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Egleston, Scharfstein, Munoz, West:

Mediation with non-metaphysical counterfactuals

• Goal is to ascertain to what extent UVB exposure mediates

relationship between eyeglasses use and development of cataracts.

• Have ”observable” counterfactual – estimate of UVB exposure in the

absence of glasses use

– Assumes behavior would have been unchanged if hadn’t worn

glasses.
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ESMW: Mediation with non-metaphysical counterfactuals

Mediation

Barron and Kenny (1986) consider linear regression on treatment Z

1. of outcome Y unadjusted for mediator M

2. of mediator M

3. of outcome Y adjusted for mediator M

If M and Z are associated in 2), then can use 1) and 3) to consider

mediation

• Unadjusted and adjusted treatment effects equal: no mediation

• Adjusted treatment effect zero: complete mediation

• Adjusted treatment effect attenuated: partial mediation
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ESMW: Mediation with non-metaphysical counterfactuals

Direct and Indirect Effects

Y (z,m): outcome under treatment Z = z, mediator M = m

M(z): mediator under treatment Z = z.

• (Prescriptive) Direct Effect: E{Y (1,m) − Y (0,m)}
• (Prescriptive) Indirect Effect:

E{Y (1) − Y (0)}-E{Y (1, m) − Y (0, m)}
Direct effect of 0 implies complete mediation (all of treatment effect in

indirect, i.e., through the mediator).
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ESMW: Mediation with non-metaphysical counterfactuals

Direct and Indirect Effects

If have

1. Z independent Y (z,m), M(z) (randomization)

2. Given Z, Y (z,m) or Y (1 − z,m) independent of M(z)

(independence)

then can interpret adjusted regression estimator of treatment effect in

linear model as direct effect.

If also have (Robins 2003)

1. Y (1,m) − Y (0,m) constant with respect to m (no interaction)

then can interpret difference between unadjusted and adjusted regression

estimator of treatment effect in linear model as indirect effect.
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ESMW: Mediation with non-metaphysical counterfactuals

Z = 1 Z = 0 M(1), M(0)

E(Y (1, 1)) = α
(1,1)
11 E(Y (0, 1)) = α

(0,1)
11 M(1) = 1, M(0) = 1

E(Y (1, 1)) = α
(1,1)
10 E(Y (0, 0)) = α

(0,0)
10 M(1) = 1, M(0) = 0

E(Y (1, 0)) = α
(1,0)
01 E(Y (0, 1)) = α

(0,1)
01 M(1) = 0, M(0) = 1

E(Y (1, 0)) = α
(1,0)
00 E(Y (0, 0)) = α

(0,0)
00 M(1) = 0, M(0) = 0

Assume P (M(1) = i, M(0) = j) = 1/4 for i, j = 0, 1. Under

randomization

E(Y | Z = 1, M = 1−Y | Z = 0,M = 1) =
α

(1,1)
11 + α

(1,1)
10

2
−α

(0,1)
11 + α

(0,1)
01

2

but direct effect of interest for m = 1 when we assume that the mediator

is not under the control of the investigator is

E(Y (1,M(1) = 1) − Y (0,M(0) = 1)) = α
(1,1)
11 − α

(0,1)
11
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ESMW: Mediation with non-metaphysical counterfactuals

Under independence, α
(1,1)
11 = α

(1,1)
10 = α(1,1), α

(0,1)
11 = α

(0,1)
01 = α(0,1), and

the observed treatment difference conditional on M = 1 equals the direct

effect for m = 1: α(1,1) − α(0,1).

Under independence and no interaction, α(1,1) −α(0,1) = α(1,0) −α(0,0) =

α(1) − α(0), and the adjusted treatment difference equals the direct effect

α(1) − α(0)
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ESMW: Mediation with non-metaphysical counterfactuals

Principal Strata

Instead of estimating direct and indirect effects in the fashion of Robins (2003)
and Pearl (2001), ESMW use the principal stratification approach of Frangakis
and Rubin (2002), which conditions on the joint distribution of the potential
intermediate variables. Some of the advantages of this approach:

• Focuses on “potentially observable” counterfactuals, not counterfactuals that

assume the intermediate variable has been manipulated to a different value

than would have been observed under the assigned treatment.

– Are these “supercounterfactuals” of interest?

• Focus on estimating P (Y (z) | M(1), M(0)), rather than P (Y (z, m)): require

only Z ⊥ (Y (z), M(z)) instead of (Y (z, m), M(z)), and Y (z) ⊥ M(z) | Z

instead of Y (z, m). May be easier to achieve in a non-observational setting.

– How much weaker are these assumptions?

• No longer require linear link functions to obtain parameters with meaningful

causal interpretations.

