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Chapter 9

SHEET CONFIGURATIONS

9.1 Introduction and Motivation

Figure 9.1: Highlighting the secondary structure elements in the three-dimensional struc-
ture of Protein L. We will use the four-stranded sheet of Protein L as example in this intro-
duction.

When a protein is folded ab initio with ROSETTA, the score (introduced in Chapter 8)

gets a big boost when two strands come together and form a sheet, or if a single strand

gets attached to an already existing sheet. After generating many decoys using ROSETTA,
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we found that very frequently the sheets consist of strands that are adjacent in sequence,

building an ”up-down” motif as shown in Figure 9.2(a).

N C

(a) The “up-down” motif, a common

motif in ROSETTA decoys.

N

C

(b) The sheet configuration of the four

strands in Protein L.

Figure 9.2: Two common configurations of four-stranded sheets.

There are plenty of proteins of known fold that actually do have such a four-stranded sheet

motif. Our concern was that dis-proportionally many decoys made with ROSETTA had

that up-down motif. This suspicion got confirmed when we compared local pairs of strands

in sheets between ROSETTA decoys and real proteins. A local pair of strands is a pair of

neighbor strands in a sheet with the two strands adjacent along the backbone of the protein.

Otherwise, the pair is called non-local. The up-down motif in Figure 9.2(a) therefore has

three local pairs and no non-local pair of strands, while Protein L (Figure 9.1) has a motif

with two local pairs and one non-local pair of strands, see Figure 9.2(b). In Figure 9.3 we

show the distributions of local versus non-local strand pairs in decoy sets we created for

different proteins. This distribution seems appropriate in decoy sets for proteins that have

few non-local pairs, such as the proteins with four-letter abbreviations 1pgx, 1sro, 1vif and

2ptl. The latter is the abbreviation for Protein L, and
�����

of the decoys we made actually

had the correct number of local and non-local pairs of strands. Matters get considerable
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Figure 9.3: The distributions of local versus non-local strand pairs in decoy sets for vari-
ous proteins. The numbers super-imposed onto the panels are rounded percentages of the
frequency of decoys with the respective number of local and non-local strand pairs. A zero
therefore stands for a percentage � with �����	�
����
 .

worse in decoy sets for proteins with many non-local strand pairs, such as the proteins

abbreviated by 1ah9, 1hqi, 1ksr and 1vqh. For 1ah9 and 1ksr we actually failed to make a

single decoy (out of 10000+ decoys) with the correct number of local and non-local strand

pairs!

The strand-strand packing term introduced in Chapter 8 only governs how many sheets will

be formed, given the number of strands. However, it does not influence how strands get

arranged in sheets. Given the above, there is plenty of motivation for developing a prob-

abilistic model of what we call sheet configurations. We would certainly like to know a

priori which motifs we should expect to see in a set of decoys we fold with ROSETTA.

Quite possibly, some motifs that occur frequently in the database might be rare or com-

pletely missing in the set of decoys, and at the same time there might be plenty of up-down

motifs although we would not really expect to see them in the structure we are considering.
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The scoring function in ROSETTA is helpful in guiding a sequence of amino acids to a

reasonable, protein-like fold. But of course it does not generate the correct fold determin-

istically, and a variety of structures is built. Since these decoys were built using the same

scoring function, they are usually fairly low-scoring, and we do not expect to see very much

of a correlation between score and root mean square deviance. Hence we have to rely on

some “post-filters”, i. e. scoring functions somewhat independent of the ROSETTA scoring

function, to select the best among the decoys. These post-filters include all-atom potentials

(after adding all side chain atoms to the decoys), and clustering procedures [42]. A proba-

bilistic model of sheet configurations certainly could be used as a post-filter. It could also

be used to pre-select a subset of the decoys with a sheet configuration distribution accord-

ing to the probabilistic model, basically as a “prior” distribution, and then use the above

mentioned filters to search for the best decoys. Ideally, the probabilistic model of sheet

configurations could be used as a feature in the scoring function, which we hope we can

implement some time in the future.

9.2 A Model for Sheet Configurations

The proteins we try to fold usually do not exceed 150 residues, and therefore the number

of strands in the folds almost never reach double digits. The data we gathered from the

database (see http://www.fccc.edu/research/labs/dunbrack/culledpdb.html) were from pro-

teins of unrestricted lengths, but we only included sheets with at most ten strands in the

investigation. We want to stress though that by the way we build the model, sheets of any

size can be scored. Further, some proteins build barrels, i. e. secondary structure ensembles

in which every strand has two neighbors. ROSETTA currently is not able to build these

structures consistently, and therefore we limit ourselves to scoring decoys of proteins that

do not have barrel motifs. In principle, the scoring function could easily be modified if one

wanted to include the barrels.
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Strictly speaking, nothing but the sequence of amino acids of the protein is known in ab

initio structure prediction. To select the fragments in the move set of ROSETTA (see [44]),

we make use of secondary structure predictions, a service freely available on the Web (for

example under http://www.embl-heidelberg.de/predictprotein/predictprotein.html). Since

the secondary structure predictions are used to generate the move set in the simulated

annealing, the secondary structure elements in the decoys are usually close to those sec-

ondary structure predictions. The secondary structure predictions also include measures

of certainty associated with the predictions at all positions, which can be considered fairly

reliable. With a more complicated framework it might be possible to build the sheet config-

uration model incorporating the uncertainty about the secondary structure prediction, and

build a model to quantify the probabilities of the overall configurations in the decoys (in-

cluding the number of strands). However, we decided to consider the number of strands

fixed (i. e. looking at one decoy at a time), and model its sheet configuration with its sec-

ondary structure given.

