1. Draw two cards (without replacement) from a well-shuffled deck. Calculate the following.

(a) \(\Pr(2\text{nd card is an ace}) \)
\[
\Pr(2\text{nd card is an ace}) = \Pr(1\text{st card is an ace}) = \frac{4}{52} = \frac{1}{13} \approx 7.7\%.
\]

(b) \(\Pr(2\text{nd card is an ace} \mid 1\text{st card is an ace}) \)
\[
\Pr(2\text{nd card is an ace} \mid 1\text{st card is an ace}) = \frac{3}{51} \approx 5.9\%.
\]

(c) \(\Pr(2\text{nd card is an ace} \mid 1\text{st card is not an ace}) \)
\[
\Pr(2\text{nd card is an ace} \mid 1\text{st card is not an ace}) = \frac{4}{51} \approx 7.8\%.
\]

(d) \(\Pr(\text{both cards are aces}) \)
\[
\Pr(\text{both cards are aces}) = \Pr(1\text{st card is ace}) \times \Pr(2\text{nd card is ace} \mid 1\text{st card is ace}) = \frac{4}{52} \times \frac{3}{51} \approx \frac{4}{1000}.
\]

(e) \(\Pr(2\text{nd card is an ace} \mid 1\text{st card is a heart}) \)
\[
\Pr(2\text{nd card is an ace} \mid 1\text{st card is a heart}) = \frac{4}{52} = \frac{1}{13} \approx 7.7\% \text{ (these are independent)}.
\]

To spell it out completely:
\[
\Pr(2\text{nd card is an ace} \mid 1\text{st card is a heart}) = \Pr(1\text{st card is a heart and 2nd card is an ace}) \div \Pr(1\text{st card is a heart}) = \\
\{ \Pr(1\text{st card is ace of hearts and 2nd card is an ace}) + \\
\Pr(1\text{st card is heart but not ace and 2nd card is an ace}) \} \div (1/4) = \\
(1/13) \approx 7.7\%.
\]

(f) \(\Pr(\text{get a pair}) \) (i.e., the two cards have the same face).
\[
\Pr(\text{get a pair}) = \Pr(\text{AA or 22 or 33 or 44 or ... or QQ or KK}) = \\
\Pr(\text{AA}) + \Pr(\text{22}) + \Pr(\text{33}) + ... + \Pr(\text{KK}) = 13 \times [\frac{4}{52} \times \frac{3}{51}] = \frac{3}{51} \approx 5.9\%.
\]

Alternatively, \(\Pr(\text{get a pair}) = \Pr(\text{2nd card has same face as first card}) = \frac{3}{51} \approx 5.9\% \).
2. The seeds in Mendel’s pea plants were either smooth or wrinkled, the result of a single gene with the smooth allele (S) dominant to the wrinkled allele (s). Similarly, the seeds were either yellow or green, with yellow (Y) dominant to green (y). The genes were unlinked.

The F_1 hybrid seeds produced from crossing two pure-breeding lines (one with smooth, yellow seeds; the other with wrinkled, green seeds) are all smooth and yellow.

Consider growing up an F_1 seed, selfing it, and the taking a random F_2 seed.

(a) \(\Pr(\text{F}_2 \text{ seed is smooth}) \)
\[
\Pr(\text{F}_2 \text{ seed is smooth}) = 1 - \Pr(\text{F}_2 \text{ seed is wrinkled}) = 1 - (1/2) \times (1/2) = 3/4 = 75%.
\]

(b) \(\Pr(\text{F}_2 \text{ seed is green}) \)
\[
\Pr(\text{F}_2 \text{ seed is green}) = 1/4 = 25%.
\]

(c) \(\Pr(\text{F}_2 \text{ seed is smooth and green}) \)
\[
\Pr(\text{F}_2 \text{ seed is smooth and green}) = (3/4) \times (1/4) = 3/16 \approx 19%.
\]

(Since the two genes are unlinked, “F_2 seed is smooth” and “F_2 seed is green” are independent.)

