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Abstract:

Administrative records are a promising data source
for estimating Census coverage or identifying people
missed in the Census. An important unsolved prob-
lem in using records is determining which of them
correspond to people actually resident on Census
day. We propose a hierarchical model in which one
level describes the migration process, and the other
describes the probabilities of observation in each of
the available record systems. The observation model
uses the full information in the records, including the
dates associated with the records and available co-
variate information, and can accommodate a variety
of record types, such as tax records, Medicare claims,
and school enrollment lists. In addition, multiple
record systems can be modeled concurrently. Poste-
rior distributions of the in- and out-migration dates
are obtained, leading to an estimate of the probabil-
ity of residency in the area on Census day. This work
could be useful in the context of an administrative
records census, or as a way of expanding the role of
administrative records in triple system estimation.

1. Introduction

This work utilizes administrative records to help pre-
dict census day residency. This is done using a
Bayesian hierarchical model both of migration and
of observation in each of the available record sys-
tems. This is useful in the context of an admin-
istrative records census, or as a way of expanding
the use of administrative records in multiple system
estimation.

This work has its basis in the methods of multiple
system estimation. Multiple recapture estimation
was originally developed as a way of estimating ani-
mal populations, but has found application in Cen-
sus undercount estimation (Fienberg 1992), as well
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as a variety of other fields. To estimate the size
of an animal population, one might capture a set
of animals, mark them in some way, release them,
and then make further captures at later points in
time. The possible capture histories are represented
by cells of a 2* contingency table, where k is the
number of captures. One cell will be missing: the
cell for individuals missed by all captures. The role
of modeling is to estimate the size of this cell, thus
estimating the total population size. The situation
with two captures is known as dual system estima-
tion, and similarly, that with three captures is called
triple system estimation. See Darroch (1958), El-
Khorazaty et al. (1977), Pollock (1991), and Seber
(1982) for more information on multiple system es-
timation.

Early work in this field rested on a number of as-
sumptions: the population is closed (no birth, death,
or migration), the captures are independent, each
individual has the same probability of capture, and
individuals can be perfectly matched between cap-
tures.

Recent research has relaxed some of these assump-
tions. Loglinear models have been used to model the
cell counts of the contingency table (Bishop et al.
1975, Fienberg 1972), allowing dependencies among
captures. Unequal capture probabilities can be ac-
commodated by calculating estimates by strata, or
by a Rasch model (Fienberg et al. 1999). Bayesian
methods have also been employed in this problem.
In particular, George and Robert (1992) use a Gibbs
sampling approach, while Smith (1991) compares
Bayes, empirical Bayes, and Bayes empirical Bayes
solutions.

Our approach is also related to the literature on
the estimation of migration parameters for animal
populations. There is a large literature on this topic,
mostly as an outgrowth of the capture-recapture
work. Most of these papers assume that several
(usually 3-5) geographical areas have been defined
and attempt simultaneously to estimate the popula-
tion size and the transition probabilities among the
areas. This is done by capturing animals in each
location at several times, and recording where and
when each animal is observed. Estimates of the to-
tal population size and the migration rates are then
obtained. Much of this work involves modeling mi-



gration using Markov Chains (Brownie et al. 1993,
Hestbeck et al. 1991). Dupuis (1995) provides a
Bayesian approach.

In the context of the US Census, triple-system es-
timation has been suggested as a way to estimate the
total population size. The three systems are usually
taken to be the Census itself, the Post-Enumeration
Survey (PES), and a series of administrative lists.
There has been extensive research on the use of ad-
ministrative records in the Census, for triple sys-
tem estimation as well as other potential uses. Za-
slavsky and Wolfgang (1993) discuss the details of
using triple system estimation for the Census, and
use 1988 Census dress rehearsal data to develop spe-
cific models. Larsen (1999) took a model based ap-
proach to use records to identify likely Census day
residents. Logistic regression was used to develop
criteria to determine likely residents, but the model
did not attempt to model behavior. Zanutto and
Zaslavsky (2001) use administrative records to im-
pute for nonresponse, with both a model based and
a non-model based approach. Beyond the United
States, Redfern (1989) discusses the use of admin-
istrative records (and specifically, population regis-
ters) in European countries, as well as the politi-
cal issues involved. Countries such as Denmark and
Finland currently use elements of a register-based
census, reducing both cost and respondent burden.