To help understanding the model, we give a brief general overview of the steps involved in

building it. As already mentioned, we choose the fragments in ROSETTA according to the

secondary structure prediction. The diagram below shows the format of such a secondary

structure prediction. Given are the sequence of amino acids (AA), the prediction (here

PHD) in which secondary structure element the residue is, the individual probabilities for

helix (prH), strand (prE) and loop (prL), and the reliability (Rel) of that prediction. With

this, we use ROSETTA to generate decoys. To score decoys, we generate a probability

model for the sheet configurations, assuming the number of strands is known. Next, we

need a model to decide how many sheets the strands build. Realizing that for example in

proteins with 5 strands we only see a single five-stranded sheet or two sheets with two and

three strands respectively, we loosely refer to this term in our model as the “Poker Hand”.

Given the number of strands and sheets, the next step is to model the “sheet decomposition”,

i. e. which strand belongs to which sheet. The third step in our model targets the actual
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sheet configuration - knowing which strands form a sheet, in which motif do they align?

The emphasis clearly is on the last step, since most small proteins only have a single sheet

in which all strands get aligned.

Secondary Structure Prediction
....,....1....,....2....,....3....,....4....,....5....,...

AA |MIPGGLSEAKPATPEIQEIVDKVKPQLEEKTNETYGKLEAVQYKTQVVAGTNYYIKVR

PHD | HHHHHHHHHHHHHHHH EEEEEEEEEEEEE EEEEEEEE

Rel |9999988998743689999999899974227752213686687878873414699996

prH-|0000000001133789999999899976441123332101100000000000000000

prE-|0000000000000000000000000001100001235787788888875346799997

prL-|9998988998866210000000100012357875432101111111113643200002�
Secondary Structure

TTTEEEEETTTEEEEEETTTTHHHHHHHHHHHTTTTEEEEETTTEEEEEETTTTEEEEEETTT�
Number of Sheets�

Sheet Decomposition
TTTEEEEETTTEEEEEETTTTHHHHHHHHHHHTTTTEEEEETTTEEEEEETTTTEEEEEETTT

1 1 2 2 1�
Sheet Configuration

Modeling the arrangement of strands into sheets, we assume the secondary structure to be

known. Although the arrangement of strands into sheets may depend on many characteris-

tics of the protein under consideration, we decided after an initial exploratory data analysis

to only use two additional features of proteins in our model, which we can consider given

together with the secondary structure.
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(a) The helical status of the protein.

Using our experience from previous, unrelated work, we consider a protein to be

helical if at least ����� of its residues are part of a helix.

(b) The lengths of the loops between strands.

What we call loop in this context is simply the sequence of amino acids that connects

the strands under consideration. Therefore our loops can also contain residues that

are part of a helix. We defined the loop between two strands as short if the number of

residues was ten or less, and long otherwise. This decision is in agreement with the

definition of sequence separation in Chapter 8.

We considered to use more known properties of proteins in our model, such as the length

of the strands in the protein, the protein length (number of residues) itself, an indicator

whether or not there is helical structure between two strands, etc. However we only in-

cluded the two features described above, since they capture most of the information the

other characteristics provide, and because the inclusion of more features was prohibited by

the limited number of data available.

In our model, we use the following variables:

�
S The number of strands in the protein.�
SH The number of sheets in the protein.�

The helical status of the protein (either helical or non-

helical).�
The loop lengths between strands, given as indicators (either

short or long).
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SD The sheet decomposition, i. e. the assignment of strands into

sheets.

SC The overall sheet configuration, i. e. the overall description

of the arrangement of the strands.

SC � The configuration (motif) of sheet � , i. e. the description of

the arrangement of the strands in a particular sheet.

Knowing the number of strands in the protein, the lengths of the loops between the strands,

and the helical status of the protein, we want to model the probability distribution of the

possible sheet configurations, ��� SC � � S � �	� !#" . Using rules for conditional probabilities,

we have ��� SC � � S �$�%� !#"& ��� SD � SC � � S � �	� !#"& ��� SC � SD � � S � �	� !#"(' �)� SD � � S � �	� !#"& ��� SC � SD � � S � �	� !#"(' �)�*� SH � SD � � S � �%�$!+"& ��� SC � SD � � S � �	� !#"(' �)� SD � � SH � � S � �%�$!+"(' �)�*� SH � � S � �%�$!+" (9.1)

The first equation follows from the fact that the sheet configuration determines its sheet de-

composition, and hence we have ��� SD � SC � � S �$�%� !#" & �)� SC � � S � �	� !#" for the specified

sheet decomposition SD, and ��� SD , � SC � � S � �%� !#" &.- for all other sheet decompositions

SD , . Next, we make the following assumption:��� SC � SD � � S �$�%� !#" & / � ��� SC �$�SD � � S � �%�$!+" (9.2)

This means, we assume that if we have two or more sheets in a protein, the motifs of those

sheets are conditionally independent. This assumption might for example be violated in
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proteins that pack sheets against each other. If two four-stranded sheets form a “sandwich”,

then often the two motifs are alike. However, the motifs in those sandwiches usually are

motifs that are observed very frequently anyways, so that the correct topology will receive

a high score, and most decoys with two different motifs in the sandwich will not. Most

small proteins that we try to fold have no strands or only a single sheet, and in those cases

we do not have to make use of the assumption in equation (9.2) anyways.

The model can now be written as0�1
SC 2 3 S 4$5%4 6#78 9�: 0�1

SC

: 2SD 4 3 S 4 5%4 6#7(; 0�1
SD 2 3 SH 4 3 S 4$5%4 6#7(; 0�1 3 SH 2 3 S 4$5%4 6#7 (9.3)

We refer to
0�1

SD 2 3 SH 4 3 S 4 5	4 6#7 as the “sheet decomposition” term, to
0�1 3 SH 2 3 S 4 5	4 6#7

as the “poker hand” term, and to
0�1

SC

: 2 SD 4 3 S 4 5	4 6#7 as the “sheet configuration” term.

The highest interest certainly is in the description of the model of the sheet configuration

term, which is given in detail in a separate section (Section 9.2.2). Before that, we briefly

describe the model for the sheet decomposition and the poker hand term in the following

section. These following sections are rather technical, and tough we are making a lot of

assumptions and simplifications, we can not always show the data in detail to illustrate

how they support the decisions we make. However, for the convenience of the reader, we

summarize the contents of the most technical parts at the end of the respective sections.