– E(Y (1 | S = s)/Y (0 | S = s)) for dichotomous Y does not exist outside of

degenerate cases. But E(Y (1 | S = s))/E(Y (0 | S = s)) does – good

enough?
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ESMW: Mediation with non-metaphysical counterfactuals

Results

• Use of v(p,m) = E(Y (1)|M(1)/M(0)=p,M(0)=m)
E(Y (0)|M(1)/M(0)=p,M(0)=m)

as causal estimand of

interest illustrates the flexibility in the PS approach; hard to see

how to estimate using alternative method.

– E(Y (1)|M(1)=m1,M(0)=m0)
E(Y (0)|M(1)=m1,M(0)=m0)

might be of interest as well, if

“Maryland sun-years” interpretable.

• Figure illustrating relationship between casual relative risk and

potential mediation levels is worthy of a Tufte Hall of Fame for

information density and interpretability.
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ESMW: Mediation with non-metaphysical counterfactuals

Results

• Results generally sensible: little or no effect of glasses use when

p ≈ 1; also less helpful when M(0) is very large. (Missing data due

to surgery? Non-linearity in mediation effect?)

– Contrast with standard regression approach, which found little

evidence for evidence of mediation of eyeglasses use effect via

UVB.

• Dropoff in mediation around p = .2, which is mediation value for

those many of those who only wore corrective glasses, not sunglasses.

– Different mediation effects v(p, m) when treatment Z includes

sunglasses use versus when corrective eyeglasses only.

– Different “strategic use” among corrective eyeglasses only users?

UVB, at least as measured by M , not the whole story?
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ESMW: Mediation with non-metaphysical counterfactuals

Questions

• What are the implications of a lack of a relationship between

P (Y (0) = 1) and M(0), either marginally or conditional on

M(1)/M(0)?

– Would seem to damage case for mediation: lack of path between

M and Y .

• How realistic is the assumption that Y (0) ⊥ M(1) | Z, M(0),X?

(Observed UVB in eyeglass wearers not associated with risk of

cataracts in the absence of glasses use?)

– Does this require that eyeglass wearers not change their behavior

in the absence of glasses use? Some way to relax this

assumption?

• Use propensity score as covariate in generalized linear model rather

than as weight?
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ESMW: Mediation with non-metaphysical counterfactuals

Use of Missing Data Paradigm

ESMW use a two-stage approach regression approach, but could treat

M(1) as missing data, and use either EM algorithm or data

augmentation algorithm to estimate model parameters.

Another classic case where the counterfactual value of the intermediate

variable is known: non-compliance where subjects assigned to the control

arm cannot access the treatment.

• Z is treatment assignment, M is treatment taken, and Y is outcome.

• M(0) = 0 for all subjects; M(1) = M if z = 1, but is unobserved if

z = 0.

• (M(1) = 1, M(0) = 0) are “compliers”; (M(1) = 0,M(0) = 0) are

“never takers”.
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ESMW: Mediation with non-metaphysical counterfactuals

Use of Missing Data Paradigm

No longer require assumption that Y (0) ⊥ M(1) | Z, M(0),X (although

still need predictors X of M(1) if Y is dichotomous).

logit(P (Y (z) = 1)) = β0 + β1z + β2M(1) + β3M(1)z

v(1) = P (Y (1) | M(1) = 1)/P (Y (0) | M(1) = 1) =
expit(β0 + β1 + β2 + β3)

expit(β0 + β2)

v(0) = P (Y (1) | M(1) = 0)/P (Y (0) | M(1) = 0) =
expit(β0 + β1)

expit(β0)

Simulation study: X ∼ U(0, 1), logit(P (M(1) = 1) = α0 + α1x. Consider

α0 = −1, α1 = 2, β0 = −2, β1 = .5, β3 = 1.5, and either β2 = 0

(independence assumption holds) or β2 = 1 (compliers have better

outcomes on average on the control arm than never takers).
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ESMW: Mediation with non-metaphysical counterfactuals

Use of Missing Data Paradigm

β2 = 0 (Independence of Y (0) and M(1))

EM Two-Stage

Truth Bias RMSE Bias RMSE

v(1) 4.19 .186 1.089 -.001 .264

v(0) 1.53 .062 .374 -.000 .128

β2 = 1 (Y (0) depends on M(1))

EM Two-Stage

Truth Bias RMSE Bias RMSE

v(1) 2.72 .050 .341 .953 .969

v(0) 1.53 .109 .545 -.557 .561
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ESMW: Mediation with non-metaphysical counterfactuals

Use of Missing Data Paradigm

• Harder to implement when M is continuous, but numerical methods

exist

• Might be easier to use a fully Bayesian approach and a data

augmentation algorithm

– η | rest ∝ f(p | M(0),X, η)p(η)

– β | rest ∝ P (Y (z) | p, M(0),X, z, β)p(β)

– p | rest ∝ P (Y (z) | p, M(0),X, z, β)f(p | M(0),X, η)
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Joffe, Small, Ten Have, Brunelli, Feldman:

Extended Instrumental Variables

Standard instrumental variable (IV) approaches use variables associated

with a treatment of interest but independent of the potential outcomes

under the various treatment arms to account for unobserved confounders

of treatment and outcome.