Scheuren (1999) gives an overview of the use of
administrative records in the US Census, particu-
larly a proposal for an administrative records cen-
sus. This could reduce Census cost, provide more
frequent population counts, and improve the cover-
age rates of populations traditionally undercounted.
However, he stresses that there are many research
questions still to be worked out regarding the use of
administrative records. The Census Bureau’s AREX
2000 experiment, and ongoing evaluations, are ex-
amining the use of administrative records as a pri-
mary source of information.

One of the drawbacks of the use of administrative
records is that their coverage period does not coin-
cide with Census day, and may extend considerably
earlier. We therefore develop a model of migration
that allows prediction of whether someone is still a
resident on Census day, given that she appears in
one or more record systems. If the administrative
records are available nationally, the model can also
be used to facilitate small area undercount estima-
tion across the country.

2. Overview of Model

We propose a hierarchical model in which one level
describes the migration process, and the other de-
scribes the probabilities of observation in each of
the available record systems. The observation model
uses the full information in the records, including the
dates associated with the records and available co-
variate information, and accommodates a variety of
record types, such as tax records, Medicare claims,
and school enrollment lists. In addition, multiple
record systems can be modeled concurrently. The
posterior distributions of the in- and out-migration
dates are obtained, leading to an estimate of the
probability of residency in the area on Census day
for each individual.

Suppose we have a series of record systems (types
of administrative records, possibly a Census and/or
a PES) from a geographic area. Each record is dated,
providing evidence of a person being a resident in the
area on that date. The total time period covered
is Ty to T1. Define a population consisting of all
people living in this area at some point during this
time interval who were captured by at least one of
the systems. A later version of the model will allow
for individuals who were missed by all of the systems
by imputing missing individuals.

We are interested in modeling the in- and out-
migration times from the area: to; (the time person
i moved in) and ¢1; (the time person ¢ moved out).
The goal of the inference is to estimate the size of
the population at a particular point in time, usually
Census day.

Our hierarchical model has 3 levels:

Level 1 (Observational):

P(observation history|migration dates, co-
variates, parameters)

Level 2 (Migration):
P(migration dates|covariates, parameters)
Level 3: Priors on the parameters

Level 1 models each individual’s observation in the
record systems. Under the assumption of indepen-
dence, the likelihoods of observation in each of the
systems are multiplied together to obtain the full ob-
servation likelihood. This assumption can be mod-
ified, as discussed in Section 3.3. Level 2 describes
the migration history for each individual: the in- and
out-migration dates. These migration events are ob-
served through the observation history in Level 1.
Level 3 describes prior beliefs about the parameters,



either fixing them at pre-specified values, or speci-
fying non-degenerate prior distributions.

3. Details of Model

In this section we present specific examples for the
models at each level. More complex models can also
be specified within this overall structure. In the no-
tation that follows, ¥ represents the vector consist-
ing of all of the Level 3 parameters. Specific compo-
nents of ¥ are described later.

3.1 Migration Model

Level 2 describes the migration of the individuals,
i.e. the time when the individual resided in the area.
Each individual’s migration history is summarized
by two variables: tg;, the time person i moved into
the area, and t;, the time person ¢ moved out of the
area.

We model the population as a mixture of two
types of people: never-movers, who never move in or
out of the area, and movers, who migrate to or from
the area (although not necessarily during the time
period of observation). The in- and out-migration
dates are modeled using mixture distributions to
account for the two types of individuals. The pa-
rameter r represents the fraction of never-movers in
the area at a given point in time (considered to be
constant across time). For the movers, we assume a
stationary process with a constant hazard of moving
(A) that is the same for each individual.