9.2.1 The Sheet Decomposition and the Poker Hand Term

The Sheet Decomposition

To model the sheet decomposition of proteins, we use the entire information in the database,

although we are primarily concerned with small proteins, which most cases have no strands
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at all, or only a single sheet. The distribution of the number of sheets given the number of

strands is modeled in the poker hand term in the second part of this section. For the sheet

decomposition, we can assume that the number of strands and sheets are known. The fact

that most small proteins have either no strands or only a single sheet means that the counts

used to model the decomposition term are not very high.

Investigating <)= SD > ? SH @ ? S @ A%@$B+C , we could not establish a dependency of SD on A and B ,

even though there are scenarios where one might expect this. We consequently simplified

the decomposition term to<)= SD > ? SH @ ? S @ A%@$B+CED <)= SD > ? SH @ ? S CGF (9.4)

To model this term, we used the number of crossings as a surrogate. The number of cross-

ings is defined as the number of times that, following the backbone from the N to the

C-terminus of the protein, we leave a sheet and enter another sheet. Clearly, for the decom-

position term we are only concerned about proteins with at least two sheets. We assume

that, given the number of strands and sheets, all decompositions that yield the same number

of crossings are equally likely. For example the decompositions H(I�JKI�LKIMH(I�JKINL andHKIMJOIMLPIMJQIRHSIML of 6-stranded proteins with three sheets both have 5 crossings, and

are considered equally likely.

If we have ? SH sheets, we have at least ? SH ITH crossings. Very frequently we saw proteins

in which the first sheet was completed before the second sheet got started. i. e. it is very

common that folds achieve this minimum number of crossings. Some of these for example

were proteins that had sandwiches, or proteins that had two separate pairs of strands. To

predict the number of crossing given the number of strands and the number of sheets, we

split this problem into two sub-problems. We first modeled the probability of a protein

having the minimum number of crossings. For those which did not have the minimum

number of crossings, we modeled the distribution of the number of crossings in excess of

the minimum number.
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The probability of having the minimum number of crossings: Since the outcome for

this problem is binary (having the minimum number of crossings versus not having the

minimum number of crossings), we used logistic regression to predict this outcome, using

the number of strands and the number of sheets. We first used both the number of strands

and the number of sheets as predictors, but then found that dichotomizing the number of

sheets was advantageous, distinguishing proteins with two sheets from proteins with more

than two sheets. The model we fit isUWV�X)Y Z[]\ ZE^`_ \badceagf�h]ikjdcelgm�aonqp
S
\r[�csh�tgm�nquwvsx

SH ySz|{ (9.5)

with
u

being the indicator function of the argument, here taking the value one if
p

SH } h
and being zero otherwise. For illustration we show the fitted probabilities of having more

than the minimum number of crossings for some combinations of sheet and strand numbers

in Table 9.1.

Table 9.1: The fitted probabilities of having more than the minimum number of crossings.

Number of sheets

2 3 4 ~�~�~
4 0.32

5 0.47

6 0.63 0.32

7 0.77 0.48

8 0.86 0.64 0.64 ~�~�~N
um

be
ro

fs
tr

an
ds

...
...

...
... . . .

The distribution of the number of crossings in excess of the minimum number: If the

number of crossings exceeds the minimum number
p

SH
\�[

, we need a model that assigns
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a probability to the number of crossings by how much it exceeds � SH ��� . Exceeding the

minimum, we have at least � SH crossings. Let � max be the maximum of crossings by which

we can exceed � SH �
� . We define���s�
number of crossings � � SH � (9.6)

and hence
������� ��������� � max �
��� . The maximum � max by which the number of crossings

can exceed � SH �.� also depends on the number of strands in addition to the number of

sheets, which makes it somewhat tricky to use a binomial model for
�

. However, we found

that we can simplify matters and approximate the distribution of
�

using a Poisson model.

Since the Poisson distribution allows counts from 0 to � , we used�����.�����E���¡ d¢£��¤¥� ¤§¦�¥¨ for
�©��� ��������� � max �
��� (9.7)

The actual probability
�����.�����

can be derived by dividing the right hand side of equation

(9.7) by its normalizing constant, i. e.�����.���d�#� �G �¢£� � ¤ª��«G¬¦®­�¯�k°�±²´³�µ max

�G �¢£� � ¤ª� «·¶² ­ � ���`� �������¸� � max �
��� (9.8)

The term ° ±²¹³�µ max

�G �¢£� � ¤ª��« ¶² ­ of the normalizing constant is very close to zero in most

cases. We estimated the parameter
¤

in the probability term byºW»�¼ ��¤¥�E� �½���¾��¿gÀ¯Á � �Â��ÃgÀÅÄ � S � � �eÆ�Ç�È�ÄÊÉwËeÌ SH Í]Î|Ï � (9.9)

which is equivalent to ¤Ð�`� �eÈ � ÇoÄ����sÑ��ÒÀ Ì S Ä � �eÇgÑ�Ã�Ó ËeÌ SH Í]Î|Ï � (9.10)

We summarize the model for the number of crossings. LetÔ
be the number of crossings in excess of � SH �
� ,�
be the number of crossings in excess of � SH (i. e.

ÔÕ��� �
� ),Ö
be an indicator if the number of crossings exceeds � SH �
� ,
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and denote

logistic to be the term in equation (9.5), and

poisson to be the term in equation (9.8).