• Classic example is non-compliance: the randomized treatment

assignment is by definition independent of the potential outcomes

but (hopefully) associated with treatment taken.

• In practice, look for factors associated with an exposure of interest

but at least quasi-randomized with respect to the potential outcome.
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JSTBF: Extended Instrumental Variables

Example

• JSTBF propose method for using IV to deal with unmeasured

confounding when interested in direct effect of exposure on outcome

in the presence of (potential) mediation.

• Example of vascular access (VA) choice (catheter vs. fistula/grant)

in treating end-stage renal disease via hemodialysis. Choice of VA

affects amount of dialysis that can be received: also can have direct

effect on outcome. Thus “dose” of dialysis mediated the effect of VA

on outcome.

• VA not randomized: sicker patients more likely to receive catheter.

Use center as an IV?
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JSTBF: Extended Instrumental Variables

Standard IV Estimation

Y = Y (a) = Y (0) + ΦAA + ε

E(Y | R,X) = E(Y (0) | R,X) + E(A | R,X)ΦA = μ + φ0ΦA + φrΦAR

where E(Y (0) | R,X) = E(Y (0)) = μ and E(Z | R,X) = φ0 + φrR.

Thus the total effect of R on Y is given by φrΦA, and we can obtain an

estimate of φr by first regressing Z on R to obtain

Ê(A | R, X) = φ̂0 + φ̂rR, and regressing Y on Ê(A | R,X) to obtain Φ̂A,

the effect of A on Y after accounting for unobserved confounders U .
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JSTBF: Extended Instrumental Variables

Extended IV Estimation

Y = Y (a, s) = Y (0, 0) + ΦAA + ΦSS + ε

E(Y | R, X) = E(Y (0, 0)) + E(A | R, X)ΦA + E(S | R, X)ΦS

Obtain Φ̂A and Φ̂S by regressing Y on Ê(A | R, X) and Ê(S | R, X), where the

latter on the predicted values obtained from regressing A and S on R.

But total effect of A on Y is given by direct effect Φ̂A plus the indirect effect

through S.

• Problem: effect of A on S in confounded by R.

• Solution: Since R is an IV, can estimate direct effect of A on S.

S = S(a, r) = S(0, 0) + φaA + +φrR + ε

E(S | R, X) = E(S(0, 0)) + E(A | R, X)φa + RΦr

Regress S on Ê(A | R, X) and R to obtain φa and φr.

Total effect of A on Y is then estimated by Φ̂A + φ̂aΦ̂S .
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JSTBF: Extended Instrumental Variables

Additional mediators

There may be alternative pathways Q through which R affects Y that do

not pass through A.

• Use of other medications to treat side effects of HD might differ by

practice

Y = Y (a, s) = Y (0, 0) + ΦAA + ΦSS + ΦQQ + ε

E(Y | R,X) = E(Y (0, 0))+E(A | R,X)ΦA+E(S | R, X)ΦS+E(Q | R,X)ΦQ

Proceed as before, but now must regress Q on R to obtain Ê(Q | R, X)

and now regress Y on Ê(A | R, X), Ê(S | R,X), and Ê(Q | R,X).

Total effect of A on Y remains Φ̂A + φ̂aΦ̂S .
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JSTBF: Extended Instrumental Variables

Questions

• Does the inclusion of additional mediators help R to perform its IV

role?

• No interaction assumption between A and S and A and R: can be

accommodated by including interaction terms?

• Linearity assumption (require Y to be approximately continuous).

Any way out of this?
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JSTBF: Extended Instrumental Variables

Principal stratification

• Stratify on the potential outcomes of A(0), A(1), S(0), S(1).

• Advantages?

– No longer require linearity.

– Allow for direct effects of R on Y (equivalent to dropping the

exclusion restriction assumption)?

• Might require good covariates to estimate principal strata.

• Might require at least ”partial” monotonicity (A(1) ≥ A(0),

S(1) ≥ S(0) or vice-versa) to obtain well-identified estimators.
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Special thanks to Dylan Small, Tom Ten Have, Marshall Joffe, and Brian

Egleston.
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