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Introduction

I Population-based observational studies are increasingly
important sources for estimating treatment effects.

I Proper adjustment for differences between treatment
groups is crucial to valid comparison and causal inference.

I Regression has long been the standard method.
I Propensity score (Rosenbaum and Rubin, 1983) is a

robust alternative to regression for adjusting for observed
differences.



Hierarchically structured data

I Propensity score has been developed and applied in
cross-sectional settings with unstructured data.

I Data in medical care and health policy research are often
hierarchically structured.

I Subjects are grouped in natural clusters, e.g., geographical
area, hospitals, health service provider, etc.

I Significant within- and between-cluster variations are often
the case.



Hierarchically structured data

I Ignoring cluster structure often leads to invalid inference.
I Standard errors could be underestimated.
I Cluster level effect could be confounded with individual

level effect.
I Hierarchical regression models provide a unified

framework to study clustered data.
I Propensity score methods for hierarchical data have been

less explored.



Propensity score

I Propensity score: e(x) = P(z = 1|x).
I Balancing on propensity score also balances the

covariates of different treatment groups: z ⊥ x |e(x).
I Two steps procedure.

I Step 1: estimate the propensity score, e.g., by logistic
regression.

I Step 2: estimate the treatment effect by incorporating (e.g.,
weighting, stratification) the estimated propensity score.

I We will introduce and compare several possible estimators
of treatment effect using propensity score in context of
hierarchical data.

I We will investigate the large sample behavior of each
estimator.



Notation

I h cluster; k individual.
I m no. of clusters; nh no. of subjects in cluster h.
I zhk binary treatment assignment - individual level.
I xhk individual level covariates; vh cluster level covariates.
I ehk propensity score.
I yhk outcome.
I Estimand: “treatment effect”

∆ = Ex [E(Y |X ,Z = 1)]− Ex [E(Y |X ,Z = 0)].
I Note: ∆ does not necessarily have a causal interpretation,

it is the difference of the average of a outcome between
two populations controlling for covariates.



Step 1: Marginal model

I Marginal analysis ignores clustering.
I Marginal propensity score model

log
(

ehk

1− ehk

)
= βexhk + κevh,

where ehk = P(zhk = 1 | xhk , vh).
I If treatment assignment mechanism (TAM) follows above

(xhk , vh) ⊥ zhk | ehk .



Step 1: Pooled within-cluster model

I Pooled within-cluster model for propensity score
(ehk = P(zhk = 1 | xhk ,h))

log(
ehk

1− ehk
) = δe

h + βexhk ,

where δe
h is a cluster-level main effect, δe

h ∼ N(0,∞).
I General (weaker) assumption of TAM than marginal model:

(xhk ,h) ⊥ zhk | ehk .

I Assuming δe
h ∼ N(0, σ2

δ ) gives a similar random effects
model.



Step 1: Surrogate indicator model

I Define dh =
∑

h zhk
nh

= cluster-specific proportion of being
treated.

I Propensity score model

log(
ehk

1− ehk
) = λ log(

dh

1− dh
) + βexhk + κevh.

I logit(dh) is “surrogate” for the cluster indicator with the
coefficient being around 1.

I Analytic model is same as the marginal analysis with
proportion treated dh as additional variable.

I Greatly reduce computation, but based on strong linear
assumption.



Step 2: Estimate “treatment effect”

Estimate treatment effect using propensity score.
I Weighting - weight as function of propensity score.
I Stratification.
I Matching.
I Regression using propensity score as a predictor.



Marginal weighted estimator - ignore cluster structure

I wh1(wh0: sum of whk with z = 1(z = 0) in cluster h.
I w1 =

∑
h wh1,w0 =

∑
h wh0,w = w1 + w0.

I Marginal weighted estimator - difference of weighted mean

∆̂.,marg =

zhk=1∑
h,k

whk

w1
yhk −

zhk=0∑
h,k

whk

w0
yhk .

I Large sample variance under homoscedasticity of yhk

s2
.,marg = var(∆̂.,marg)

= σ2(

zhk=1∑
h,k

w2
hk

w2
1

+

zhk=0∑
h,k

w2
hk

w2
0

).

I In practice, σ2 estimated from sample variance of yhk .



Clustered weighted estimator

I Cluster-specific weighted estimator

∆̂h =

zhk=1∑
k∈h

whk

wh1
yhk −

zhk=0∑
k∈h

whk

wh0
yhk .

I The overall clustered estimator

∆̂.,clu =
∑

h

wh

w
∆̂h.



Clustered weighted estimator

I Variance of ∆̂h under within-cluster homoscedasticity

s2
h = var(∆̂h) = σ2

h(

zhk=1∑
k∈h

w2
hk

w2
h1

+

zhk=0∑
k∈h

w2
hk

w2
h0

).