(d) \(\Pr(\text{F}_2 \text{ seed has genotype SS}) \)
\[
\Pr(\text{F}_2 \text{ seed has genotype SS}) = 1/4 = 25%.
\]

(e) \(\Pr(\text{F}_2 \text{ seed has genotype SS | it is smooth}) \)
\[
\Pr(\text{F}_2 \text{ seed has genotype SS | it is smooth}) = \frac{\Pr(\text{F}_2 \text{ seed has genotype SS and is smooth})}{\Pr(\text{F}_2 \text{ seed is smooth})} = \frac{(1/4)}{(3/4)} = 1/3 = 33%.
\]

3. Consider an urn with 3 red balls and 2 blue balls.

(a) Draw 2 balls with replacement.

i. \(\Pr(\text{both balls are red}) \)
\[
\Pr(\text{both balls are red}) = (3/5) \times (3/5) = 9/25 = 36%.
\]

ii. \(\Pr(\text{the two balls are the same color}) \)
\[
\Pr(\text{the balls are the same color}) = \Pr(\text{both balls are red}) + \Pr(\text{both balls are blue}) = (3/5) \times (3/5) + (2/5) \times (2/5) = 9/25 + 4/25 = 13/25 = 52%.
\]

(b) Repeat the above when the draws are without replacement.

i. \(\Pr(\text{both balls are red}) \)
\[
\Pr(\text{both balls are red}) = (3/5) \times (2/4) = 6/20 = 30%.
\]

ii. \(\Pr(\text{the two balls are the same color}) \)
\[
\Pr(\text{the balls are the same color}) = \Pr(\text{both balls are red}) + \Pr(\text{both balls are blue}) = (3/5) \times (2/4) + (2/5) \times (1/4) = 6/20 + 2/20 = 8/20 = 40%.
\]
4. Roll two fair, six-sided dice (or roll one fair, six-sided dice twice).

(a) \(\Pr(\text{both dice are 1}) \)

\[
\Pr(\text{both are 1}) = \Pr(1\text{st die is 1 and 2nd die is 1}) = \Pr(1\text{st die is 1}) \times \Pr(2\text{nd die is 1}) = (1/6) \times (1/6) = 1/36 \approx 2.8%.
\]

(b) \(\Pr(\text{at least one die is a 1}) \)

We consider three different approaches to calculating this probability.

i. There are 36 different possible outcomes and they are equally likely. 11 of these outcomes satisfy the condition, “at least one die is a 1.” Thus the probability is \(11/36 \approx 31\%\).

ii. Let \(A = \{ 1\text{st die is a 1} \} \) and \(B = \{ 2\text{nd die is a 1} \} \).

\[
\Pr(A \text{ or } B) = \Pr(A) + \Pr(B) - \Pr(A \text{ and } B) = 1/6 + 1/6 - 1/36 = 11/36 \approx 31\%.
\]

iii. \(\Pr(\text{at least one 1}) = 1 - \Pr(\text{no 1's}) = 1 - (5/6) \times (5/6) \times (5/6) = 1 - 25/36 = 11/36 \approx 31\%. \)

5. (A sort of famous 17th century French gambling problem.)

Which of the following is more likely “at least one 1 in 4 rolls of a six-sided die” or “at least one pair of 1’s (snake-eyes) in 24 rolls of a pair of six-sided dice?” Or are they equally likely?

(a) \(\Pr(\text{at least one 1 in 4 rolls of a 6-sided die}) \)

\[
\Pr(\text{at least one 1 in 4 rolls of a 6-sided die}) = 1 - \Pr(\text{no 1's in 4 rolls}) = \\
1 - \Pr(1\text{st is not 1}) \times \Pr(2\text{nd is not 1}) \times \Pr(3\text{rd is not 1}) \times \Pr(4\text{th is not 1}) = \\
1 - (5/6)^4 \approx 52\%.
\]

(b) \(\Pr(\text{at least one pair of 1's in 24 rolls of a pair of 6-sided dice}) \)

\[
\Pr(\text{at least one pair of 1's in 24 rolls of a pair of 6-sided dice}) = \\
1 - \Pr(\text{no pairs of 1's in 24 rolls of a pair of dice}) = \\
1 - \{\Pr(1\text{st roll is not a pair of 1's})\}^{24} = \\
1 - (35/36)^{24} \approx 49\%.
\]