Outline
Missing Data & Causal Inference
Simple example
Speaker contributions
Summarizing inferences
Summary

Identification, Sensitivity Analysis, Prior Information

Joe Hogan Brown University

May 19, 2008

Outline of Topics

- Missing Data & Causal Inference
 - Notation
 - Full data model
 - How to extrapolate
- Simple example
- Speaker contributions
 - Scharfstein
 - Goetghebeur
- 4 Summarizing inferences
 - How to report
 - A role for Bayesian philosophy?
- Summary

Basic notation

 $Y_{\rm obs}$ = observed response

 Y_{mis} = missing response

X, V = covariates

R = missing data indicators

 θ = parameter of interest

Full data model

Underlying data-generating model

• Full-data model (everything conditioned on X)

$$f(Y_{\text{obs}}, Y_{\text{mis}}, R \mid \theta) = f(Y_{\text{mis}} \mid Y_{\text{obs}}, R, \theta) f(Y_{\text{obs}}, R \mid \theta)$$

- For missing data and causal inference:
 - Have information on $f(Y_{obs}, R \mid \theta)$ can model it
 - No information on $f(Y_{mis} | Y_{obs}, R, \theta)$ must extrapolate it
 - ullet Only partial information about heta
 - ullet Inference about heta depends on extrapolation

Full data model

Underlying data-generating model

• Full-data model (everything conditioned on X)

$$f(Y_{\text{obs}}, Y_{\text{mis}}, R \mid \theta) = f(Y_{\text{mis}} \mid Y_{\text{obs}}, R, \theta) f(Y_{\text{obs}}, R \mid \theta)$$

- For missing data and causal inference:
 - Have information on $f(Y_{obs}, R \mid \theta)$ can model it
 - No information on $f(Y_{mis} | Y_{obs}, R, \theta)$ must extrapolate it
 - ullet Only partial information about heta
 - ullet Inference about heta depends on extrapolation

Full data model

Underlying data-generating model

• Full-data model (everything conditioned on X)

$$f(Y_{\text{obs}}, Y_{\text{mis}}, R \mid \theta) = f(Y_{\text{mis}} \mid Y_{\text{obs}}, R, \theta) f(Y_{\text{obs}}, R \mid \theta)$$

- For missing data and causal inference:
 - Have information on $f(Y_{obs}, R \mid \theta)$ can model it
 - No information on $f(Y_{mis} | Y_{obs}, R, \theta)$ must extrapolate it
 - ullet Only partial information about heta
 - ullet Inference about heta depends on extrapolation

How to extrapolate

Must constrain or structure $f(Y_{mis} | Y_{obs}, R, \theta)$ using *subjective* assumptions

Assumptions are subjective because data have no information to verify them

- missing at random
- ignorable treatment assignment (conditional on X, V)
- no unmeasured confounding
- missing not at random

Focus should be on model parameterization

Full-data model should be indexed by one or more parameters that characterize non-identified parts of the distribution

Heuristic: For a working full-data model $f(Y_{\text{obs}}, Y_{\text{mis}}, R \mid \theta)$, let $\theta = g(\phi, \Delta)$.

- ϕ identified by (Y_{obs}, R)
- Δ not identified 'sensitivity parameter'

See Robins (1997 Stat Med), Rubin (1977 JASA), Vansteelandt et al (2006 Stat Sinica), Daniels and Hogan (2008).

Properties of effective model parameterization

- ullet Δ must have coherent interpretation so we can argue about its most plausible values
- Model should be centered at familiar set of assumptions (MAR, no unmeasured confounding, etc.)
- Function $\theta = g(\phi, \Delta)$ should make clear what aspects of the model are driving inference about θ
 - proportion missing information
 - parametric assumptions about $f(Y_{mis} | Y_{obs}, R)$
 - departures from MAR

Data

- Full-data response: (Y_1, Y_2)
- Y_2 missing on some individuals
- R = 1 if Y_2 observed; R = 0 if missing

Objective: Estimate $\theta = E(Y_2)$

Model

$$E(Y_1) = \mu_1$$

$$E(R) = \pi$$

$$E(Y_2 \mid Y_1, R = 1) = \beta_0 + \beta_1 Y_1$$

$$E(Y_2 \mid Y_1, R = 0) = (\beta_0 + \Delta_0) + (\beta_1 + \Delta_1) Y_1$$

What is Δ ?

$$\Delta_0 + \Delta_1 Y_1 = E(Y_2 \mid Y_1, R = 1) - E(Y_2 \mid Y_1, R = 0)$$

= difference in $E(Y_2 \mid Y_1)$ between those with observed vs. missing Y_2 .

- Identified and non-identified parameters well separated
- Model centered at MAR ($\Delta_0 = \Delta_1 = 0$)

 \bullet Can convey influence of modeling assumptions on estimate of θ

$$\theta = E(Y_2) = \beta_0 + \beta_1 \mu_1 + \pi(\Delta_0 + \Delta_1 \mu_1)$$

For 'sensitivity analysis', can plot

$$\theta = g(\phi, \Delta_0, \Delta_1)$$

as function of (Δ_0, Δ_1) .

Warning to practitioners

Not all models admit this sort of parameterization!

- Parametric selection models
- Parametric versions of IV estimators

Must be aware of where identification is coming from

- Distributional assumptions (e.g. full data are normal)
- Modeling assumptions (e.g. linear trajectory over time)

Scharfstein approach

- Uses 'effective parameterization'
- Incorporates lots of auxiliary information (a must)
 (Design: think carefully about auxiliary information)
- Keeps parametric assumptions mainly confined to observed data (can check these)
- Efficiency

Goetghebeur approach

- Also uses 'effective parameterization'
- Intervals: reflect both sampling error and model uncertainty (should use even under ignorability?)
- Clear that the causal model potentially has several dimensions for sensitivity analysis
- Representation of sensitivity to 'unmeasured confounding'
- Double robustness

How should inferences be reported?

- Interval estimate only
 - Conveys limitations of available information
 - Must account for sampling variation and lack of information
 - Intervals can be very wide in practice
- Sensitivity analysis
 - Plot $\theta(\Delta)$ as function of Δ
 - Conveys range of possible conclusions
 - How to get around multiple comparison problem?
 - Consumers gravitate to their favorite conclusion?
- Single summary
 - What is the most appropriate point estimate?
 - Posterior distribution?

Are we being Bayesian without realizing it?

Inference about incomplete data requires subjectivity

Why not formalize it?

Prior formulation

$$p(\theta) = p(\phi, \Delta) = p(\Delta \mid \phi) p(\phi)$$

- Can use flat or vague priors for $p(\phi)$
- Subjectivity represented by $p(\Delta \mid \phi)$

Examples: Scharfstein et al (2003 Biostatistics); Daniels and Hogan (2008, Chapter 9).

Summary

- Inference from incomplete data requires subjective assumptions
- Subjective = cannot be verified by data even when $n = \infty$
- Key modeling objective: separate identified and nonidentified parts of the full data model
- DS and EG: outstanding examples; conveys complexity of the issues
- Role for Bayesian formalism?

Outline
Missing Data & Causal Inference
Simple example
Speaker contributions
Summarizing inferences
Summary

Summary

Thanks to Liz Stuart!!