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Guilt beyond a reasonable doubt
David Altshuler & Mark Daly

Genome-wide association studies, exemplified by the Wellcome Trust Case Control Consortium and follow-up 
studies, have identified dozens of common variants robustly associated with common diseases, providing new clues 
about genetic architecture in humans. Finding all such loci, and fully defining genotype-phenotype correlation, will 
be a key to translating initial clues into pathophysiological understanding and clinical prediction.

Genetic screens are used to explore biological 
mechanisms in vivo, unbiased by prior assump-
tions about the DNA alterations responsible 
for phenotypic variation. In model systems, 
genome-wide, phenotype-driven screens typi-
cally identify many genes of unknown func-
tion, ultimately leading to a broad and deep 
understanding of mechanism.

In humans, success with phenotype-
driven, genome-wide screening for inher-
ited disease mutations has been limited to 
mendelian traits. Human phenotypic varia-
tion is largely polygenic rather than mono-
genic, however, and thus the vast majority 
of heritable factors for common human 
diseases remain unknown. Genome-wide 
association studies (GWASs) have been pro-
posed as a new approach to ‘forward genet-
ics’ in humans, but until recently they were 
untested for gene discovery.

The Wellcome Trust Case Control 
Consortium (WTCCC) now reports in 
Nature the largest GWAS thus far1, scan-
ning 17,000 individuals for seven diseases, 
with two follow-up studies reported in this 
issue, Todd et al. on type 1 diabetes (page 
857) and Parkes et al. on Crohn’s disease 
(page 830), and another on type 2 diabetes 
published elsewhere2–4. Together with other 
publications, statistically compelling asso-
ciations have been identified this year by 
GWASs across a variety of diseases, including 

Crohn’s disease, obesity, type 1 and type 2 
diabetes, coronary heart disease and pros-
tate and breast cancer (see Supplementary 
Note for additional references). In multiple 
diseases, five to ten independent genomic 
regions have been identified and confirmed. 
After years as ‘Keystone Cops’, complex trait 
geneticists can now find culprits not previ-
ously suspected and establish guilt beyond a 
reasonable doubt.

The current crop of successful studies 
shares five key features. First, they all use 
high-density SNP genotyping arrays (based 
on the Human Genome Project, the SNP 
Consortium and the HapMap Project) and 
analytical methods built on the synthesis of 
population genetics, statistical genetics and 
epidemiology. Second, the clinical investiga-
tors had the foresight to collect large patient 
samples that included detailed phenotype 
information, DNA samples and informed 
consent for genetic research. Third, they 
have paid careful attention in their design 
and analysis to minimizing bias (coming 
from, for example, population substructure, 
genotyping errors or variability in DNA 
quality and laboratory processing). Fourth, 
they have applied statistical thresholds 
appropriate to genome-wide searches. With 
∼10 million common SNPs to be tested 
genome-wide, and few true associations for 
which power is adequate, the prior prob-
ability of a true association is low—and the 
P value required to declare significance is 
correspondingly stringent (for further dis-
cussion of power in the WTCCC, see pages 
815–816 in this issue). Finally, they have 
validated putative ‘positives’ in indepen-
dent samples (preferably using independent 
genotyping technologies). Here, ‘replication’ 

refers to association of the same allele to the 
same trait under the same genetic model5.

What has been learned?
The most important outcome of these studies 
is the discovery of new biological associations 
in genes or regions previously unrecognized 
to have a role in each disease. In some cases, 
links have been newly established between 
diseases and well-studied pathways (such as 
age-related macular degeneration and the 
complement pathway, Crohn’s disease and 
autophagy). In many cases, however, asso-
ciated regions contain genes of unknown 
function or do not contain annotated genes. 
Typical of genetic screens in model systems 
and mendelian genetics, an unbiased genetic 
approach highlights genes not previously 
identified.