I Overall variance

s2
.,clu = var(∆̂.,clu) =

∑
h

w2
h

w2 s2
h.

I Standard error can also be obtained using bootstrap.



Doubly-robust estimators (Scharfstein et al., 1999)

I Weighted mean can be viewed as a weighted regression
without covariates.

I In step 2, replace the weighted mean by a weighted
regression.

I Estimator is consistent if either or both of step 1 and 2
models are correctly specified.

I Numerous combination of regression models in two steps.



Choice of weight
I Horvitz-Thompson (inverse probability) weight

whk =

{
1

ehk
, for zhk = 1

1
1−ehk

, for zhk = 0.

I Balance covariates distribution between two groups:

E
[

XZ
e(X )

]
= E

[
X (1− Z )

1− e(X )

]
.

I H-T estimator compares the counterfactual scenario:
all subjects placed in trt=0 vs. all subjects placed in trt=1.

E
[

YZ
e(X )

− Y (1− Z )

1− e(X )

]
= E [(Y |Z = 1)− (Y |Z = 0)].

I H-T has large variance if e(X) approaches 0 or 1.



Choice of weight
I Population-overlap weight

whk =

{
1− ehk , for zhk = 1

ehk , for zhk = 0.

I Each subject is weighted by the probability of being
assigned to the other trt group.

I Balance covariates distribution between two groups:

E{XZ [1− e(X )]} = E [X (1− Z )e(X )].

I Small variance, different estimand.

E{YZ [1− e(X )]− Y (1− Z )e(X )}
= E{[(Y |Z = 1)− (Y |Z = 0)]e(X )[1− e(X )]}.



Bias of Estimators

I Focus on the simplest case with two-level hierarchical
structure and no covariates.

I nh1(nh0): no. of subjects with z = 1(z = 0) in cluster h.
I n1 =

∑
h nh1,n0 =

∑
h nh0,n = n1 + n0.

I Assume outcome generating mechanism is:

yhk = δh + γhzhk + αdh + εhk , (1)

where δh ∼ N(0, σ2
δ ), εhk ∼ N(0, σ2

ε ), and the true treatment
effect: γh ∼ N(γ0, σ

2
γ).



Bias of Marginal Estimator

I For marginal model in step 1, êhk = n1
n ,∀h, k .

I The marginal estimator is

∆̂marg,marg

=

zhk =1∑
h,k

yhk

n1
−

zhk =0∑
h,k

yhk

n0

=
∑

h

nh1

n1
γh +

∑
h

(
nh1

n1
− nh0

n0
)δh + (

zhk =1∑
h,k

εhk

n1
−

zhk =0∑
h,k

εhk

n0
)

+α
n

n1n0
−
∑

h nhdh(1− dh)
n

n1n0



Bias of Marginal Estimator

I By WLLN of weighted sum of i.i.d. random variables
(assuming

∑∞
h

n2
h1

n2
1
<∞):

∑
h

nh1

n1
γh

nh,m→∞→ γ0.

I Similarly the middle two parts go to 0 as nh,m→∞ .
I n

n1n0
= var(n1): variance of total no. of treated, if all

clusters follow the same TAM, z ∼ Bernoulli(n1
n ).

I
∑

h nhdh(1− dh) =
∑

h var(nh1): sum of variance of no. of
treated within each cluster, if each cluster follows a
separate TAM: zk∈h ∼ Bernoulli(nh1

nh
).



Bias of Marginal Estimator

I Exact form of bias

Bias(∆̂marg,marg) = α

(
var(n1)−

∑
h var(nh1)

var(n1)

)
. (2)

I Controlled by two factors: (1) variance ratio - treatment
assignment mechanism; (2) |α| - outcome generating
mechanism.

I Both are ignored by the marginal estimator ∆̂marg,marg .



Bias of Clustered Estimator

I For pooled within-cluster model in step 1, êhk = nh1
nh
, k ∈ h.

I The clustered estimator with p.s. estimated from pooled
within-cluster model ∆̂pool,clu is consistent

∆̂pool,clu

=

∑
h(
∑zhk=1

k∈h
yhk
nh1

)

m
−
∑

h(
∑zhk=0

k∈h
yhk
nh0

)

m

=

∑
h γh

m
+

∑
h(
∑zhk=1

k∈h
εhk
nh1

)

m
−
∑

h(
∑zhk=0

k∈h
εhk
nh0

)

m
nh,m→∞→ γ0 (3)

I This result is free of type of weights.



Bias of Clustered Estimator

I Clustered estimator with p.s. estimated from marginal
model, ∆̂marg,clu, exactly follows (3), thus consistent.