The version of the model simulated in this paper
(Section 5) assumes that r = 0 (there are no never-
movers). From these assumptions we can deduce
q, the proportion of the population that was in the
area at the beginning of the time period of inter-
est: ¢ = m This model implies a censored
exponential distribution for the length of residency
and a mixture for ty;, with a mass ¢ at Ty and a
uniform distribution over the remaining time, to 7.

3.2 General Observation Model

The observation model (Level 1) describes the pro-
cess of observing the individuals in the record sys-
tems. The migration history is observed through
these record systems, as each person’s opportunity
to be observed depends on their migration history.

We first give the general framework for a single
record system, and then discuss methods of com-
bining observations from multiple systems. Sec-
tions 3.4.1 through 3.4.4 provide examples of specific
record systems.

A generic approach has one indicator variable for
whether an individual was in that record system type
(if she filed a tax return, had a driver’s license, etc.).
Another variable indicates the date when she would
appear. The interaction of these and the migration
dates then determines whether the individual would
be observed in the record system file available. The
exact interpretation of these variables is specific to
each record system.

Let j index the type of record, and i index indi-
viduals. The following variables are defined for each
of the record systems (j = 1,..., J):

To; = Beginning of time period covered by
record type j.

T1; = End of time period covered by record type
j-

wj; = Bernoulli variable indicating that person
1 has a record of type j.

wjilaji ~ Bernoulli(aj; = aj(z;, ¥))

aj; represents the probability of individual
1 having record type 7, and may depend on
individual covariates x; through some kind
of regression model.

y;j; = Date associated with record type j for
individual .
yji ~ Fj(2i, P)
The distribution of y;; depends on the type
of record, and possibly covariates ;.

zj; = Indicator for individual ¢ being observed
in file j.

zji = Zj (wji, toi, tri, Yji> Toj, T15)

zj; is a function of wj;,y;;, migration
dates, and the dates covered by record sys-
tem j.

Define Ty = min{Tp;}, the beginning of the time
period covered by any source, and T7 = max{T},},
the end of the time period covered by any source.
This notation for the observation model can accom-
modate a variety of record systems, including admin-
istrative records files, the Census, and the PES. The
framework stays the same, but the specifics of the
distributions depend on the type of record system.

3.3 Combining observation models from
multiple record systems

Under the assumption that being in a record system
(wj;) and the date associated with that (y;;) are in-
dependent across systems, conditional on migration



dates, the probability distributions of (wj;,y;;) for
each system are jointly independent. In this case,
the full observation model is just the product of the
individual record observation likelihoods:

L(2|®) o [T |T] P(wsiless) P(ysilwji, i)
% J

- P(zjilyji, wji, tois ti, Toz, Tij)

- P(toi, t1i| A, q).

Although independence of the systems is a fairly
common assumption in multiple system estimation,
many studies have shown that it is not a good ap-
proximation for administrative records. To model
dependence among the w;;’s, loglinear models could
be utilized. Dependence among the y;;’s (for ex-
ample, if both driver’s license renewal dates and car
registration files were linked to an individual’s birth-
day) could be modeled directly. The specifics would
depend on the exact records involved.

3.4 Specific observational models

The following are specific examples of the observa-
tion model.

3.4.1 Census

In the case of the Census, we; ~ Bernoulli(ag;) for
all 7, where a¢; depends on each individual’s char-
acteristics, as well as the undercount rate. Since the
Census records nominally cover just one day, yco; =
April 1 for everyone (yo; = yo for all i), and Too
and Ty are both April 1. The function for zg; is
then z¢g; = 1 if we; = 1,t9; < April 1 < #y;, and
2c; = 0 otherwise.

