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SUMMARY

In most microarray technologies, a number of critical steps are required to convert raw intensity mea-
surements into the data relied upon by data analysts, biologists, and clinicians. These data manipulations,
referred to as preprocessing, can influence the quality of the ultimate measurements. In the last few years,
the high-throughput measurement of gene expression is the most popular application of microarray tech-
nology. For this application, various groups have demonstrated that the use of modern statistical method-
ology can substantially improve accuracy and precision of the gene expression measurements, relative to
ad hoc procedures introduced by designers and manufacturers of the technology. Currently, other appli-
cations of microarrays are becoming more and more popular. In this paper, we describe a preprocessing
methodology for a technology designed for the identification of DNA sequence variants in specific genes
or regions of the human genome that are associated with phenotypes of interest such as disease. In par-
ticular, we describe a methodology useful for preprocessing Affymetrix single-nucleotide polymorphism
chips and obtaining genotype calls with the preprocessed data. We demonstrate how our procedure im-
proves existing approaches using data from 3 relatively large studies including the one in which large
numbers of independent calls are available. The proposed methods are implemented in the package oligo
available from Bioconductor.
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1. INTRODUCTION

The genotyping platform provided by Affymetrix interrogates hundreds of thousands of human single-
nucleotide polymorphisms (SNPs) on a microarray. A simple description of the method is the following:
DNA is obtained and fragmented at known locations so that the SNPs are far from the ends of these
fragments, the fragmented DNA is amplified with a polymerase chain reaction (PCR), and the sample
is labeled and hybridized to an array containing probes designed to interrogate the resulting fragments.
There are currently 3 products available from Affymetrix: an array covering approximately 10 000 SNPs
(GeneChip Human Mapping 10K), a pair of arrays covering approximately 100 000 SNPs (GeneChip
Human Mapping 50K Xba array and Hind Array), and a pair of arrays covering approximately 500 000
SNPs (GeneChip Human Mapping 250K Nsp Array and Sty Array). These are referred to as the 10K,
100K, and 500K chips, respectively. The 100K chips have become widely used (Uimari and others, 2005;
Nannya and others, 2005; Huang and others, 2006). The main application of this technology is genotyping
SNPs at a high-throughput rate. However, various groups have used the arrays for other applications such
as copy number estimation (Huang and others, 2006; Nannya and others, 2005). In this paper, we focus
on preprocessing algorithms that can improve downstream analysis for any of these applications. We
illustrate these using the main application of this technology, genotyping.

We start this section with a short description of the SNP chip feature-level data. A detailed description
is available from Kennedy and others (2003). Each SNP on the array is represented by a collection of
probe quartets. In the 100K arrays, SNP chips probe sets are composed of 40 features. As with expression
arrays, the features are defined by 25-mer oligonucleotide molecules referred to as probes. There are 20
perfect match (PM) paired with 20 mismatch (MM) probes. As in expression arrays, these are created
by changing the middle base pair. A difference with expression arrays is that the PM features differ in
3 important ways: First, 2 alleles are interrogated (for most SNPs only 2 alleles are observed in nature).
These are denoted by A and B and divide the probes into 2 groups of equal size. For each PM probe
representing the A allele, there is an allele B that differs by just 1 base pair (the SNP). Second, features
are included to represent the sense and antisense strands. This difference divides the probes into 2 groups
that are not necessarily of the same size. Finally, for each allele/strand combination, various features
are added by changing the position of the SNP within the probe. In summary, we have 4 discriminating
characteristics: PM or MM, allele A or B, sense (−) or antisense (+), and SNP location. Our methodology
makes no use of the MM features mainly because we see a trend in the company no longer to use this type
of probe. Note that an array with no MMs can accommodate features for twice as many SNPs.

The general goal of preprocessing for SNP arrays is to normalize and summarize feature intensities
and predict the genotype AA, AB, or BB. These predictions will be referred to as “genotype calls.” A
measure of confidence is also desired. Typically, samples not achieving a specific confidence cutoff at
a given SNP receive no calls at that SNP. In this paper, we propose a preprocessing methodology that
greatly improves the accuracy of genotyping calls over existing methods. We propose a modular approach
in which preprocessing is done in a first step, and a genotyping algorithm is defined for preprocessed data.
To illustrate this and to motivate our methodology, we use 3 100K data sets: 1) The HapMap (CEPH)
Trio data set, consisting of 30 trios, which is also part of the International HapMap Project and, therefore,
has precise genotype calls that can be used as “gold standard,” 2) a data set comprised of the same DNA
hybridized to 53 arrays, and 3) a data set consisting of 22 randomly selected samples from the data
described in Slater and others (2005). We will refer to these data sets as the Lab 1, Lab 2, and Lab 3 data
sets. The Lab 1 data set will also be referred to as the HapMap data.

