Extended Instrumental Variables Methods

Marshall M. Joffe University of Pennsylvania

Introduction

- Definition

- Estimation of effects based on
- Complex ordered systems of variables
- Most naturally depicted graphically
- Effects based on combination/integration of effects from component parts
\square Instrumental variables (IV) used to estimate (some of) component effects

Overview

- Motivating example
- Vascular access (VA) in hemodialysis
- Show relationships among variables
- Explain why IV methods inadequate
\square Sketch alternative approach(es)
- Alternative estimands
- Other examples: gene expression
- Mediation analyses
- Further work/extensions

Vascular access in hemodialysis

- Hemodialysis
- One of main treatment options in end-stage renal disease (ESRD)
- Requires access to vascular system
- Three main types
- Catheter
- Synthetic material
- Native arteriovenous fistula (AVF)

Vascular access (cont'd)

- Type of VA (A) partially determines dose of dialysis (DD; S)
- Native AVF allows larger doses than catheter
- DD may affect outcomes (e.g., mortality)
- VA may have effects on outcome (Y) not mediated by dose (e.g., infection)
- Incomplete directed acyclic graph (DAG) of key variables

Estimand of interest

- To gauge impact of type of VA, interested in overall effect
- Involves both
- Direct effect ($\mathrm{A}->\mathrm{Y}$)
\square Indirect effect ($\mathrm{A}->\mathrm{S}->\mathrm{Y}$)
\square Formulate in terms of potential A outcomes:
$Y^{a_{1}}-Y^{a_{0}} \quad$ singly indexed
$=Y^{a_{1} S^{a_{1}}}-Y^{a_{0} S^{a_{0}}}$ doubly indexed
direct effect: $\quad Y^{a_{1} a_{0}}-Y^{a_{0} S^{a_{0}}}$
indirect effect: $Y^{a_{1} S^{a_{1}}}-Y^{a_{1} S^{a_{0}}}$

Confounding by indication

\square AVFs given preferentially to healthier subjects
\square Results in confounding by indication

- Often difficult to control using standard methods based on ignorable treatment assignment
- Variety of treatments of dialysis patients in which standard approaches based on ignorability lead to implausible results
- DD choice also nonignorable

Instrumental variables

- Alternative approach for estimation
- Need to find instrumental variable (R)
- Associated with treatment of interest (A)
- Shares no common cause with outcome (Y)
- Has no direct effect on outcome (exclusion restriction)
- Practice at which dialysis provided reasonable candidate
- Used for various analyses in Dialysis Outcomes and Practice Patterns Study (DOPPS)
- Large, international study with hundreds of practices
- Will assume that holds jointly for VA, DD

Revise DAG

- Need to elaborate DAG
- Include
- instrument/center (R)
- Measured (X) and unmeasured (U) common causes of variables of interest
- Is R an instrument?

Graphical criteria for instrument

- Remove effect of treatment(s) of interest
- Check whether R independent of/Dseparated from Y
- Consider first for joint effects of A, S
\square No directed path from R to Y

- Criterion satisfied

Overall effect of VA

- Remove effect of treatment of interest
- Check whether R independent of/D-separated from Y
- Directed path R->S->Y
- Criterion not satisfied
- Upshot: R
- Not instrument for overall effect of A
- Instrument for joint effects of A, S

Estimation

- For overall effects, can't use
- Standard methods based on ignorability
- Instrumental variables methods
\square Sketch two approaches for estimation
- Two-step (based on above graphs)
- One-step (simplify graphs, remove S)
- Compare approaches/extensions

Two-step approach

- Estimate joint effect of A, S on Y
- Estimate effect of A on S
- Combine to obtain overall effect
- In systems of linear models,
 overall effect is sum of
- Direct effect of A: Ψ_{A}
- Indirect effect of A: $\psi_{S} \Phi_{\mathrm{A}}$

Two-step approach ($1^{\text {st }}$ step)