3.4.2 Tax Returns

For tax returns, wr; ~ Bernoulli{(ar;), where ar;
represents the probability that someone with person
i’s characteristics files a tax return. This may de-
pend on characteristics such as age or region of the
country. Since tax returns are generally filed around
April 15, the distribution of yr; is centered around
April 15, with a distribution of early and late filers.
Given the plentiful tax data, a non-parametric esti-
mate of the distribution of filing dates (yr;) could
be utilized. Tyr is the beginning of the time period
covered by the file, and T is the end date of the pe-
riod covered by the file. The function for z7; is then
zri = 1if wr; = 1,t0; <yri < t1i, Tor < yri < T,
and zr; = 0 otherwise.

3.4.3 Driver’s Licenses

Although driver’s licenses are unlikely to be used as
a record system in the Census context because of the
complications of disparate state laws and data files,
they are a good, intuitive example of how the model
works. In this case, wp; ~ Bernoulli(ap;), where
ap; represents the probability that someone with
person 4’s characteristics has a driver’s license and
could depend on personal characteristics (in partic-
ular, age) and location in the country. Since most
driver’s licenses are renewed at fixed intervals of
some number of years, typically on the individual’s
birthday, we assume that the distribution of renewal
dates, yp;, is uniform. Since we are only concerned
with the most recent renewal, the right endpoint of
this distribution is T p (the endpoint of our observa-
tion interval), and the left endpoint is Ty p— R, where
R is the length of time between renewals. We then
assume that anyone in the area with a driver’s license
would have had to renew their license at some point
in this interval. The function for zp; is then zp; = 1
if wp; = 1,t0; < ypi < t1i,Top < ypi < Tip, and
zp; = 0 otherwise.

3.4.4 Other Types of Records

Other types of records that could be modeled in
this way include the Social Security Service’s Master
Beneficiary Record, which is a list of anyone entitled
to Social Security Benefits, updated monthly. Each
individual has a probability of being a beneficiary in
each month, and his observation date would be mod-
eled as uniform through the month. The monthly
files could give us fairly precise information on when
individuals moved to or from the area.

Models for Medicare claims would be more com-
plex. We can estimate the probability that an indi-
vidual is a Medicare fee-for-service beneficiary. The
temporal distribution of claims is more complicated
since some people will have many claims in a short
time period, while others may have claims very
spread out.

4. Inference

4.1 Levels of Inference

The structure of the hierarchical model allows infer-
ence on each of the 3 levels: global parameters of
coverage probabilities and migration, individual mi-
gration times, and individual observation and record
histories. The level of inference will depend on the
goal. For example, inference about the global mi-
gration parameters may be of interest to sociologists



interested in studying migration patterns. This flex-
ibility of levels of inference enables the model to be
useful for a variety of purposes.

In the Census context, we are mostly interested
in inference on the second level, regarding the mi-
gration dates for individuals. It is possible to obtain
posterior estimates of individual’s migration dates,
which lead to estimates of the probability of resi-
dency, and in turn lead to an estimate of population
size on Census day. An example of this is given in
Section 5.

4.2 Computational Methods

Draws from the joint posterior are obtained by run-
ning a Gibbs sampler, which iteratively draws from
each of the full conditional posterior distributions
and converges to the joint posterior (Geman and
Geman 1984). The general framework is that of cy-
cling through the three levels, drawing the parame-
ters at each level. Here we present the specifics for
the model as described in the simulation presented
in Section 5. Discussion is restricted to the distri-
butions necessary for the simulation, which includes
two types of systems: the Census and driver’s li-
censes. The priors used are ac ~ Beta(aq,,bac)
and ap ~ Beta(aqy,,bay)- In addition, ¢ and A are
considered known and so are not drawn in the sce-
nario discussed.
Define the full parameter vector

O ={{toi}, {tii}, {wci}, {wpi}, {zci}, {zpi},
{ycit {ypi}, A q,ac,ap}-

The Gibbs sampler iterates through the following
steps:

