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Introduction

» Population-based observational studies are increasingly
important sources for estimating treatment effects.

» Proper adjustment for differences between treatment
groups is crucial to valid comparison and causal inference.

» Regression has long been the standard method.

» Propensity score (Rosenbaum and Rubin, 1983) is a
robust alternative to regression for adjusting for observed
differences.



Hierarchically structured data

» Propensity score has been developed and applied in
cross-sectional settings with unstructured data.

» Data in medical care and health policy research are often
hierarchically structured.

» Subjects are grouped in natural clusters, e.g., geographical
area, hospitals, health service provider, etc.

» Significant within- and between-cluster variations are often
the case.



Hierarchically structured data

» Ignoring cluster structure often leads to invalid inference.
» Standard errors could be underestimated.
» Cluster level effect could be confounded with individual
level effect.
» Hierarchical regression models provide a unified
framework to study clustered data.

» Propensity score methods for hierarchical data have been
less explored.



Propensity score

» Propensity score: e(x) = P(z = 1|x).
» Balancing on propensity score also balances the
covariates of different treatment groups: z L x|e(x).
» Two steps procedure.
» Step 1: estimate the propensity score, e.g., by logistic
regression.
» Step 2: estimate the treatment effect by incorporating (e.g.,
weighting, stratification) the estimated propensity score.
» We will introduce and compare several possible estimators
of treatment effect using propensity score in context of
hierarchical data.

» We will investigate the large sample behavior of each
estimator.



Notation

h cluster; k individual.

m no. of clusters; n, no. of subjects in cluster h.

Zpk binary treatment assignment - individual level.

Xpk individual level covariates; vj, cluster level covariates.
enk propensity score.

Yhk outcome.

Estimand: “treatment effect”

A= EyE(Y|X,Z=1)]— Ex[E(Y|X,Z =0)].

» Note: A does not necessarily have a causal interpretation,

it is the difference of the average of a outcome between
two populations controlling for covariates.
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Step 1: Marginal model

» Marginal analysis ignores clustering.
» Marginal propensity score model

e
log ( s ) = B3%Xpk + K°Vh,
1-— Chk

where enc = P(Zpk = 1 | Xpk, Vh)-
» If treatment assignment mechanism (TAM) follows above

(XK, Vh) L Znk | enk-



Step 1: Pooled within-cluster model

» Pooled within-cluster model for propensity score
(enk = P(zpk =1 | Xnk, h))

€hk
1-— Chk

log( ) = 0f + BXnk,

where 67 is a cluster-level main effect, oy ~ N(0, co).
» General (weaker) assumption of TAM than marginal model:

(Xnk, h) L Zpk | enk.

» Assuming &g ~ N(0,0%) gives a similar random effects
model.



Step 1: Surrogate indicator model

» Define d = Zg—hz”k = cluster-specific proportion of being
treated.
» Propensity score model

dn

e e
1_dh)+ﬁ Xbie + K Vh.

Iog(1 fhghk) = Alog(

» logit(adp) is “surrogate” for the cluster indicator with the
coefficient being around 1.

» Analytic model is same as the marginal analysis with
proportion treated dj, as additional variable.

» Greatly reduce computation, but based on strong linear
assumption.



Step 2: Estimate “treatment effect”

Estimate treatment effect using propensity score.
» Weighting - weight as function of propensity score.
» Stratification.
» Matching.
» Regression using propensity score as a predictor.



Marginal weighted estimator - ignore cluster structure

> Whi(Who: sum of wp, with z = 1(z = 0) in cluster h.
> Wi =) Wht, Wo = D) Who, W = W1 + Wo.
» Marginal weighted estimator - difference of weighted mean
Zpk=1 Zpk=0
A Whk Whk
A = Yk — — Y-
.,marg Z Wi Yhk Z Wo Yhk
h,k h,k
» Large sample variance under homoscedasticity of yp,
s = var(A_mar)
.,marg — -»marg
Zh=1 ) Zhk=0 2
w %
_ 2 hk hk
= o) Wy 3 My
hk 1 hk 0
» In practice, o? estimated from sample variance of yj.