- Center (R) instrument for joint effect of A, S
- Use IV method to estimate effect
- Yas potential outcome
- Model for joint effect:
- $Y^{a s}=Y^{00}+a \Psi_{A}+s \Psi_{S}$
- Rank-preserving/deterministic formulation
- Model for observables
- $E(Y \mid X, R)=E(Y A S \mid X, R)=$
$\mathrm{E}\left(\mathrm{Y}^{00} \mid \mathrm{X}, \mathrm{R}\right)+\mathrm{E}(\mathrm{A} \mid \mathrm{X}, \mathrm{R}) \Psi_{\mathrm{A}}+\mathrm{E}(\mathrm{S} \mid \mathrm{X}, \mathrm{R}) \psi_{\mathrm{S}}=$ $g(X)+E(A \mid X, R) \Psi_{A}+E(S \mid X, R) \Psi_{S}$

Two-step approach ($1^{\text {st }}$ step; cont'd)

- Estimation:
- Model:
$\square E(Y \mid X, R)=g(X)+E(A \mid X, R) \psi_{A}+E(S \mid X, R) \psi_{S}$
- 2-stage least squares
\square Estimation requires that $E(A \mid X, R), E(S \mid X, R), g(X)$ not collinear
- Maximum likelihood
- G-estimation (semiparametric); leave $g(X)$ unspecified

Two-step approach (2 $2^{\text {nd }}$ step)

- Under assumptions
- Effect of A on S confounded
- R not instrument for effect of A on S
- Consider alternative
- Linear model for joint effect of R, A
- $\mathrm{S}^{r a}=\mathrm{S}^{00}+\mathrm{r} \Phi_{\mathrm{R}}+a \Phi_{\mathrm{A}}$

- Model for observables
- $E(S \mid X, R)=E\left(S^{00} \mid X\right)+R \Phi_{R}+E(A \mid X, R) \Phi_{A}$
- Estimation: 2SLS, G-estimation, etc.
- 2SLS requires full-rank design matrix
- Estimation sensitive to causal model misspecification (interactions of X with A, S)

One-step approach

- Estimator of effect of A on S does not require either standard ignorability or IV
- Can we do same for overall effect of A on Y ?

- Remove S from graph, redraw diagram
- Graph identical to original graph removing Y
- Use same methods of estimation for effect of A on S

Compare approaches

- Both make no-interaction assumptions
- One-step approach
- Simpler to apply
- Fewer models to misspecify
- Two-step approach
- Effect of misspecification of non-IV model potentially less serious
- Mechanistic understanding
- Alternative estimands

Alternative estimands

\square Assumed that interested in overall effect

- VA (A) inevitably affects DD (S)
- Type of VA limits possible dose
- However, may be possible to alter DD
- Interested in
- Effect of DD
- Effect of VA if affects DD in different fashion from under current practice

Alternative estimands (cont'd)

- Show altered effect, new intervention on DAG

4 ${ }_{4}^{\mathrm{Y}}$

- Formulate in terms of potential outcomes
$S^{g, a}$ target level of S
under treatment a, plan g
$E\left(Y^{a 5^{g, a}}\right)$ expected of Y level
R

under treatment a, plan g
- Contrast for different levels of treatment

Alternative estimands (cont'd)

- Defining intervention on S
- Individualize target levels of S
- e.g., base on maximum tolerated DD
\square Insufficient information in established databases (e.g, DOPPS)
- Set target level of S based on A, covariates X
- Currently little information to set target levels
\square Available covariate information may be insufficient to determine whether particular DD feasible for individual

Alternative estimands (cont'd)

- Defining intervention on S
- Speculate about feasible interventions on S at aggregate level
\square Consider effects of A on S under those interventions; i.e., propose value for $\Phi_{\mathrm{s}}{ }^{*}$
\square Compute overall effect from component effects: $\psi_{\mathrm{A}}+\psi_{\mathrm{S}} \Phi_{\mathrm{A}}{ }^{*}$
\square Perform sensitivity analysis for values of $\Phi_{A}{ }^{*}$

Alternative estimands (cont'd)