1. Global Parameters

(a) ag|O\q, x

ni11+na1taas -1 nig+b -1
ag (1—ag)™12tbac

(ac+ap—acap)®

(b) aD|®\(1D X

ni1tni2+taap —1 b -1
oy D (l—aD)"ZH' ap

(ac+ap—acap)™

In this simulation, A and ¢q are considered
known, and so draws from their poste-
rior distributions are not necessary. The
known variable ni; represents the num-
ber of individuals caught by both systems,
ni1o is the number of individuals caught
by the driver’s license file and missed by

the Census, and ns; is the number of in-
dividuals caught by the Census and not
by the driver’s license file. Finally, n =
n11 + nis + noy is the total number of in-
dividuals caught by any source. The pos-
terior distributions of ac and ap have a
form similar to that of a binomial distri-
bution, with a modification to the denom-
inator. The explanation for the denomi-
nator is easily seen if we consider the 2x2
table formed by the interaction of we; and
wp;. Since we only consider individuals
who were in at least one of the systems, the
cell we; = 0,wp; = 0 is not in the model
and thus the sum of the probabilities of
being in each of the cells is not 1. This
sum is thus in the denominator. Since the
posteriors of a¢ and ap are not in closed
form, Metropolis-Hastings algorithms were
used to obtain posterior draws from them
(Gelman et al. 1995, Chapter 11). A Uni-
form jumping distribution was used, and
acceptance rates were in the range recom-
mended by Gelman et al. (1996).

2. Individual Migration Parameters

(a) t0i|Ovto; ~ AeMoi (g (8(toi = To)) +
(1-q)(6(To < to; <T1)))
I{tg; < toi < t5;}
e tl. and t§. are bounds on tg;, deter-
mined by the set of records observed
(b) t1i = toi|O\sy, ~ Exp(WI{t]; <ty < 17
e tL. and tV, are bounds on ty;, deter-

mined by the set of records observed

3. Individual Observation Parameters

(a) Yci|O\ye; = Tic
(b) yDil(-)\’yDi ~ Uniform(ygiaygi)

e yk. and yY, are determined by the set
of records observed

(€) woilO\we; ~ Bernoulli(ac), unless deter-
mined by observation history

L] U)CizlisziZI
o we; =0if 205 = 0,t0; < Tio < t14

(d) wp;|O\y,; ~ Bernoulli(ap), unless deter-
mined by observation history

L] wDizliszizl
e wp; = 0if zp; = 0,%0; < ypi < t15



The ranges of possible values for tg;, t1; and yp;
are determined by the records observed for each in-
dividual and the current values of the other param-
eters. Depending on the dates of observation, the
posterior distribution of moving dates might be dif-
fuse across the entire observation period, or might
be more limited. For example, an individual with a
driver’s license observed on day 25 and also observed
on Census day (day Ti¢) has a moving out date that
is more constrained than that for someone observed
only on day 25.

This leads to complications in the computations,
as each individual has a different range of possible
values of tg;, t1; and yp; given the observation dates,
wei, Wpi, and the migration parameters. The pos-
teriors for the moving dates and yp; look like the
priors, but are either restricted or unrestricted due
to the observation dates. Many of the steps in the
Gibbs sampler thus consist of a set of cases depend-
ing on values of z¢;, 2p;, wei, and wp;. Examples
of the types of observed data and the consequences
for the ranges of to;, t1;, and yp; are given below.
Some break down into cases based on the current
draws of the parameters.

1. Observed in driver’s license file on day yp; and
in the Census on day yco; = Thic.-
For this individual, we know that t¢; < vpi,
t1; > Tic, we; =1 and wp; = 1.

