Multiple Random Variables

We essentially always consider multiple random variables at once.

The key concepts: Joint, conditional and marginal distributions, and independence of RVs.

Let X and Y be discrete random variables.

Joint distribution:
$$p_{XY}(x,y) = \Pr(X = x \text{ and } Y = y)$$

Marginal distributions:
$$p_X(x) = \Pr(X = x) = \sum_y p_{XY}(x,y)$$
$$p_Y(y) = \Pr(Y = y) = \sum_x p_{XY}(x,y)$$

Conditional distributions:
$$p_{X|Y=y}(x) = \Pr(X = x \mid Y = y) = \frac{p_{XY}(x,y)}{p_Y(y)}$$
Example

Sample a couple who are both carriers of some disease gene.

\[X = \text{number of children they have} \]
\[Y = \text{number of affected children they have} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>0.160</td>
<td>0.248</td>
<td>0.124</td>
<td>0.063</td>
<td>0.025</td>
<td>0.014</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.082</td>
<td>0.082</td>
<td>0.063</td>
<td>0.034</td>
<td>0.024</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.014</td>
<td>0.021</td>
<td>0.017</td>
<td>0.016</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[\text{Pr}(Y = y \mid X = 2) \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>0.160</td>
<td>0.330</td>
<td>0.220</td>
<td>0.150</td>
<td>0.080</td>
<td>0.060</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.082</td>
<td>0.082</td>
<td>0.063</td>
<td>0.034</td>
<td>0.024</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.014</td>
<td>0.021</td>
<td>0.017</td>
<td>0.016</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[\text{Pr}(Y=y \mid X=2) \]
Pr(X = x | Y = 1)

<table>
<thead>
<tr>
<th>x</th>
<th>p_{X,Y}(x,y)</th>
<th>\cdots</th>
<th>p_{XY}(x,y)</th>
<th>p_{Y}(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.160</td>
<td>0.248</td>
<td>0.124</td>
<td>0.063</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.082</td>
<td>0.082</td>
<td>0.063</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.014</td>
<td>0.021</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.003</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

p_{X}(x) = 0.160 0.330 0.220 0.150 0.080 0.060

Pr(X=x | Y=1) = Pr(X=x) Pr(Y=y)

Independence

Random variables X and Y are independent if

\[p_{X,Y}(x,y) = p_{X}(x) p_{Y}(y) \]

for every pair x,y.

In other words/symbols:

\[\Pr(X = x \text{ and } Y = y) = \Pr(X = x) \Pr(Y = y) \]

for every pair x,y.

Equivalently,

\[\Pr(X = x \mid Y = y) = \Pr(X = x) \]

for all x,y.
Example

Sample a random rat from Baltimore.

\[X = 1 \text{ if the rat is infected with virus A, and } = 0 \text{ otherwise} \]
\[Y = 1 \text{ if the rat is infected with virus B, and } = 0 \text{ otherwise} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(p_{XY}(x,y))</th>
<th>(p_Y(y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.72 0.18</td>
<td>0.90</td>
</tr>
<tr>
<td>1</td>
<td>0.08 0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>(p_X(x))</td>
<td>0.80 0.20</td>
<td></td>
</tr>
</tbody>
</table>

Continuous random variables

Continuous random variables have joint densities, \(f_{XY}(x,y) \).

\[\text{The marginal densities are obtained by integration:} \]
\[f_X(x) = \int f_{XY}(x,y) \, dy \quad \text{and} \quad f_Y(y) = \int f_{XY}(x,y) \, dx \]

\[\text{Conditional density:} \]
\[f_{X|Y=y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)} \]

\[X \text{ and } Y \text{ are independent if:} \]
\[f_{XY}(x,y) = f_X(x) \, f_Y(y) \quad \text{for all } x, y. \]
The bivariate normal distribution
More jargon:

Random variables $X_1, X_2, X_3, \ldots, X_n$ are said to be independent and identically distributed (iid) if

\rightarrow they are independent,

\rightarrow they all have the same distribution.

Usually such RVs are generated by

\rightarrow repeated independent measurements, or

\rightarrow random sampling from a large population.

Means and SDs

\rightarrow Mean and SD of sums of random variables:

$E(\sum_i X_i) = \sum_i E(X_i)$

no matter what

$SD(\sum_i X_i) = \sqrt{\sum_i \{SD(X_i)\}^2}$

if the X_i are independent

\rightarrow Mean and SD of means of random variables:

$E(\sum_i X_i / n) = \sum_i E(X_i)/n$

no matter what

$SD(\sum_i X_i/n) = \sqrt{\sum_i \{SD(X_i)\}^2}/n$

if the X_i are independent

\rightarrow If the X_i are iid with mean μ and SD σ:

$E(\sum_i X_i / n) = \mu$ and $SD(\sum_i X_i / n) = \sigma/\sqrt{n}$
Example

Independent

\[SD(X + Y) = 1.4 \]

Positively correlated

\[SD(X + Y) = 1.9 \]

Negatively correlated

\[SD(X + Y) = 0.4 \]