- Intervene jointly on A, S
- Akin to search for optimal dynamic treatment regime (Murphy, Robins, etc.)
- Search for a, s which maximizes Yas
\square Choice of optimal treatment may depend on prior covariate, treatment history
- Less information available in our problem
- Challenge to people working with dynamic regimes to formalize problem
- Two-stage approach facilitates
- Facilitates mechanistic understanding \& thereby
- Examination of broader range of questions, estimands

Other settings: gene expression

- Effects of multiple genes on outcomes
$\square R_{A}, R_{S}$ genes
- presumed to share no common causes with other variables
- Mendelian randomization
- A, S biochemical
variables, gene products

- Y
outcome of interest
$\square X, U$ confounders of A, S

Gene expression (cont'd)

$\square R_{A}$ instrument for A (and S)
$\square R_{S}$ instrument for S
$\square R_{A}, R_{S}$ instrument for joint effects of A, S

- Effects of A, S confounded
- Can use IV methods to estimate

- Component, joint effects, overall effect (2-step approach)
- Overall effect of A (1-step approach)

Gene expression (cont'd)

- Suppose genes not independent
- Linkage disequilibrium
- On same chromosome (C)
- R_{A} instrument for effect of A (on S, overall on Y) and S conditional on R_{S} or C
- R_{S} instrument for S conditional on R_{A} or C
- R_{A}, R_{S} (or R_{A}, C or R_{S}, C) jointly
 instrument for joint effects of A, S
- Can use IV methods to estimate
- Component, joint effects, overall effect (2-step approach)
- Overall effect of A (1-step approach)

Gene expression (cont'd)

- Suppose further that only C (or only R_{A} or R_{S}) measured
- Typically don't measure all genes on chromosome (tag-SNPs)
- Remove unmeasured genes (R_{A}, R_{S}) from graph, redraw
- Same structure as original graph for VA (substituting C for R)

Gene expression (cont'd)

- Same methods of inference valid in principle for gene expression, VA
- Difference:
- VA problem: center (R) had many levels
- Gene expression: may have more limited variation in measured levels of C
- Model for observable Y :
- $E(Y \mid X, R)=g(X)+E(A \mid X, R) \psi_{A}+E(S \mid X, R) \psi_{S}$
- Require full rank design matrix, noncollinearity
\square If R / C has 2 levels, require X to be non-null, interactions of R, X in models for A, S
\square If R/C has many levels, don't in general require
\square If few levels of R/C, expect intermediate
- Need to formalize

Mediation

\square Basic ideas

- Break down effects into component parts, mechanistic understanding
- Encompasses
- Direct effects
\square Indirect effects
\square Overall effects
\square Joint effects
- Naturally expressed graphically; useful for
\square Expressing relationships among variables
\square Deriving (conditional) independencies implied by assumptions

Limitations of graphical approach

- Does poor job of representing interactions
- Can lead to casually assuming no interactions
- Typical in path analytic literature
- Typically do not formally define causal estimands
- Require more explicit consideration of (hypothetical) interventions, potential outcomes

Interactions

- No-interaction assumptions in models
- $Y^{a s}=Y^{00}+a \psi_{A}+s \psi_{S}$
- No interaction of
$\square a$ and s
\square a and X
\square S and X
\square Individuals and effects of treatment
\square Treatment(s) received and effects of treatment(s)
- Consider in turn

Interactions among model variables

- Elaborate model $\mathrm{Y}^{\mathrm{as}}=\mathrm{Y}^{00}+\mathrm{a} \Psi_{\mathrm{A}}+\mathrm{S} \Psi_{\mathrm{S}}$
- $Y^{a s}=Y^{00}+\mathrm{aq}_{1}(X) \psi_{A}+\mathrm{sq}_{2}(X) \psi_{\mathrm{S}}+a s \psi_{\mathrm{AS}}$
\square Model for observables
- $E\left(Y^{\mathrm{as}} \mid X, R\right)$
$=E\left(Y^{00} \mid X\right)+E(A \mid X, R) q_{1}(X) \Psi_{A}+E(S \mid X, R) q_{2}(X) \Psi_{S}$ $+E(A S \mid X, R) \psi_{A S}$
- Can estimate with 2SLS, etc.
- Requires design matrix in regression be full rank
- May require interactions in $1^{\text {st }}$ stage models