2. Not observed in driver’s license file, observed in
Census on day yo; = Tic-
The possible ranges of #g; and ¢;; depend on the
current value of wp;.

a: wp; = 0: Since the individual does not
have a driver’s license, her absence from
the file tells us nothing about her migra-
tion history. We thus only know that
to; < Tio < ti;.

b: wp; = 1: The individual renewed her
driver’s license, but not during the time
that she was in the area. For a given value
of yp; (drawn from its posterior distribu-
tion), we know that the individual must
have either moved in after yp; or out be-
fore yp;. This restricts the possible values
of tOz’ and th'.

3. Observed in driver’s license file on yp;, not in
Census file.
Again, there are two cases, depending on the
current value of we;.

a: we; = 0: Since the person is not in any
Census record, this gives us no information

on the individual’s migration history. We
only know that to; < yp; and t1; > yp;.

b: we; = 1: This implies that the person is in
the Census, but was not in the area of in-
terest on Census day. Since our population
is defined as anyone in the area at some
point between Ty and Ti, we thus know
that the individual must have moved into
the area before yp; (to; < ypi), and out of
the area after yp; but before Census day
(ypi < t1; < The).

5. Simulation

5.1 Simulation Parameters

We assume that two systems are available: a file of
driver’s license records and the Census. We assume
that being in the Census file (w¢;) is independent
of being in the driver’s license file (wp;) and thus
the full observation likelihood is the product of the
likelihoods of being observed in each of the two sys-
tems. The observation period starts at 7o = 0 and
ends at T; = 365 (measured in days).

Census day is at the end of this time period, day
365. The observation model for the Census is de-
scribed in Section 3.4.1. We assume that a¢; = ac
for all ¢, implying that everyone has the same proba-
bility of being in the Census. The observation model
for the driver’s licenses is described in Section 3.4.3.
Again, we assume that ap; = ap for all i. We use
a renewal period of one year (R = 365) and have
driver’s license file coverage of one year, ending at
Census day. The distribution of the most recent re-
newal date is thus approximated as Uniform(0, 365).
This set-up gives us more information on the migra-
tion dates and file coverage. If someone is not ob-
served in the driver’s license file, we know that it is
either because she did not have a license (wp; = 0)
or because she was not in the area at the time of
renewal (yp; < to; Or Yp; > t1;)-

The migration model is that described in Section
3.1, with a mixture model for ¢o; and an exponen-
tial distribution for the time before moving out. To
simplify this example, ¢ and A are assumed to be
known. The values are ¢ = .8 and A = ﬁ, which
correspond to an average duration of stay of 5 years
(Hansen 1998). As discussed earlier, we assume that
there are no non-movers in the population.

At Level 3, the prior distributions on a¢ and ap
are Beta(1, 1), which are non-informative conjugate
priors.



5.2 Results

The simulated data set consisted only of people ob-
served in one or both of the systems, resulting in a
sample size of 427. The “true” parameter values are
shown in Table 1, as well as posterior estimates from
the Gibbs sampler. The variable N¢ is the size of the
population on Census day. Histograms of the poste-
rior distributions of a¢ and ap are shown in Figure
1, and of N¢ in Figure 2. The vertical bar in each
plot represents the “true” value in the simulation.

Table 1: Posterior Estimates of Parameter Values

True | Posterior | 95% Posterior
Parameter | Value Mean Interval
q 0.8 NA NA
A ﬁ NA NA
ac 0.9 0.87 (0.82, 0.92)
ap 0.7 0.71 (0.66, 0.77)
N¢ 408 407 (397, 417)

Figure 1: Posterior Distributions of a¢ and ap
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The Census file had 370 individuals observed on
Census day. The addition of one record system, the
driver’s license file, added 37 individuals to the Cen-
sus day population count. In addition, the posterior
intervals for the three main parameters and the pop-
ulation size on Census day covered the true values.
Sensitivity to starting values and priors was checked
and all iterations converged to similar values.