The paper is organized as follows: Section 2 describes the previous work in preprocessing and geno-
typing methods, while Section 3 describes how we normalize and summarize the feature-level data. In
Section 4, we show how the normalization we use motivates a useful genotyping algorithm, while in
Sections 5 and 6 we present and discuss our results.
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2. PREVIOUS WORK AND MOTIVATION

The principal goal of preprocessing is to summarize the feature intensities into quantities that can be used
to discriminate genotype classes. We use a general notation in which θA and θB are the logarithms (base
2) of quantities proportional to the amount of DNA in the target sample associated with alleles A and
B, respectively. Note that if the PCR produced X copies of the DNA fragments, these quantities should,
up to an additive constant, equal the logarithm of 0, X , or 2X . Thus, a naive approach to genotyping
would be to set thresholds and call genotypes based on the θs being above or below these thresholds.
For example, to call an AA genotype, one might require that θA > CA and θB < CB. However, already
the most basic data exploration shows that such an approach will not work well in general. Figure 1
illustrates the problem. Given what we have learned from expression arrays about optical background
noise, nonspecific binding, and probe effects, it is no surprise that such naive methods do not perform
well. We begin this section by describing some of the more sophisticated existing genotyping algorithms.

Although predefined cutoffs are not useful, for most SNPs the values (θA, θB) from multiple samples
form 3 distinct clusters representing the 3 possible genotypes. Affymetrix’s default algorithm for their
10K arrays took advantage of this property and used a modified partitioning around the medoids (MPAM)
clustering algorithm to detect the clusters. These clusters were then associated with 3 different genotypes.
The summarized data were based on a relative allele signal which is essentially a ratio of allele A in-
tensities to the sum of both allele intensities. The intensities were corrected for background using the
MMs (Liu and others, 2003). The algorithm worked well when there were enough data in each of the 3
genotypes, but not as well in other cases. With the higher density chips, this algorithm was not satisfactory
as many SNPs with low minor allele frequency are included in the 100K and 500K arrays (Di and others,
2005). For this reason, with the release of the 100K arrays, Affymetrix changed their default procedure to
a “dynamic model” (DM) -based algorithm. In this algorithm, 4 different Gaussian models (NULL, AA,
AB, and BB) were considered for the probe intensities for each SNP, and a genotype call was made for
each sample based on the likelihoods for each genotype. Note that DM is not a modular procedure: the
calls are derived directly from the feature intensities on each array separately.

Various problems have been noted with calls obtained from the DM algorithm. In particular, a higher
degree of misclassification for the heterozygous calls was observed when compared to MPAM. This

Fig. 1. Genotype regions for 3 SNPs with data from different HapMap samples shown as well. Symbols of different
sizes represent the 3 different genotypes and the numbers the 3 different SNPs. The data and regions are obtained
with RLMM which is described later in the text.
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fact motivated several academic groups to develop their own algorithms (LaFramboise and others, 2005;
Rabbee and Speed, 2006; Lamy and others, 2006). In Rabbee and Speed (2006), the robust linear model
with Mahalanobis distance (RLMM) is described and shown to outperform DM on the HapMap data set
described above.

RLMM, which is a multiarray procedure, begins by preprocessing the feature-level data using Robust
Multiarray Average (RMA) (without background correction), a procedure demonstrated to work well for
expression arrays (Irizarry and others, 2003). These summarized data are then used to build SNP-specific
‘regions’ for each genotype using a supervised learning algorithm similar to linear discriminant analysis.
To train the algorithm, the HapMap data set was used. This approach is particularly appealing because
empirical results demonstrate that different SNPs can produce very different distributions. Figure 1 clearly
demonstrates this. Model-based approaches that impose the same (or similar) models on all SNPs as
well as algorithms that train on observed data are unlikely to perform. In fact, using cross-validation on
the HapMap data set, Rabbee and Speed (2006) demonstrate that RLMM greatly outperforms DM (See
Figure 4 in Rabbee and Speed (2006)). However, this classification strategy makes RLMM’s genotyping
algorithm less useful because SNP-specific feature intensity distributions are different not only across
SNP but also within the same SNP across labs/studies. Figure 2(A) clearly shows this. SNPs exhibiting
the behavior shown in this figure are common, which implies that regions defined with data from one
study/lab will do poorly when applied to data from a different study/lab.