We then have ×�Ø*ÙÕÚ`Û�Ü#Ú�×)Ø�ÝRÚ�ÛgÜEÚ Þ¡ß�à Ø
logistic

Üá+â Þ¡ß�à Ø
logistic

Ü
(9.11)

and for ã�ä�å á�æ�ç�ç�ç�æ$è max é we get×)ØêÙëÚ ã ÜìÚ ×)ØêÙíÚ ãïî ÝRÚ á ÜÚ ×)ØêÙíÚ ã�ð ÝRÚ á Ü(ñÊ×�ØòÝRÚ á ÜÚ ×)Øôó.Ú ã½õ á ð ÝRÚ á Ü(ñÊ×�ØòÝRÚ á ÜÚ
poisson

ñ áá+â ÞGß�à Ø
logistic

Ü
(9.12)

We have a probability model

×)Ø
crossings

Ø
SD

Ü ð ö SH
æ ö S

Ü
for the number of crossings, given

the number of strands and sheets. Since we assumed that, given the number of strands and

sheets, all decompositions that yield the same number of crossings are equally likely (their

number being ÷ùø crossings

Ø
SD

Ü ð ö SH
æ ö S ú say), we have×)Ø

SD ð ö SH
æ ö S

ÜûÚ ×�Ø
crossings

Ø
SD

Ü´Ü
÷ùø crossings

Ø
SD

æ ö SH
æ ö S

Ü ú (9.13)

if ö SH ü`ý , and 1 otherwise.

The Poker Hand

As in the case of the sheet decomposition model, we could not establish an additional

dependency of ö SH given ö S on þ and ÿ , and simplified the poker hand term to×)Ø ö SH ð ö S
æ þ æ ÿ ÜEÚ`×)Ø ö SH ð ö S

Ü
(9.14)
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In the paper [45] included in Chapter 8 we already introduced a poker hand term. However,

this term was used in the scoring function of the ab initio protein folding, and therefore had

to allow for single strands. In real proteins single strands do not appear, and our new poker

hand term needs to reflect this.

Since every sheet has to have at least two strands, the maximum number of sheets is

�
Smax

� � �
S����� (9.15)

Let � be the number of sheets in excess of the one sheet required, and define �
	 � � Smax �
� .
Hence ��������� ����� � ��� . We modeled � as a binomial distribution, assuming

������� � �! �� � S "#" � (9.16)

Further analyzing the data, we found that the probability in the binomial distribution does

not depend on the number of strands, and estimated

 $� � S "&%  � � �('*)+� (9.17)

Figure 9.4 shows the number of strands versus the number of sheets found in small proteins

with ten or fewer strands. The proteins helical and non-helical proteins are shown sepa-

rately to illustrate that the distribution of the number of sheets given the number of strands

is independent of the helical status, as assumed in equation (9.14).

9.2.2 The Sheet Configuration

Given the sheet decomposition, we know which strands form a sheet together. We also

know the helical status of the protein and the lengths of all loops between the loops of a

sheet, and want to model the distribution of the motifs the sheet can adopt. The strands in
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(b) Number of strands versus number of sheets

in non-helical proteins.

Figure 9.4: The upper and lower limits for the number of sheets given the number of strands
(solid lines), and the expected number of sheets (dotted line), using the fitted probability.

the sheet can be labeled by their number in sequence along the backbone, starting with the

N-terminus of the protein.

A motif can then be described by the sequence of positions the strands take in the motif,

and their directions. For a , -stranded sheet, the position information therefore is simply a

permutation of the numbers 1 through , (sequence). Neighboring strands in the sheet are

either parallel or anti-parallel, and we describe this feature (orientation) by a sequence of

zeros and ones (up/down).

There are two axes of symmetry, as shown in Figure 9.5. The sequence for the strands in

the motif of panel 1 is 2143 - the first strand is at position 2, the second strand is at position

1, etc. The orientation for the strands in the motif of panel 1 is 0110 - the first strand points

up, the second strand points down, etc. Reversing the sequence in the motif (2143 becomes

3412) describes the first axis of symmetry, flipping the orientation (0110 becomes 1001)

describes the second axis of symmetry. Since it does not matter from which angle we look

at the protein and we can flop and spin the structure as we desire, these four motifs describe
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Figure 9.5: Four different motifs that represent the same sheet.

the same sheet, and we only need to consider one of the four possibilities. To uniquely

characterize the sheet, we require two things:

1. The sequence starts left. For a sheet of - strands this means that the position number

of the first strand is .0/�132465 or less. If - is odd and the first strand has the middle

position of the sheet, i. e. its position number is equal to . /7132465 , the position number

of the second strand in sequence has to be smaller than .8/�132465 .
2. The first strand points up. In other words, the first number of the orientation is zero.

With those rules, we now always represent the 4-stranded sheet in Protein L by the motif in

panel 1 of Figure 9.5.



148

There are 9;: ways to position the strands in a sheet of size 9 , and <>= possibilities for their

orientations, if we ignore the axes of symmetry. Thus, taking the axes of symmetry into

account, we have ?@BA 9C: A <D=FEG9C: A <�=IHKJ possible 9 -stranded motifs. In the following

three sections, we consider the probability distribution of 2-stranded, 3-stranded and 4-

stranded motifs separately. Modeling those distributions without major assumptions and

simplifications was feasible since there are only 2 motifs for 2-stranded sheets, 12 motifs

for 3-stranded sheets, and 96 motifs for 4-stranded sheets. After these three sections we

consider the probability distributions of the motifs for sheets with five or more strands.

Sheets with Two Strands

Fitting probabilities for two-stranded motifs is straightforward. There are only two ways

for two strands to form a sheet: parallel (P) and anti-parallel (AP) - see Figure 9.6.

N

C

(a) A parallel pair of

strands.

N C

(b) An anti-parallel pair of

strands.

Figure 9.6: The two possible configurations of two-stranded sheets.

Table 9.2 shows the counts of parallel and anti-parallel pairs of strands we found in the

database, conditioning on the loop length between the two strands and the helical status



149

of the protein. It also displays the probabilities we use in the final model. In general, we

use the term “bin” to refer to the class of structures that have a specific motif, loop length

distribution, and helical status.

Table 9.2: The counts and fitted probabilities for parallel and anti-parallel pairs of strands.

helical non-helical

S L S L

P 8 127 3 32

AP 609 338 278 207

P 0.01 0.27 0.01 0.13

AP 0.99 0.73 0.99 0.87

Sheets with Three Strands

There are twelve motifs for three-stranded sheets, shown and labeled in Figure 9.7. We

classify the loop lengths between the three strands as short-short ( LNM ), short-long ( LPO ),
long-short ( LPQ ) and long-long ( L&R ). For most bins, the initially fitted probabilities were very

similar, comparing helical and non-helical proteins. Using S O -tests for bins with sufficient

counts, we determined which bins we could collapse across helical status. We removed

single counts from bins and used pseudo-counts to re-fit the motif probabilities, which are

shown in Table 9.3.