I Marginal estimator with p.s. estimated from pooled
within-cluster model, ∆̂pool,marg , also consistent.

I But different small sample behavior between H-T and
population-overlap weights.



Extensions

I Without covariates, surrogate indicator model gives the
estimated p.s. as pooled within-cluster model.

I Above results regarding pooled within-cluster model
automatically hold for surrogate indicator model.

I Proofs are analogous for data with higher order of
hierarchical level.



Double-robustness

I For the simplest case without covariates, we show
“double-robustness” of the p.s. estimators:

I When both of the true underlying treatment assignment
mechanism and outcome generating mechanism are
hierarchically structured:

I Estimators using a balancing weight are consistent as if
hierarchical structure is taken into account in at least one
of the two steps in the p.s. procedure.

I A special case of Scharfstein et al. (1999), but free of form
of weights.



Cases with covariates

I No closed-form solution to p.s. models, thus no
closed-form of the bias of those estimators.

I Can be explored by (1) large-scale simulations; or (2)
adopting a probit (instead of logistic) link for estimating p.s.

I Intuitively, “double-robustness” property still holds.
I Bias of ∆̂marg,marg is affected by:

I α and var(n1)−
∑

h var(nh1)
var(n1)

in (2);
I Size of true trt effect γ (negative correlated);
I Ratio of between-cluster and within-cluster variance,

g =
σ2

δ

σ2
ε

(positively correlated).



Racial disparity data

I Disparity: racial differences in care attributed to operations
of health care system.

I Breast cancer screening data are collected from health
insurance plans.

I Focus on the plans with at least 25 whites and 25 blacks:
64 plans with a total sample size of 75012.

I Subsample 3000 subjects from large (>3000) clusters to
restrict impact of extremely large clusters, resulting sample
size 56480.



Racial disparity data

I Cluster level covariates vh: geographical code,
non/for-profit status, practice model.

I Individual level covariates xhk : age category, eligibility for
medicaid, poor neighborhood.

I “Treatment” variable zhk : black race (1=black, 0=white).
I Not strictly causal. Compare groups with balanced

covariates.
I Outcome yhk : receive screening for breast cancer or not.
I Research aim: investigate racial disparity in breast cancer

screening.



Estimated propensity score



Estimated propensity score

I Different propensity score models give quite different
estimates.

I Each method leads to good overall covariates balance
between groups in this data.

I Marginal analysis does not lead to balance in covariates in
each cluster, surrogate indicator analysis does better,
pooled- within the best.



Analysis results: racial disparity estimated from
Horvitz-Thompson weight

weighted doubly-robust regression
pooled clustered marginal pooled-within

marginal -0.050 -0.020 -0.042 -0.021 -0.044
(0.008) (0.008) (0.004) (0.004) (0.007)

pooled- -0.024 -0.021 -0.018 -0.022 -0.032
within (0.009) (0.008) (0.004) (0.004) (0.007)

surrogate -0.017 -0.015 -0.012 -0.015 -0.014
indicator (0.009) (0.008) (0.004) (0.004) (0.007)



Analysis results: racial disparity estimated from
population-overlap weight

weighted doubly-robust regression
pooled clustered marginal pooled-within

marginal -0.043 -0.030 -0.043 -0.032 -0.044
(0.007) (0.008) (0.004) (0.004) (0.007)

pooled- -0.030 -0.031 -0.031 -0.031 -0.032
within (0.007) (0.008) (0.004) (0.004) (0.007)

surrogate -0.035 -0.030 -0.031 -0.030 -0.014
indicator (0.007) (0.008) (0.004) (0.004) (0.007)



Diagnostics

I Check the balance of weighted covariates between
treatment groups.
Each method leads to good balance in this data.

I Quantiles table.



Remarks on results

I Ignoring cluster structure in both steps gives results greatly
defer from others.

I Results from surrogate indicator analysis are different from
others, suggesting Portion treated is correlated with
covariates.

I Taking into account cluster structure in at least one of the
two steps leads to similar results - “doubly-robustness”.

I Doubly-robust estimates have smaller s.e., extra variation
is explained by covariates in step 2.

I Incorporating cluster structure in step 2 is preferable to
step 1.

I Between-cluster variation is large in breast cancer data.
I Standard errors obtained from bootstrap are much larger

than those from analytic formula.



Summary

I We introduce and compare several possible propensity
score analyses for hierarchical data.

I We show “double-robustness” property of propensity score
weighted estimators: cluster structure must be taken into
account in at least one of the two steps.

I We obtain the analytic form of bias of the marginal
estimator.

I Case by case. In practice, total number of clusters, size of
each cluster, within- and between- cluster variations can
greatly affect the conclusion.
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