Recently, Affymetrix made a white paper available (Affymetrix, 2006) describing a new preprocessing
algorithm based on RLMM. To improve the across-lab compatibility, Bayesian Robust Linear Model with
Mahalanobis distance (BRLMM) does not train the classification algorithm on the HapMap data. Instead,
BRLMM uses DM calls as initial guesses for class membership and uses these to define genotype regions.
The genotype regions are then recalibrated using a Bayesian approach. This algorithm is expected to
become their default in the near future. More details are available from Affymetrix (2006).

In this paper, we describe new normalization and summarization methodologies that make across-lab
comparison possible. This in turn permits us to use the training algorithm strategy originally implemented
by RLMM to create a powerful corrected version. We will refer to our genotyping method as Corrected

Fig. 2. Genotype regions. (A) RLMM genotype regions obtained using the HapMap data (denoted with 1) and data
points from Labs 2 and 3 (denoted by numbers). We plot S = (θA + θB)/2 versus M = θA − θB to facilitate
comparison with BRLMM and CRLMM. (B) As (A) but for CRLMM. Note that RLMM, BRLMM, and CRLMM
are defined in different parts of the text.
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Robust Linear Model with Maximum Likelihood Distance (CRLMM). Because our preprocessing method
is an adaptation of RMA and can be used with other genotyping algorithms, we will refer to it as SNP-
RMA. Below we give a summary of the algorithm, and in the remaining sections we motivate and give
further details for each step.

1) For each array, we estimate probe sequence and DNA fragment length effects and remove them
from the log feature intensities.

2) We use quantile normalization against a reference sample to remove some of the unwanted array-
to-array variation.

3) For each SNP, each of the 2 alleles, and each of the 2 strands, we form a summary over the 20 PM
features using a linear model as in RMA.

4) For each strand, the log differences between the A and B allele intensities are calculated. We then
remove probe sequence, fragment length, and total intensity effects on the log-ratios. Because these
effects are genotype dependent, we use a mixture model which assumes that each unknown genotype
results in a different Gaussian distribution.

5) Using the HapMap data as training set, where the genotypes are (for most SNPs) known, we esti-
mate for each SNP means and variances for the log-ratios corrected for the effects estimated in the
previous step. A mixed-effects model is used to obtain empirical Bayes estimates.

6) For a new sample and for each SNP, we predict the genotype as the one maximizing the likelihood
calculated as though the means and variances derived above are known. Likelihood ratios are used
as uncertainty measures.

3. NORMALIZATION

A likely explanation for the across-lab differences in cluster distributions seen in Figure 2(A) is the sample
preparation effect. In particular, the amplification of DNA through PCR is unique to each sample. In this
section, we describe procedures based on observable covariates that can be used to assess and correct the
PCR effect: probe sequence and fragment length. Similar corrections have been described by Nannya and
others (2005). However, these corrections are done to improve the precision of copy number estimates.
Here, we demonstrate that effects can still be observed for the allele log-ratio values even after correcting
the log intensities. We propose normalization strategies that correct for these log-ratio biases with the goal
of improving genotype calls.

3.1 Correcting for sequence and fragment length

Supplementary Figures 1 and 2 (available at Biostatistics online) demonstrate that fragment length has
a strong negative effect on probe intensity, with longer fragments resulting in weaker feature intensities.
These figures also demonstrate that the effects are different from sample to sample (seen through the
confidence bands in Supplementary Figure 1 available at Biostatistics online) and from lab to lab (seen in
Supplementary Figure 2 available at Biostatistics online), with the lab difference being greater. Nannya
and others (2005) have also pointed out that the chemical composition of the probe has a strong effect on
feature intensity. We have noticed that the sequence effect is position dependent, something that has pre-
viously been observed in expression arrays (Wu and others, 2004). Figure 3 shows the position-dependent
effects of each of the 4 bases for data from 3 different labs. This figure demonstrates that the effects are
large and that they change from lab to lab. A particularly important consequence of the sequence effect
is that when comparing feature intensities representing the different alleles, one can see relatively large
differences due only to sequence. Figure 4(A) shows that the sequence effect can cause relatively large
differences between alleles A and B.
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Fig. 3. Position-dependent sequence effects. For a typical array from the HapMap study, the effect of each base at
each position is shown. To estimate this effect, we fit Model (3.1) to all PM intensities for all SNPs on the array with
no smoothness assumptions on hb(t). The different bases are denoted with the respective initials. (B) As (A) but for
Lab 2, and (C) Lab 3.