Since the most important features of those fitted probabilities are hard to grasp looking

at the table alone, we highlighted those in Figure 9.8. Figure 9.8(a) indicates with black

boxes the bins that were not collapsed across helical status. It is noteworthy that all of the

bins were collapsed across helical status when both loops between the strands were short,
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Figure 9.7: The twelve possible configurations of three stranded sheets.

and almost all motifs were up-down-up ( T�U ) in the case of both loops being short. Only

seven bins in total were not collapsed, three of those for motif TVU , the “up-down-up” motif.

Motif probabilities bigger than W7X*Y within each length bin are highlighted for helical and

non-helical proteins (Figure 9.8(b) and 9.8(c) respectively).
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Table 9.3: The fitted probabilities for three-stranded motifs.

helical non-helicalZ�[ Z&\ ZP] Z_^ Z�[ Z&\ Z&] Z&^
`V[

0.0043 0.0056 0.0051 0.0491 0.0043 0.0058 0.0051 0.0416`a\
0.0043 0.0056 0.0829 0.0803 0.0043 0.0058 0.0830 0.0681`a]
0.8970 0.4014 0.2761 0.1621 0.8970 0.6107 0.4220 0.2517`b^
0.0043 0.2622 0.0051 0.0285 0.0043 0.0423 0.0051 0.0242`ac
0.0043 0.0056 0.0051 0.0190 0.0043 0.0058 0.0051 0.0161`ad
0.0364 0.0115 0.5472 0.2822 0.0364 0.0118 0.4011 0.2394`6e
0.0043 0.0056 0.0481 0.0315 0.0043 0.0058 0.0481 0.0267`af
0.0043 0.0056 0.0051 0.0142 0.0043 0.0058 0.0051 0.0121`ag
0.0043 0.0056 0.0051 0.1144 0.0043 0.0058 0.0051 0.0121`V[ih
0.0043 0.0056 0.0051 0.0348 0.0043 0.0058 0.0051 0.0295`V[8[
0.0043 0.0270 0.0051 0.0315 0.0043 0.0279 0.0051 0.0267`V[i\
0.0279 0.2587 0.0103 0.1525 0.0279 0.2668 0.0103 0.2517
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Figure 9.8: A visual display of the most important features of the fitted probabilities of
three-stranded motifs.
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Sheets with Four Strands

Although there are 96 possible motifs for four-stranded sheets, we observed only 52 of

those in the database. Among those, 18 motifs were observed only once. We saw 872

four-stranded sheets in the database, but less than 20 motifs were observed ten times or

more.

There are eight classes for the loop lengths between the four strands, labeled as follows:

m�n
short short shortm&o
short short longm&p
short long shortm_q
short long longm&r
long short shortm&s
long short longmPt
long long shortm&u
long long long

As for the three-stranded motifs, we used v o -tests to determine which bins to collapse

across helical status, and using pseudo-counts we fit the motif probabilities of the four-

stranded sheets. Displaying all fitted probabilities would be rather confusing (96 motifs, 8

length classes, and 2 classes for the helical status equals 1536 bins!). Instead we show the

motifs that have a probability of w>x or more in their respective bins in Figure 9.9.
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Figure 9.9: Four-stranded motifs with probabilities bigger than y>z . The actual probabilities
(rounded, in percent) are plotted above the motifs.
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Sheets with more than Four Strands

At the beginning of this chapter we established that for a { -stranded sheet there are {;|8}�~*�I�K�
possible motifs. In our probability model we also have to take into account the knowledge

we have about the helical status of the protein (2 classes) and the loop lengths between the

strands ( ~ �I��� classes). To model the probability distribution of the motifs for a { -stranded

sheet we therefore have to consider {;|�}�~ ���K� }�~�}�~ ������� {C|�}�~ �0�I�K� bins. What this

means in actual numbers is shown in Table 9.4.

Table 9.4: The number of possible sequences (seq), orientations (or), motifs, length bins
(L), helical bins (H) number of bins we condition on (cond), and overall number of bins for
a sheet with { strands.

{ seq or motifs L H cond bins

2 1 2 2 2 2 4 8

3 3 4 12 4 2 8 96

4 12 8 96 8 2 16 1536

5 60 16 960 16 2 32 30720

6 360 32 11520 32 2 64 737280

7 2520 64 161280 64 2 128 20643840

8 20160 128 2580480 128 2 256 660602880

9 181440 256 46448640 256 2 512 23781703680

10 1814400 512 928972800 512 2 1024 951268147200

For up to four strands the counts from the database were sufficient to model the probability

distribution of the motifs, using the raw counts for each motif. Considering how many

motifs we have for sheets of size five or bigger, this is not feasible anymore, especially in

light of the declining counts of larger sheets from the database, shown in Figure 9.10.
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Figure 9.10: The counts of sheets of sizes �����7� observed in the database.

In the case of four-stranded sheets, there are 96 possible motifs, but only about twenty

occur fairly frequently (ten times or more) in the database. The majority of these motifs

looked very similar though, in the sense that in most motifs all neighboring strands were

either parallel or anti-parallel. This observation is even more obvious in the most common

motifs for sheets of size five or larger, shown in Figure 9.11.

To proceed with the model of the sheet configuration term, we make the assumption that

the likelihood of in individual motif can be modeled by some global features, such as the

number of parallel pairs and the positioning of the first strand in the motif. We use the

following abbreviations:

���
Number of parallel neighbor strands in a motif.���� Number of parallel neighbor strands in a motif with a short

loop in between.
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Figure 9.11: Larger sheets frequently observed in the database. The sheets clearly have
common “patterns”.