Second, new mechanistic connections have 
been uncovered between diseases. Examples 
include SNPs in IL23R with Crohn’s disease6

and psoriasis7, PTPN2 with Crohn’s disease 
and type 1 diabetes1, PTPN22 and IL2RA
with type 1 diabetes and rheumatoid arthri-
tis1, 8q24 with prostate cancer and breast 
cancer8 (see also Stacey et al. (page 865) and 
Hunter et al. (page 870), in this isue) and 
nearby SNPs in a noncoding region of 9p 
near CDKN2B and CDKN2A with type 2 dia-
betes4,9,10 and coronary heart disease1,11,12.

Third, the studies have found a substantial 
fraction of associations outside of transcrip-
tion units. This is unsurprising, as coding 
sequences make up less than half of the evo-
lutionarily conserved DNA in the human 
genome. Investigation of functional noncod-
ing associations will be critical to unraveling 
molecular and cellular roles of noncoding 
functional DNA in humans.
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Fourth, the results indicate that individual 
SNPs have very modest effects in the popula-
tion: associated SNPs rarely show odds ratios 
of >2.0 (CFH in age-related macular degen-
eration), and more typically, odds ratios are 
<1.5. Undiscovered common variants are 
likely to have similar or smaller effects (or 
are in low linkage disequilibrium with SNPs 
on arrays).

Fifth, strong evidence is lacking for 
epistasis among associated SNPs, despite 
joint analysis in large cohorts. Similarly, 
little evidence has been obtained for strong 
association of disease-associated SNPs to 
homogeneous disease subtypes, or quanti-
tative ‘endo-phenotypes’ (such as glycemic 
and obesity traits in type 2 diabetes). Sixth, 
despite substantial progress, the vast major-
ity of heritability remains unexplained. To 
some extent, the magnitude of the associa-
tions discovered is currently underestimated, 
because the full spectrum of causal variation 
at each locus has yet to be defined by deep 
sequencing. 

A less obvious but still important impli-
cation is that many more such loci must 
remain to be found. Even for the confirmed 
associations identified, statistical power 
was limited in the genome-wide scans that 
found them (Table 1). Even in the large 
WTCCC study (which included 2,000 cases 
and 3,000 controls)1, the power to obtain a 
genome-wide P < 10−8 was <1% for many 
of the confirmed associations discovered by 
comparison across studies and by replication 
studies. This explains the tendency of differ-
ent GWASs to find partially overlapping sets 
of associations and makes it implausible that 
most regions harboring relevant associations 
have been identified.

Where to from here?
These papers provide proof-of-concept that 
GWASs can identify previously unknown 
causal loci. The next steps are to obtain a full 
picture of genotype-phenotype correlation at 

these loci and to find remaining loci. A more 
complete picture will be critical to under-
standing the disease mechanisms underlying 
the associations and to assess SNPs for clini-
cal management.

Rarely will the SNPs used to discover each 
locus prove causal; exhaustive sequencing 
of each region will be needed to discover 
all causal mutations and fully define geno-
type-phenotype correlation. In many cases, 
multiple independent common variants13

and rare variants14 will be found at the same 
locus. Sequencing of exons in each associ-
ated region may identify coding mutations of 
stronger effect, which may be easier to study 
in vitro and in individual subjects. In addi-
tion, identification of ‘smoking gun’ causal 
coding mutations may help prove which gene 
at each locus is responsible for the associa-
tion and may, in aggregate, increase the over-
all predictive value of genotype.

A testable hypothesis suggested by the 
power calculations in Table 1 is that a more 
extensive set of loci that influence each dis-
ease may be found by GWASs of greater 
power (or by combining existing GWASs). 
Common sense dictates that a complete set 
of susceptibility loci will provide greater 
biological insight than an incomplete set. 
Moreover, the biological insight provided by 
any locus is not necessarily related to the size 
of the effect of common variants used to dis-
cover it, nor is it predictive of the combined 
effect of all rare and common variants at 
that locus. Thus, the discovery of additional 
causal loci should be pursued, followed by 
exhaustive sequencing to fully define geno-
type-phenotype correlation.