Fig. 4. Sequence effect on allele A to allele B log-ratios for the 6 different base pairs by which the 2 allele probes can
differ. The plot shows median effects. Specifically, for each array we obtain the median of these log-ratios across all
SNPs with the same pair of bases distinguishing the 2 allele probes. In this plot, we show box plots of those medians
stratified by base pair and lab. The 3 different colors represent the 3 different labs: (A) before normalization and (B)
after normalization.

In our normalization procedure, our first step is to correct for both sequence and fragment length
effects. To do this, we fit a linear model to the log PM intensities:

log2(PM) = µ + g(L) +
∑

b∈{A,C,G,T}

25∑
t=1

hb(t)I(bt = b) + ξ . (3.1)

Here, bt ∈ {A, C, G, T} represents the base at location t , hb(t) are smooth functions of the location
(each base b is represented by a different function), I(bt = b) is 1 when the base at position t is b
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and 0 otherwise, g(L) is a smooth function of fragment length L , and ξ is a zero-mean random error
which we assume is normally distributed. Supplementary Figures 1 and 2 (available at Biostatistics on-
line) and Figure 3 demonstrated that the effects are well described with smooth functions which we model
with cubic splines with 5 degrees of freedom. With these assumptions in place, we can estimate µ, g(·),
and hb(·) using least squares. The corrected PM intensities are obtained by subtracting the estimated se-
quence and fragment length effects for log2(PM). Nannya and others (2005) demonstrate that corrections
such as these reduce unwanted variability substantially. However, in Section 3.4, we demonstrate that se-
quence and length effects remain for the quantity that is most informative for genotyping, the log-ratio. For
example, Figure 4(B) shows that the effect of sequence is reduced but can be further improved.

3.2 Across-array normalization

An important lesson learned from analyzing expression data is that across-array normalization is almost
always needed. Figure 5 demonstrates that even after the correction described in Section 3.1, array in-
tensity distributions are substantially different. As expected, differences are seen across arrays and even
bigger differences across labs. In the case of SNP arrays, it is safe to assume that the theoretical distribu-
tions of the target DNA we are measuring should be equal since the total amount of DNA should be the
same across samples. Exceptions might come from cases for which a DNA sample has large pieces with
extra or deleted copies of chromosome. For all other cases, we can make array intensities comparable
across arrays using quantile normalization (Bolstad and others, 2003). However, instead of normaliz-
ing each study separately, as is commonly done in gene expression experiments, we normalize all array
intensities to a reference distribution created with the HapMap data.

3.3 Summarization

We summarize the feature intensities within each probe quartet to produce 4 values for each SNP. Specif-
ically, we follow the RLMM approach to fit a linear model (using median polish) to the normalized log
PM intensities (Rabbee and Speed, 2006). The linear model includes a term related to sample-specific
DNA amount and a term for the probe effect. However, here we fit a separate model to each strand/allele
combination instead of combining the strands as done by RLMM. We therefore produce 4 numbers per
SNP which we denote by (θA,−, θB,−) and (θA,+, θB,+). In Section 3.4, we describe why we keep sense
and antisense values separate.

Fig. 5. Empirical densities for log (base 2) intensities from 3 randomly chosen arrays from (A) Lab 1, (B) Lab 2, and
(C) Lab 3. The intensities have been corrected for sequence and fragment length.
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3.4 Remaining log-ratio biases

Figures 1 and 2(A) show that most of the information available for separating the clusters associated with
the 3 genotypes are in the upper-left-to-lower-right diagonal direction, that is the log-ratios. The same
plots for other SNPs look similar. In fact, it is difficult to find cases where the sum of the intensities
provides useful information. For this reason, we consider the log-ratios M = θA − θB as the quantity used
for genotyping. Furthermore, there are many instances where one of the 2 strands appears to provide no
information. We refer to these as the “noninformative strands.” Figure 6 demonstrates that considering the
log-ratios for the 2 strands, M+ and M−, instead of a summary that contains both, permits us correctly to
call genotypes in cases in which the features for one of the strands are noninformative. We have observed
roughly 100 SNPs such as the one presented in Figure 6. For this reason, we propose strand-specific log-
ratios as the summarized quantity to be used by genotyping algorithms. We denote the log-ratio for SNP
i and sample j by Mi, j,s with sense and antisense strands denoted by s ∈ {−, +}. We code the genotypes
by k = 1, 2, 3 for AA, AB, and BB, respectively.