�
Number of strand pairs adjacent in sequence that are not

neighbors in the sheet. We also refer to this feature as

“jump”.���
Number of jumps with a short loop between the strand pair.�
The position of the first strand in the motif.

Since we try to model the configuration of individual sheets, we can drop the sheet decom-

position in the term ��� SC ���SD � � S �¢¡F�¢£¥¤ , and for simplification we write �B� SC � �C�¢¡¦�¢£¥¤
when referring to the conditional probability of the configuration SC � of � S-stranded sheet§
.

To not interrupt the flow of this chapter, we only state that after carrying out some ex-

ploratory data analysis, we found that the data support the assumption that the sheet con-

figurations are characterized by their number of parallel pairs and how many of those have

a short loop in between, their number jumps and how many of those have a short loop in

between, plus the position of their first strand in the sheet. With this assumption we can
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reduce the number of bins, assigning all sheet configurations with the same number of par-

allel pairs, jumps, etc in a single bin. The bins may contain different numbers of sheet

configurations. For example, for an all-parallel 5-stranded motif of a protein with all loops

longer than 10 residues starting at the first position (of either helical status) we have three

possibilities if we allow one jump (Figure 9.12(a-c)), but only one possibility if we don’t

allow a jump (Figure 9.12(d)).

N

C

(a)

N

C

(b)

N

C

(c)

N

C

(d)

Figure 9.12: All parallel, five-stranded sheets starting at the first position.

Formally, we make the following assumption:

¨�©
SC ª «C¬¢­¦¬¢®¥¯&° ¨B©i¨3± ¬ ¨³²± ¬�´+¬�´ ² ¬¢µ¶ª «;¬¢­F¬ ®·¯¸º¹�» ¼ ©i¨3± ¬ ¨ ²± ¬�´+¬�´ ² ¬¢µ³¯ ¬ (9.18)

with
¸>¹�» ¼ ©i¨3± ¬ ¨�²± ¬�´+¬�´ ² ¬¢µ³¯ being the number of motifs with « strands and loop-lengths

distribution ® in the
©!¨½± ¬ ¨³²± ¬�´+¬�´ ² ¬¢µ³¯ bin, which is independent of the helical status of the

protein under consideration. The term on the right-hand side in (9.18) looks even more

complicated than the term on the left-hand side at first glance, but the description of the

motifs by global features enables us to estimate the distribution of the sheet configurations

in a meaningful way.
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Using rules for conditional probabilities, we get

¾�¿!¾3ÀºÁ¢¾³ÂÀ Á�Ã+Á�Ã�ÂÄÁ ÅÇÆ ÈCÁ¢É¦Á¢Ê¥Ë
Ì ¾�¿!Å¶Æ ÈCÁ ÉFÁ¢Ê¥Ë�ÍÎ¾�¿!¾�À>Á¢¾�ÂÀ Á�Ã�ÁÏÃ�Â7Æ ÈCÁ ÉFÁ¢Ê�Á¢Å³Ë
Ì ¾�¿!Å¶Æ ÈCÁ ÉFÁ¢Ê¥Ë�Í

¾�¿!¾3ÀºÁ�Ã�Æ ÈCÁ¢É¦Á¢Ê�Á¢ÅÐË·ÍÎ¾B¿i¾ ÂÀ Á�Ã Â Æ ÈCÁ¢É¦Á¢Ê�Á¢Å�Á¢¾3ÀIÁ�Ã$Ë (9.19)

In the following, we model each of the three above terms separately.

The term Ñ ¿!ÒÐÆÔÓPÁ¢ÕbÁ¢Ö�Ë Analyzing the data, we found that

¾B¿iÅÇÆ ÈCÁ¢É¦Á¢Ê¥Ë Ì ¾�¿!Å¶Æ È;Á¢É×Ë (9.20)

is a reasonable assumption. It seems possible that if for example all loops were short, the

first strand of the sheet is slightly more likely to be in position 1 than in other positions,

since having no long loops might prohibit jumps in certain configurations. However, we

didn’t have enough data to establish this, and hence accepted the assumption made in equa-

tion (9.20). Figure 9.13 shows histograms of
Å

(scaled to probabilities) for sheets of sizeØÚÙÜÛ7Ý
from helical and non-helical proteins.

For
È Ì Ø

and
È ÌßÞ we have plenty of data, and clearly there are differences between

helical and non-helical proteins. Hence we estimated
¾�¿!Å¶Æ È Ì Ø Á¢É×Ë and

¾�¿!Å¶Æ È Ì�Þ Á¢É×Ë
directly from the data, for helical and non-helical proteins. For

Èáàãâ
the counts were

really low, and we combined the counts of helical and non-helical proteins. For those, we

see some differences in the distributions of the counts between sheets with even and odd

numbers of strands. Below we describe briefly which assumptions were made to finish the

modeling of the distribution. The modeling was done with the requirement in mind that the

model should also be usable for sheets with more than ten strands.
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Figure 9.13: Probability distribution of the position of the first strand in the sheet, split by
sheet size and helical status.

ä Even number of strands ( åFæèç�é�ê�ë ):
The pattern of the bars in Figure 9.13 for even å resembles a pattern such as

ìKí�î7î7î íÄï (9.21)

Under this assumptions we estimated ð í æòñó and ìÐôõï æ�öó with ÷ ø�æ óö . Henceì æ ùñiú and ï æ ûñiú , regardless of the number of í s.
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ü Odd number of strands ( ýÿþ������ ):
The pattern of the bars in Figure 9.13 for odd ý resembles a pattern such as

���	�
���
�
��� (9.22)

Under this assumptions we estimated � � þ��� and � � þ��� .
We try to clarify the above “pattern analysis” and other calculations by showing the fitted

probabilities of ������� ý������ for � þ �!�#" and ýFþ%$��'&#&#&(�#"#� in Table 9.5.

