-0.56	$(-2.98,1.86)$
Age	-0.01	$(-0.04,0.03)$
Age spline term	0.02	$(-0.04,0.08)$
Diabetic	-0.02	$(-0.17,0.13)$
Male	0.17	$(0.02,0.33)$
Black	-0.09	$(-0.24,0.06)$
Not high school grad	0.02	$(-0.10,0.14)$
Worked over water	Reference	
Worked outside	-0.08	$(-0.62,0.47)$
Worked inside	0.18	$(-0.38,0.75)$
Worked as homemaker	0.02	$(-0.55,0.58)$
UV	4.40	$(0.87,7.93)$
UV cubic spline term 1	-10.61	$(-27.69,6.47)$
UV cubic spline term 2	19.72	$(-18.94,58.38)$
ϕ	3.12	$(2.89,3.35)$

Analysis: Relative Risk