Some loci may be missed by well-powered 
GWASs because none of the causal variants 
are in linkage disequilibrium with SNPs on 
the genotyping arrays. Some of these may 
be found by genome-wide measurement of 
copy number variation. Thus, these  GWASs 
are the first in a series of genome-wide, 
phenotype-driven approaches in humans, 

which, when integrated, will provide a more 
complete picture of human phenotype varia-
tion and inborn susceptibility to disease.

Ultimately, the value of this endeavor must 
be measured in the resulting clinical and bio-
logical advances. Predictive testing will have 
value in cases in which effective preventa-
tive interventions exist, and when modest 
changes in risk improve clinical decision-
making. Achieving a clinical benefit will be 
challenged by the modest magnitude of SNP 
effects and by the likelihood that genetic tests 
will be made available (and aggressively pro-
moted) before or instead of mounting clini-
cal trials to evaluate the value of genetically 
enabled decision-making.

New tools and frameworks will be required 
to translate genetic insights into knowledge 
of disease pathogenesis and new therapeu-
tics: there is little precedent for functional 
analysis based on genes discovered by poly-
genic inheritance, noncoding DNA changes 
and quantitative alteration of gene function. 
This quest is worth mounting, however, as it 
is in pursuit of culprits whose guilt in human 
disease has been established beyond a rea-
sonable doubt.

Note: Supplementary information is available on the 
Nature Genetics website.
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Table 1  Power of GWASs to discover several recently defined associations 
Power in a ‘typical’ GWAS

(1,000 cases/1,000 controls)

Power in WTCCC

(2,000 cases/3,000 controls)
Sample size required 

for 90% power, 
P < 10–8Gene Disease 1.0 × 10–2 1.0 × 10–4 1.0 × 10–8 1.0 × 10–2 1.0 × 10–4 1.0 × 10–8 RAF RR

ATG16L1 CD >0.99 >0.99 0.74 >0.99 >0.99 >0.99 2,430 0.5 1.5

IRGM CD 0.67 0.19 <0.01 0.98 0.8 0.16 10,902 0.075 1.4

PTPN2 T1D, CD 0.37 0.05 <0.01 0.82 0.34 <0.01 19,754 0.17 1.2

IL2 T1D 0.11 <0.01 <0.01 0.31 0.04 <0.01 54,600 0.26 1.1

9p21 MI 0.97 0.87 0.09 >0.99 >0.99 0.86 5,066 0.47 1.25

9p21 T2D 0.36 0.05 <0.01 0.79 0.31 <0.01 20,220 0.83 1.2

CDKAL1 T2D 0.35 0.04 <0.01 0.79 0.31 <0.01 20,700 0.31 1.15

Approximate risk models estimated from published replication studies and power computed using the Genetic Power Calculator15 (http://pngu.mgh.harvard.edu/~purcell/gpc/). Sample size 
calculation assumes equal numbers of cases and controls. RAF, risk allele frequency; RR, relative risk; CD, Crohn’s disease; T1D, type 1 diabetes; MI, myocardial infarction; T2D, type 2 diabetes; 
WTCCC, Wellcome Trust Case Control Consortium.
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Conjuring SNPs to detect associations
Andrew G Clark & Jian Li

Human genome-wide association studies pose a challenge in identifying significant disease associations from nearly 
half a million statistical tests. A new report describes an especially promising approach, recently applied to the 
Wellcome Trust Case Control Consortium data sets, that uses the correlated structure of genomic variation to impute 
genotypes at missing sites and to test association with both observed and imputed SNPs.
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Genetic mapping has always relied on statis-
tical inference, but this enterprise has never 
been so utterly dependent on rigorous ana-
lytical methods as it is with genome-wide 
association studies (GWASs). For each of the 
nearly 500,000 SNPs in the human genome 
scored by widely used genotyping platforms 
for GWASs, it is possible to perform a sim-
ple statistical test of association with dis-
ease state. Even if the null hypothesis of no 
association were true for all SNPs, we would 
expect some of these tests to provide nomi-
nal P values on the order of 10P values on the order of 10P −6. In order to 
avoid false-positive calls, we need to identify 
SNPs for which the P values are even lower. P values are even lower. P
We could increase the power to appropriately 
reject the null hypothesis (that is, to correctly 
infer that a SNP is truly associated with dis-
ease) by elevating the sample size or restrict-
ing attention to intermediate-frequency SNPs 
and by being judicious in our choice of test. 
In this issue, Marchini et al.1 (page 906) show 
that thoughtful application of population 
genetic principles and use of HapMap data 
can provide an additional source of power 
for association tests. They have successfully 
applied these methods to the Wellcome Trust 
Case Control Consortium (WTCCC) data2