Clustered weighted estimator

» Cluster-specific weighted estimator

2 Wi 70 Wi
An = D “Pym— D Yk
ken h1 keh

» The overall clustered estimator

N Wh ~
A o= Z WAh-
h



Clustered weighted estimator

» Variance of Ay, under within-cluster homoscedasticity

Zye=1 o Zpe=0 o

- w w
sp=var(Ap) =of( > I+ > ),

keh Whi keh Who
» Overall variance

S?ou = var(A g Z
h

m‘rl\)
3‘!\)

» Standard error can also be obtained using bootstrap.



Doubly-robust estimators (Scharfstein et al., 1999)

» Weighted mean can be viewed as a weighted regression
without covariates.

» In step 2, replace the weighted mean by a weighted
regression.

» Estimator is consistent if either or both of step 1 and 2
models are correctly specified.

» Numerous combination of regression models in two steps.



Choice of weight
» Horvitz-Thompson (inverse probability) weight

Wie — ifOthk—1
e 1{; ,for zp = 0.

» Balance covariates distribution between two groups:

#lovo] £

» H-T estimator compares the counterfactual scenario:
all subjects placed in trt=0 vs. all subjects placed in trt=1.
£ YZ B Y(1-2)
eX) 1-e(X)

] =E[(Y|IZ=1)-(Y|Z=0)].

» H-T has large variance if e(X) approaches 0 or 1.



Choice of weight

» Population-overlap weight

Wi — 1 —ehk,fOI'th:1
hie = enk, for zp = 0.

» Each subject is weighted by the probability of being
assigned to the other trt group.

» Balance covariates distribution between two groups:

E{XZ[1 —e(X)]} = E[X(1 — 2)e(X)].

» Small variance, different estimand.

E{YZ[1 —e(X)] - Y(1 - 2)e(X)}
= E{[(YIZ=1) = (Y|Z=0)le(X)[1 — e(X)]}.



Bias of Estimators

» Focus on the simplest case with two-level hierarchical
structure and no covariates.

» np1(Npo): no. of subjects with z = 1(z = 0) in cluster h.
> Ny =3 4 Np1, Mo = 3 p Nho, N = Ny + No.
» Assume outcome generating mechanism is:

Yok = On + YnZhk + odp + €pg, (1)

where 6, ~ N(0, %), epx ~ N(0, 02), and the true treatment
effect: v, ~ N(yo,agy).



Bias of Marginal Estimator

» For marginal model in step 1, & = 2, Vh, k.

n
» The marginal estimator is

Amalrg, marg

Zp=1 Zp=0
Yk Yhk

m No

h,k h,k

th:1

N1 Np1 Npo €hk
= > Tt Y () (D, -
o 2w 2

h
n
g — 2h MhGh(1 — ah)
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Bias of Marginal Estimator

» By WLLN of weighted sum of i.i.d. random variables
2
(assuming Y"5° 8 < oo):
1

Np1 np,M—o00
>y T .
no M

» Similarly the middle two parts goto 0 as np, m — .

> Tnno = var(ny): variance of total no. of treated, if all

clusters follow the same TAM, z ~ Bernoulli( ).

> >, Nhdp(1 —dp) = >4, var(npy): sum of variance of no. of
treated within each cluster, if each cluster follows a
separate TAM: zxcp ~ Bernoulli(72t).



Bias of Marginal Estimator

» Exact form of bias

()

A var(ny) — 3, var(n
BIaS(Amarg,marg)—a< (1) = > var( h1)>.

var(ny)

» Controlled by two factors: (1) variance ratio - treatment
assignment mechanism; (2) |«| - outcome generating
mechanism.

» Both are ignored by the marginal estimator A parg. marg-



Bias of Clustered Estimator

» For pooled within-cluster model in step 1, éxx = ”n—':, k € h.

» The clustered estimator with p.s. estimated from pooled
within-cluster model Ao iy is consistent

Apool,clu
—1 -0

R B SRR )

a m m

—1 =0
_ > K n Zh(Zi”éh k) B S, ,67"7'(‘,)
m m m
I (3)

» This result is free of type of weights.



Bias of Clustered Estimator

» Clustered estimator with p.s. estimated from marginal
model, Amarg,ciu> €Xactly follows (3), thus consistent.

» Marginal estimator with p.s. estimated from pooled
within-cluster model, Apoo/,marg, @lso consistent.

» But different small sample behavior between H-T and
population-overlap weights.



Extensions

» Without covariates, surrogate indicator model gives the
estimated p.s. as pooled within-cluster model.

» Above results regarding pooled within-cluster model
automatically hold for surrogate indicator model.

