
Supplementary Material

1. Derivation of the Distribution of Φ Estimates

Using least squares or maximum likelihood methods, we infer that the estimates of the kinetic parameters

follow (asymptotically) a multivariate normal distribution. As the chevron curves for the two amino acid

sequences are fit separately, kinetic parameter estimates from the same chevron fit will be correlated, while

kinetic parameter estimates from different chevron fits will be independent. Mathematically, this means that
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Here, ln(kf ) denotes the logarithm of the folding rate of the wild type, ln(ku) denotes the logarithm of the

unfolding rate of the wild type, and ln(k′
f ) and ln(k′

u) denote the respective parameters for the mutant.

The symbol σ is used for the respective standard errors, and ρ is used for the respective correlations. Figure

1 shows scatterplots for the kinetic parameter estimates of a chevron fit obtained in a statistical simulation

study.
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Figure 1: For 10,000 iterations, Gaussian noise with standard deviation typically seen for the experimental

error in such kinetic studies (see for example www.foldeomics.org) was added to a pair of “synthetic”

chevron curves, and the kinetic parameters were estimated by fitting the chevrons. For brevity, the distribution

of the kinetic parameter estimates (including the estimates for the folding and unfolding arms, mf and mu

respectively) are shown for only one chevron. This figure is only intended to highlight the distributions

between the kinetic parameter estimates, and thus the axis labelings are omitted.

An elementary result of linear model theory (e. g. Seber [1]) states that if Y is a random vector of length n

following a multivariate normal distribution, i. e. Y ∼ Nn(µ,Σ), and C is a matrix with n columns and p
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rows, then CY ∼ Np(Cµ, CΣCT ). As the estimates in the changes in free energy are linear functions of the

kinetic parameters (∆̂∆G‡ = RT×[ ̂ln(kf )− ̂ln(k′
f )], and ∆̂∆GU = RT×[ ̂ln(kf )− ̂ln(k′

f )− ̂ln(ku)+ ̂ln(k′
u)]),

we choose

C = RT ×
[
+1 0 −1 0

+1 −1 −1 +1

]
, (2)

where R is the gas constant, and T is the absolute temperature. Therefore
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,
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Here, var() denotes the variance, cov() the covariance, corr() the correlation, and se() the standard error of

the respective arguments. Figure 2 shows the marginal and joint distributions of ∆̂∆G‡ and ∆̂∆GU derived

from our simulation study.

As the Φ-value estimate is not a linear function of the estimates of the changes in free energy, we use a

Taylor-series expansion to derive an approximate distribution. This method is also often referred to as error

propagation in the life sciences, and Delta method in the statistical literature. In brief, it states that if we

have an estimator θ̂ for a parameter θ, following a multivariate normal distribution with mean θ and variance

covariance matrix Σ, then for a non-constant and differentiable function f ,

f(θ̂) ≈ N (f(θ), V ) . (6)

where

V =
(

δf

δθ

)T

Σ
(

δf

δθ

)
|
θ=

ˆθ
. (7)
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Figure 2: The marginal and joint distributions of ∆̂∆G‡ and ∆̂∆GU derived from our simulation study,

confirming the theoretical result that ∆̂∆G‡ and ∆̂∆GU follow a bivariate normal distribution.

The theorem is often stated as a limit theorem, i. e. in terms of the sample size of observations, that give

rise to the kinetic parameters, getting large. In this context, the above approximation holds if the absolute

values of the estimates of the changes in free energy are large compared to their standard errors (see for

example the discussions in Hinkley [2] and Marsaglia [3]).

To use this result to derive a distribution for Φ̂, consider f(θ) = f(∆∆G‡, ∆∆GU) = ∆∆G‡/∆∆GU. Since

δf

δ∆∆G‡
=

1
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δf
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= −∆∆G‡

∆∆G2
U

, (8)

it follows that
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)
, (9)

and the variance of the estimate of Φ is given by
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(10)
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2. A Web based Implementation

The above algorithm has been implemented as part of a web server for use by the folding community,

accessible through biostat.jhsph.edu/∼iruczins/software/phi/. A snapshot of the website

is shown in Figure 3. Chevron data can be uploaded as a spreadsheet or as tab delimited text file (there is

no limit on the number of mutants that can be analyzed simultaneously). Several user options are available,

including the possibility of fitting parallel chevron arms, and the option to measure the folding and unfolding

rates at non-zero denaturant concentrations. Once executed, the script creates a webpage with tabulations

of the relevant kinetic parameters and their standard errors, as well as estimates of the changes in free energy

between mutants, and the estimate for Φ (including the standard error and the confidence interval). These

tables can also be downloaded in spreadsheet format.

Figure 3: A snapshot of the web server. A perl/cgi script uploads and parses the kinetic data, and calls an

R script for the statistical analysis. The estimates for the kinetic parameters and their standard errors and

correlations are obtained using the R function nls().

3. Effects of Ignoring the Covariance

When ρ∆ is ignored (i. e. assumed to be zero), the estimate for the variability in Φ̂ is simply

varρ∆=0(Φ̂) = Φ2 ×
[(

σ‡

∆∆G‡

)2

+
(

σU

∆∆GU

)2
]

. (11)

The absolute difference in those variabilities is

varρ∆=0(Φ̂) − var(Φ̂) = Φ2 × 2ρ∆

(
σ‡

∆∆G‡

)(
σU

∆∆GU

)
= 2Φ × ρ∆σ‡σU

(∆∆GU)2
. (12)
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This formula states that the smaller ρ∆, σ‡, σU, and Φ (for a given ∆∆GU), the smaller the absolute difference

in the estimated variabilities. Also, the larger ∆∆GU (for a given Φ), the smaller that difference.

To investigate the relative increase in the estimate of the variability of Φ̂ when ρ∆ is ignored, we simplify

the notation by writing

V1 = Φ2
(
a2 − 2ρab + b2

)
,

V2 = Φ2
(
a2 + b2

)
, (13)

where a = σ‡/∆∆G‡ and b = σU/∆∆GU. Using b = c × a, we define

V1

V2
= 1 − 2ρ∆ab

a2 + b2
= 1 − 2ρ∆ca2

a2 + c2a2
= 1 − 2ρ∆c

1 + c2
=: f(c) (14)

The first derivative of this function f is

f ′(c) = −2ρ∆(1 − c)
(1 + c2)2

, (15)

which is equal to zero iff c = 1. The function f attains a global minimum at c = 1, i.e. when σ‡/∆∆G‡ =

σU/∆∆GU. Hence V1/V2 is bounded below by f(1) = 1 − ρ∆, and converges to 1 (i. e. towards equal

variance estimates) as c moves away from this point in either direction. Equivalently, V2/V1 is bounded

above by 1−ρ∆/(1−ρ∆). The lengths of the confidence intervals scales with the standard errors of the free

energy estimates, and therefore the ratio of confidence intervals is bounded by
√

V 2/
√

V 1 =
√

V 2/V 1 =√
1 − ρ∆/(1 − ρ∆).
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