and have identified a collection of new genes 
associated with seven complex medical dis-
orders (see pages 813–815 of this issue for 
discussion of the WTCCC studies).

Imputation to boost power
The more genetic data that we have for each 
individual, the greater the chance of finding 
variants that influence disease risk directly. 

This is true even if some of those variants are 
statistically inferred or ‘imputed’ from the 
observed genetic data. To see how imputation 
can give a boost in the power of tests of asso-
ciation, consider the situation where a SNP 
that has a direct effect on disease risk is in the 
HapMap set of SNPs but is not on the 500K 
genotyping platform used in a given GWAS 
(Fig. 1a). In this case, if only the observed 
marker SNP were used, the association test 
would be weakened by any observed depar-
ture from perfect linkage disequilibrium 
between the observed SNP and the unob-
served risk-enhancing SNP. This contrasts 
with the hypothetical case (Fig. 1b) in which 
the risk-enhancing SNP is observed directly. 
If no other genetic variation in this genomic 
region influences risk, then the test based on 
this SNP alone will be the most powerful. 
One can see that such a direct test provides 
a greater chance to detect a significant asso-
ciation. Because we often do not observe the 
risk-enhancing SNP directly, imputation can 
be used to close some of the gap between 
these two extremes. High linkage disequi-
librium in the human genome means that 
we can impute the unobserved genotype of 
many of the missing SNPs with surprisingly 
high accuracy (>98% in many cases). This 
accuracy will be reduced in regions of the 
genome with unusually high recombination 
rates (for example, SNPs within hotspots). 
The example in Figure 1c is for an impu-
tation accuracy of 99%, and it is clear that 
the probability of detecting the association 
is much greater than in Figure 1a, where we 
did not apply imputation. Marchini et al.1

and Scott et al.3 use multiple flanking SNPs 
to impute missing SNP genotypes, and they 
find that the P values for tests of association P values for tests of association P
are often an order of magnitude lower with 
the imputed SNPs than with the observed 
SNP data only.

This may seem like sleight of hand, 
because there seems to be a gain in power 
without any additional information, as the 
missing SNPs are imputed from the observed 
marker SNPs. One might think that tests 
based only on haplotypes of the observed 
SNPs4–6 would do just as well, because they, 
after all, are what allows prediction of the 
missing SNPs. But the method does incor-
porate haplotype information of observed 
SNPs along with the linkage disequilibrium 
structure of the full HapMap sample to 
perform the imputation. By leveraging the 
observed marker SNPs and by predicting 
missing data from the pattern of linkage 
disequilibrium in the HapMap data, we get 
the best of both worlds.

Testing association
In a GWAS, the meaning of a P value becomes P value becomes P
challenged in the context of so many simul-
taneous tests. One solution to this problem 
is to calculate the false discovery rate7,8; 
however, this approach was developed for 
testing a single hypothesis, as opposed to 
simultaneously testing a battery of SNPs 
associated with a disease. Association test-
ing can be done with standard frequentist 
methods like logistic regression, where the 
model may specify either allelic or genotypic 
effects. Likelihood methods can be used to 
deal with the uncertainty in the imputations 
of missing genotype data. Bayesian methods 
also allow inference of probability of asso-
ciation conditional on observed genotype 
data and can accommodate imputed geno-
types easily. Marchini et al.1 make use of one 
useful measure of the relative likelihood of 
association, the Bayes factor, a term closely 
related to likelihood ratio and defined in this 
case as the probability of the observed data, 
given that the association is real, divided by 
the probability of the observed data under 
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