» Proofs are analogous for data with higher order of
hierarchical level.



Double-robustness

» For the simplest case without covariates, we show
“double-robustness” of the p.s. estimators:

» When both of the true underlying treatment assignment
mechanism and outcome generating mechanism are
hierarchically structured:

» Estimators using a balancing weight are consistent as if
hierarchical structure is taken into account in at least one
of the two steps in the p.s. procedure.

» A special case of Scharfstein et al. (1999), but free of form
of weights.



Cases with covariates

» No closed-form solution to p.s. models, thus no
closed-form of the bias of those estimators.

» Can be explored by (1) large-scale simulations; or (2)
adopting a probit (instead of logistic) link for estimating p.s.

» Intuitively, “double-robustness” property still holds.

> Bias of A marg marg is affected by:

> o and Mz @) in (),

» Size of true trt effect v (negative correlated);
» Ratio of between-cluster and within-cluster variance,

g= % (positively correlated).

2
O-E



Racial disparity data

» Disparity: racial differences in care attributed to operations
of health care system.

» Breast cancer screening data are collected from health
insurance plans.

» Focus on the plans with at least 25 whites and 25 blacks:
64 plans with a total sample size of 75012.

» Subsample 3000 subjects from large (>3000) clusters to
restrict impact of extremely large clusters, resulting sample
size 56480.



Racial disparity data

v

Cluster level covariates vj: geographical code,
non/for-profit status, practice model.

» Individual level covariates xu,: age category, eligibility for
medicaid, poor neighborhood.

» “Treatment” variable z;,: black race (1=black, O=white).

» Not strictly causal. Compare groups with balanced
covariates.

» Qutcome ypk: receive screening for breast cancer or not.

» Research aim: investigate racial disparity in breast cancer
screening.



Estimated propensity score

White: Marginal Analysis

g
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Estimated propensity score

» Different propensity score models give quite different
estimates.

» Each method leads to good overall covariates balance
between groups in this data.

» Marginal analysis does not lead to balance in covariates in
each cluster, surrogate indicator analysis does better,
pooled- within the best.



Analysis results: racial disparity estimated from

Horvitz-Thompson weight

weighted doubly-robust regression

pooled clustered marginal pooled-within
marginal ~ -0.050 -0.020 -0.042 -0.021 -0.044
(0.008)  (0.008) (0.004) (0.004) (0.007)
pooled- -0.024 -0.021 -0.018 -0.022 -0.032
within (0.009)  (0.008) (0.004) (0.004) (0.007)
surrogate  -0.017 -0.015 -0.012 -0.015 -0.014
indicator  (0.009)  (0.008) (0.004) (0.004) (0.007)




Analysis results: racial disparity estimated from

population-overlap weight

weighted doubly-robust regression

pooled clustered marginal pooled-within
marginal  -0.043 -0.030 -0.043 -0.032 -0.044
(0.007)  (0.008) (0.004) (0.004) (0.007)
pooled- -0.030 -0.031 -0.031 -0.031 -0.032
within (0.007)  (0.008) (0.004) (0.004) (0.007)
surrogate  -0.035 -0.030 -0.031 -0.030 -0.014
indicator  (0.007)  (0.008) (0.004) (0.004) (0.007)




Diagnostics

» Check the balance of weighted covariates between
treatment groups.
Each method leads to good balance in this data.

» Quantiles table.



Remarks on results

» Ignoring cluster structure in both steps gives results greatly
defer from others.

» Results from surrogate indicator analysis are different from
others, suggesting Portion treated is correlated with
covariates.

» Taking into account cluster structure in at least one of the
two steps leads to similar results - “doubly-robustness”.

» Doubly-robust estimates have smaller s.e., extra variation
is explained by covariates in step 2.

» Incorporating cluster structure in step 2 is preferable to
step 1.

» Between-cluster variation is large in breast cancer data.

» Standard errors obtained from bootstrap are much larger
than those from analytic formula.



Summary

» We introduce and compare several possible propensity
score analyses for hierarchical data.

» We show “double-robustness” property of propensity score
weighted estimators: cluster structure must be taken into
account in at least one of the two steps.

» We obtain the analytic form of bias of the marginal
estimator.
» Case by case. In practice, total number of clusters, size of

each cluster, within- and between- cluster variations can
greatly affect the conclusion.
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