Table 9.5: The fitted probabilities for the position of the first strand in the sheet, split by
sheet size and helical status.

helical non-helical

1 2 3 4 5 1 2 3 4 5

5 0.370 0.340 0.290 0.570 0.330 0.100

6 0.380 0.240 0.380 0.570 0.190 0.240

7 0.375 0.125 0.375 0.125 0.375 0.125 0.375 0.125

8 0.400 0.167 0.167 0.267 0.400 0.167 0.167 0.267

9 0.250 0.125 0.250 0.125 0.250 0.250 0.125 0.250 0.125 0.250

10 0.400 0.111 0.111 0.111 0.267 0.400 0.111 0.111 0.111 0.267

The term )*�+)-,.�0/1�324��56��78�:9;� For fixed ý there are

n possibilities for �=<
n possibilities for >
2 possibilities for �?A@AB � possibilities for CD @
E �FHG possibilities for �
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Hence there are roughly IKJALNMPOHQSR bins in the term T�U�T=VXW'Y[Z Q\W�]^W�_`W�a-b , and some sim-

plification is needed. Below, we describe which assumptions we made and which bins we

collapsed after examining the data.

We first noted that we cannot assume conditional independence of TcV and Y , which was

formally tested using d�e -tests. For illustration, we show the counts of T(V and Y from

six-stranded sheets in Figure 9.14 without taking ] and _ into account. These counts are

shown in panel (a), together with their marginal distributions. If TcV and Y were independent,

then given the margins from panel (a), we would expect the counts to be roughly distributed

as shown in panel (b), which is clearly not the case.
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Figure 9.14: Counts of jumps and parallel pairs in six-stranded sheets in the database, plus
their marginal distributions. Preferred are motifs with all or no parallel neighbors, and one
or two jumps. Conditioning on the margins, hypothetical counts were calculated under the
assumption of independence.

Having established this, we investigated which assumptions are reasonable that allow us to

collapse bins. The data support the following decisions:
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f For g , we only discriminate between starting at the first position versus starting at

any other permissible position. g now takes on only two values: gihkj when starting

in the first position, and glh m otherwise.

f Certain motifs only happen when all loops between strands are more than ten residues

long. We categorized noh j if all loops between strands are long, and nph q
otherwise.

f The above stated fact was clearly observed in helical proteins. For non-helical pro-

teins we did not have enough data to establish a loop length dependency of rts and u
at all. We omitted n from the probability term for non-helical proteins.

Using the above described binning, we have sufficient data to model the term r�v�rtsXwxu[yz w�{^w�n`w�g}| for 5 and 6-stranded sheets v z h�~�w���| with r ���Aq!w#�'�#�(w z�� j�� and u���Aq!w#�#�#�Sw z�� jK� . For sheets of 7 or more strands this is unfortunately not the case, and since

the data prohibits more collapsing of variables we condition on, we cannot model every

single level of rSs and u . However, it appears that for large sheets ( z��k� ), the patterns in

the term r�v�r=s�wxu[y z w�{�w:n;w:g}| look somewhat similar (data not shown), although the number

of levels are different for different sheet sizes ( z��Hz for a sheet of z strands). For eachz���� we binned the z��Hz table of counts observed for r(s and u , given z w�{^w�n and g ,

into a ���6� table. Given the number of strands z there are z possibilities for the number

of parallel pairs, since r����Aq!w'�#�#�(w z�� j�� . The data suggest that we consider that we

leave the counts for q!w#jXw	m and z�� jXw z�� m
w z���� and create a “middle bin”, collapsing all

counts between 3 and z���� parallel pairs (see Table 9.6). The possible number of jumps

is also z , as u����Aq!w'�#�#�(w z�� jK� . Since we condition on the first strand being at position

1 or not, we know that the number of jumps cannot be zero if the first strand is not in

position 1. Hence we leave the bin for zero jumps as is. We split the remaining z-� j levels

( u�����jXw#�#�#�Sw z�� j�� ) into three bins (small medium and large number of jumps). The

number of levels going into the small (medium) [large] bin are 2 (2) [2] for z h � , they are
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Table 9.6: The binning used to collapse the ����� table of counts of jumps and parallel
pairs into a ���¡  table. ¢=£

J

1 2 3 4 5 6 7 1 2 3 4

7 0 1 2 3 4 5 6 0 1-2 3-4 5-6

8 0 1 2 3-4 5 6 7 0 1-3 4-5 6-7

9 0 1 2 3-5 6 7 8 0 1-3 4-6 7-8

10 0 1 2 3-6 7 8 9 0 1-3 4-6 7-9

3 (2) [2] for �¥¤�¦ , 3 (3) [2] for ��¤�§ , and 3 (3) [3] for ��¤©¨
ª (data not shown). This

binning allowed us to estimate
¢�«�¢S£X¬'­1® � ¬:¯�¬�°`¬�±-² for ��³�� .

The term ´ « ´¶µ· ¬:¸ µ ® ¹º¬:»�¬�¼;¬�½¾¬ ´ · ¬:¸(² : Checking the data, we decided that it is reason-

able to assume the following conditional independence:

¢*«+¢-¿£ ¬'­(¿À® � ¬�¯^¬�°`¬�±`¬�¢=£K¬'­t²
¤ ¢*«+¢ ¿£ ® � ¬�¯^¬�°`¬�±`¬�¢=£K¬'­t² � ¢�«Á­ ¿ ® � ¬�¯^¬�°`¬�±`¬�¢=£�¬'­t² (9.23)

The number of parallel pairs of strands in the sheet that are connected with a short loop of

not more than ten residues depend on � ¬�¯^¬�°`¬�¢ , but given � ¬�°`¬�¢ , the number does not

depend on
±

and
­

. Hence

¢�«�¢¶¿£ ® � ¬�¯�¬�°`¬�±`¬�¢Â£X¬'­c² ¤ ¢*«+¢-¿£ ® � ¬�¯^¬�°`¬�¢-²Ã¬ (9.24)

and analogous

¢�«Á­(¿
® � ¬�¯^¬�°`¬�±`¬�¢=£�¬'­t² ¤ ¢�«Á­(¿#® � ¬:¯�¬�°`¬'­c²ÃÄ (9.25)
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Let ÅXÅ be the number of parallel pairs in the sheet and ÆtÇ the number of short loops. Since

we have Æ^ÈÊÉ pairs of strands in the sheet, the lowest possible number of parallel pairs of

strands in the sheet that are connected with a short loop (say ÆtËÍÌ ) isÎcÏ�Ð�ÑAÒ(Ó Å�Å�Ô¥Æ(Ç\È Ó ÆÕÈÖÉÀ×4ØÚÙ�× (9.26)