Since our goal is to determine the probability of
residency on Census day, we are primarily inter-

Figure 2: Posterior Distribution of Census Day Pop-
ulation Size
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ested in the individual migration dates, to; and ¢1;,
and their implications regarding residency on Cen-
sus day. The main inference will be for individuals
observed in the driver’s license file and not in the
Census. Figure 3 shows the predicted probability of
Census day residency for an individual observed in
the driver’s license file at various points in time, but
not in the Census. As might be expected, individ-
uals observed later are more likely to still be in the
area on Census day.

Figure 3: Probability of Residency on Census Day
for those observed only in Administrative Records
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6. Discussion

6.1 Extensions

The strength of this model lies in its flexibility,
specifically its ability to model many types of records
at the same time, either through an independence
model by multiplying the likelihoods of observation
of each type of record, or through a more complex
model. This could be of particular use with the new
Census Bureau StARS data set, which contains data
from 5 different records systems.

Heterogeneity of capture probabilities associated
with observable characteristics is incorporated by in-
cluding covariates in the Level 1 (observation level)
models, as in Alho, Mulry, Wurdeman, and Kim
(1993). Unobservable heterogeneity may be mod-
eled through common random effects affecting the
probabilities of an individual being observed in each
of several systems (Darroch et al. 1993). Alterna-
tively, the joint distribution of observation in all of
the record systems could be modeled directly.

Heterogeneity in the probability of moving can
be incorporated by adding covariates such as de-
mographic or area characteristics to the migration
model, as can seasonality in migration.

The full model includes N, the total number of
individuals in the population, including those unob-
served. This parameter is not needed in the cur-
rent version of the model as it enters only through
the distribution of A, which is considered known for
this simulation. A larger model that includes N will
be developed. To calculate the population size on
Census day, we will use the probability of those we
observe of being resident on Census day, as well as
weights to represent unobserved individuals.

6.2 Applications

Administrative records, and this model, have great
potential to assist in the estimation of the under-
count of the US Census. There are at least two sce-
narios regarding the design of a national administra-
tive records sample. In the first scenario, the Post-
Enumeration Survey and the administrative records
cover the same blocks. This leads to triple sys-
tem estimation (Census, Post-Enumeration Survey,
and administrative records) for the blocks where
the Post-Enumeration Survey and the administra-
tive records are available. These results would then
be used to adjust counts across the country.

Under a second scenario, the administrative
records are available across the entire country, not
just in the Post-Enumeration Survey blocks. The
records would be matched to each other and to the

Census and then used to provide small area pop-
ulation estimates across the country. The Post-
Enumeration Survey would then be used in estima-
tion of general parameters. Although this design
requires assembling much larger files, the cost would
not be proportionally more than that required to
obtain administrative records files for just the Post-
Enumeration Survey blocks since the same systems
must be accessed.

There are three main advantages to using admin-
istrative records as a second national source of infor-
mation on individuals. The records could be used to
add (or subtract) people for whom we have direct
evidence that they were (or were not) in the area
on Census day. The PES can do this as well, but
provides small-area detail only for sample blocks.
Hence, estimates would rely less on synthetic esti-
mates of the undercount; fewer assumptions of ho-
mogeneity across areas would be necessary and local
undercount estimates could be obtained more reli-
ably. Finally, this would be a major step forward
in the use of administrative records in the Census.
The StARS database currently under development
and results of modeling with it, as well as the cor-
responding AREX experiment in the 2000 Census,
should give some indication of the potential for this
method.

The migration model described here could reduce
some of the problems associated with the use of ad-
ministrative records. In particular, it could help re-
duce the amount of field follow-up needed, as it could
identify the people that were more or less likely to
still be in the area on Census day. Finally, the model
may be useful to deal with movers in the PES. In
that case, we would observe an individual on a date
after Census day, and use the model “backwards” to
predict residency on Census day.

In addition, there is potential for the use of this
model in fields such as demography and sociology,
where human migration is a major research area.
The model can be extended to describe a list of
events for individuals, jointly with their movement
patterns. It also might be used to help identify the
determinants of migration.
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