Other interactions (1)

- Model as formulated: $Y^{a s}=Y^{00}+a \Psi_{A}+S \Psi_{S}$
\square Effect of a, s same for all subjects
- Deterministic effects/rank-preservation
- Assumptions can be relaxed
- Structural nested distribution models (Robins)
\square Maps distributions of potential outcomes under different treatments
\square Rank preservation imposes no restrictions on observable data beyond model
- Structural nested mean models (Robins)
- Weaker models/fewer assumptions
- Can continue using same estimation procedures

Other interactions (2)

- Treatment(s) received and effects of treatment(s)
- Have assumed no interaction
- Current treatment interaction (Robins) for s (in mean model):
- $E\left(Y^{A s} \mid X, A, S=s\right)-E\left(Y^{A O} \mid X, A, S=s\right)-E\left(Y^{A s} \mid X, A, S=s^{*}\right)-$ $E\left(Y^{A 0} \mid X, A, S=s^{*}\right)$
- Need to make untestable assumptions about this in order to predict what would happen if set S for all subjects
- Careful consideration of how treatment effects vary with subgroups important
- also done (in finer partition of data in principal stratification framework)

Interactions in 2-step procedures

- Covariate (X) by treatment (a,s) interactions
- $\Psi_{\mathrm{Ax}} \quad$ effect of A on Y at covariate level X (etc.)
- Easy to estimate X-specific overall (indirect) effects $\psi_{\mathrm{AX}}+\psi_{\mathrm{SX}} \Phi_{\mathrm{AX}}\left(\psi_{\mathrm{SX}} \Phi_{\mathrm{AX}}\right)$
- Aggregate/average effects: average over distribution of X

Interactions in 2-step procedures (2)

\square Interactions of A by S

- Overall effect uniquely defined
${ }^{-} \psi_{A}+\left(\psi_{S}+\psi_{\text {AS }}\right) \Phi_{A}+S^{0} \psi_{A S}$
- Direct/indirect effects not uniquely defined
- Can compute from model
- Further developments needed for
- Non-rank-preserving models
- Presence of current treatment interaction

Other issues

- Models/extensions already considered in some details
- Failure-time outcomes
- Time-varying S
- Extensions required
- Binary outcomes (e.g., logistic regression, etc.)
- More general nonparametric formulation of
- problems
- estimation procedures

Acknowledgements

- Collaborators/coauthors:
- Dylan Small
- Tom Ten Have
- Harv Feldman
- Steve Brunelli
- Discussions with:
- Mike Elliott
- Paul Rosenbaum

Papers

- Joffe, M. M., Small, D., Brunelli, S., Ten Have, T., and Feldman, H. I. (2008), "Extended Instrumental Variables Estimation for Overall'Effects," International Journal of Biostatistics, 4.
- Joffe, M. M., Small, D., and Hsu, C. Y. (2007), "Defining and estimating intervention effects for groups that will develop an auxiliary outcome," Statistical Science, 22, 7497.
- Ten Have, T. R., Joffe, M. M., Lynch, K. G., Brown, G. K., Maisto, S. A., and Beck, A. T. (2007), "Causal mediation analyses with rank preserving models," Biometrics, 63, 926-934.
- Albert, J. (2008), "Mediation analysis via potential outcome models," Statistics in Medicine, 27, 1282-1304.

Papers (cont'd)

- Robins, J. M., and Greenland, S. (1994), "Adjusting for differential rates of prophylaxis therapy for PCP in highversus low-dose AZT treatment arms in an AIDS randomized trial," Journal of the American Statistical Association, 89, 737-749.
- Robins, J., and Greenland, S. (1992), "Identifiability and exchangeability for direct and indirect effects," Epidemiology, 3, 143-155.
- Pearl, J. (2001), "Direct and indirect effects," in Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, San Francisco: Morgan Kaufmann.
- Dunn, G., and Bentall, R. (2007), "Modelling treatmenteffect heterogeneity in randomised controlled trials of complex interventions (psychological treatments)," Statistics in Medicine, 26, 4719-4745.