The maximum of parallel pairs of strands in the sheet that are connected with a short loop

is

Û ÏÜÐ�ÝßÞcÓ Å�ÅcØ:Æ(Çà× (9.27)

Since

Æ=Ë Ì`áHâ Î Ø#ã#ã#ãcØ Ûcä Ø (9.28)

we are interested in modeling the number of parallel pairs connected with a short loop in

excess of
Î

(say å ). We have

å á�â Ù!Ø#ã#ã#ãSØ Û È Î ä ã (9.29)

The data support the following model:æ Ó æ Çç Ï è Ô Î:é Æ\Ø:ê�Ø�ë`Ø æ × Ï æ Ó æ Çç Ï�è Ô Î:é Æ\Ø�ê^Ø:Æ(Ç	ØìÅXÅÂ×
Ï æ Ó å Ï%è × (9.30)

with

å í î Ó Û È Î ØìÅ parpair
Ó Æ\Ø�ê�×ï× (9.31)

Analyzing the data, we concluded that for both helical and non-helical proteins the prob-

ability of the binomial term is not significantly different for different sheet sizes, and esti-

mated

Å parpair
Ó Æ\Ø�ê�× Ï Å parpair

Ó ê�× Ï ðñÍò Ù�ãôó�É if ê Ï ÙÙ�ãôõKö if ê Ï É (9.32)
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For the number of jumps on a short loop we used exactly the same reasoning to derive our

model. Let ÷ be the number of jumps in the sheet and ø�ù the number of short loops. Let ú
be the number of short jumps in excess of the lowest possible number of jumps on a short

loop. We have

û�üÁý ùÚþ�ÿ������ ø��	�
�	��� ý�
 þ û�ü�û ù� þ%ÿ����	� ø��	�
�:ø(ù�� ÷ 

þ û�ü ú þ%ÿ 
 (9.33)

with

ú � � ü���� � ��� jump
ü ø��	� 
�
 (9.34)

and

� þ ����� ü ÷ � ø(ù ��ü ø � ��
 ��! 
 (9.35)� þ �#"%$ ü ÷&�:ø(ù 
 (9.36)

However, in this case we found that the the binomial term does depend on the sheet size,

and derived

� jump
ü ø'�	� 
 þ

())))))* ))))))+
!-,/.&0 if � þ ! and ø þ 0 or 1!-,/032 if � þ � and ø þ 0 or 1!-, �54 if � þ ! and ø76 8!-,/. 4 if � þ � and ø76 8

(9.37)

Summarizing the terms and the model we developed for sheets with more than four strands,
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we have 9�:;9
<&=
9?>
< =A@-=A@

>
=	BDC E'=	FG=	HJI

K
9�:
BLC E�=	F
=	HJINM

9#:O9
<P=
9?>
< =A@-=A@

>
C E�=	F
=	H�=	B?I

K
9�:
BLC E�=	F
=	HJINM

9#:O9
<P=A@NC E�=	F
=	H�=	BQIRM9�:;9 >

< =A@
>
C E�=	F
=	H�=	B�=

9
<3=A@�I

K
9�:
BLC FG=�ESINM

9#:O9
<P=A@NC E�=	F
=	H�=	BQIRM9�:;9?>

< C E�=	F
=	H�=
9
<�ITM

9#:
@
>
C E�=�FG=	H�=A@UI (9.38)

with 9#:
SC CSD =�FG=	HJI K

9#:
SC C E'=	FG=�HRI K

9#:O9
<&=
9 >
< =A@V=W@

>
=	BLC E�=	F
=	HJIXPY3Z [

:O9
<&=
9 >
< =W@V=A@

>
=�BQI = (9.39)

Example: A fairly common motif for a five-stranded sheet in small proteins, such as the

SH3 domain of spectrin (1aey), is shown in Figure 9.15.

NC

Figure 9.15: The sheet motif of the SH3 domain of spectrin.

The SH3 domain of spectrin is a non-helical protein with 62 residues. The loop lengths
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in sequence are 18, 5, 2 and 3 residues. The strands along the sequence form anti-parallel

neighbors in the sheet, except for strand 5, which jumps and forms an anti-parallel strand

pair with the first strand. The sheet in the protein is quite warped, which allows the jump

between strands 4 and 5 with a loop of only 3 residues.

We now score this motif, using the above explained model. In our notation, we have \^]_a`	b ]dc `	e ]gfih ` c ` c ` c&j `	k ]ml `	npo ]dc `Aq ]rh `	ntso ]dc `AqUs ]rh . Since this configuration

is the only motif in the f nuo&`�n so `Aq-`Aq s `	k j bin, we have

n f kLv \ `	b j = 0.330n f npo&`AqRv \ `	bG`	e�`	k j = 0.396n f n so v \ `	b
`	e�`	npo j = 1.000n f qUswv \ `	bG`	e�`Aq j = 0.250

x
0.033

The score of yVz{y&| doesn’t seem to be very high, but given that there are 960 possible motifs,

this is more than 31 times higher than “background frequency”!

9.2.3 Outlook

The probabilities we fit in this chapter reflect what we saw in the database. To assess

the usefulness of our model for sheet configurations, we need to determine how much it

improves the protein structure prediction, i. e. which impact it has on the “quality” of a set

of decoys we generate. For example, if we use the model to select decoys from a larger

set, we can compare the percentage of near-native proteins in the entire decoy set versus

the percentage of near-native proteins in a subset of decoys selected by making use of this

scoring function. We currently use the model in CASP4, and plan to thoroughly assess its

usefulness after the structures of the targets have been published.
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