Careful data exploration demonstrated that, in general, these M values have powerful discrimination
ability. However, we noticed that in some arrays the overall separation in M is better than in others,
see Figure 7. We also noticed that, within arrays, SNPs with inferior separability were associated with
long fragment lengths or high/low average intensity, S ≡ (θA + θB)/2, values, as illustrated in Figure 8.
Furthermore, Figure 4 demonstrates that, although much reduced, a sequence effect is still present for
log-ratios. In the remainder of this section, we describe our final preprocessing step which estimates these
remaining biases.

We describe these effects with a simple mixture model. To simplify the fitting procedure, we estimate
the model separately on each array and treat the sense and antisense features as independent and identically
distributed. We therefore drop the j and s notations and write

[Mi |Zi = k] = fk(Xi ) + εi,k, (3.2)

where the Zi represent the unknown true genotype of SNP i with possible values k = 1, 2, 3 (AA, AB,
BB), Xi represent covariates known to cause bias, fk describe the effect associated with these covariates,
and εi,k an error term which we assume to be a normal random variable with mean 0 and variance τ 2

k . We
constrain the model such that f j,2 = 0 and assume that f1 = − f3 and τ 2

1 = τ 2
3 . We assume that this is a

mixture model with mixing probabilities Pr(Zi = k) = πk across all SNPs. The πk are estimated but not
predicted.

Fig. 6. Effect of the probes from the noninformative strands. The HapMap data were used. (A) RLMM, which averages
sense and antisense strands, genotype regions for SNPs for which the sense strand does not differentiate. (B) As (A)
but for BRLMM which also averages sense and antisense strands and (C) CRLMM, which keeps sense and antisense
information separate.
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Fig. 7. Empirical density distribution of the across-SNP M values for the array with the best (dashed) and worst (solid)
SNR ratios. The best data set came from the HapMap data and the worst came from Lab 2.

Fig. 8. (A) M values (both strands are included) from a typical array from the HapMap data plotted against fragment
length. Instead of plotting the points we show, with different shades, the data density. The solid lines are the estimated
f values from Model (3.2). (B) As (A) but for intensity instead of fragment length.

In this section, we have demonstrated that we should include at least the following 3 covariates in
(3.2): fragment length Li , average intensity Si (treated as a fixed covariate), and a factor coding the base
pair bpi at the SNP. We therefore define X = (L , S, bp). Furthermore, Figures 4(B) and 8 suggest that we
can model f1 = f3, in Model (3.2), as

f1(Li , Si , bpi ) = µbpi
+ fL(Li ) + fS(Si )

with µbpi
being a mean level that differs for each SNP base pair bpi ∈ {AC, AG, AT, CG, CT, GT}, fL

a cubic spline with 3 degrees of freedom, and fS a cubic spline with 5 degrees of freedom. This model
has 16 parameters, and since we have thousands of observations, we obtain very precise estimates of f .
With these assumptions in place, we fit Model (3.2) using the expectation maximization (EM) algorithm.
Examples of the estimated fL and fS are included in Figure 8.
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Although the main reason for fitting (3.2) is to obtain estimates of f , 2 other useful summaries can
be derived. The first is an estimate of the probability of membership of sample j in genotype k for SNP
i given (Mi, j,k,−, Mi, j,k,+). We denote these estimates by π̂i, j,k and note that they are readily available
from the EM algorithm as they are the weights used by the M step. In Supplementary Figure 3(A) (avail-
able at Biostatistics online), we compare the predicted probabilities to the actual error rates (computed
using the HapMap data). The figure confirms that they are useful. Furthermore, we can use argmaxk π̂i, j,k

as a genotype call for SNP i on sample j . In Section 4, we describe how we sometimes use these
calls as “initial guesses.” Second, after fitting Model (3.2) for each array, we can compute the quan-
tity SNR = median( f̂ 2

1 )/avgk τ̂
2
k , with the median calculated across SNPs. If data from different genotype

classes are well separated, this signal-to-noise ratio (SNR) quantity will be large. For example, if this
quantity is close to 0, it will be impossible to distinguish between heterozygous and homozygous. Thus,
we can use SNR as an array-specific quality measure. In Supplementary Figure 4 (available at Biostatistics
online), we demonstrate the utility of the SNR summary by showing plots like those in Figure 8 for the
arrays producing the best and worst SNR. This figure shows that for the second array, information about
genotypes is probably lost. We conjecture that a cutoff threshold CSNR can be defined so that removing
arrays with SNRs lower than CSNR improves the overall performance of the analysis.

Note that even after fitting (3.2), we cannot correct the M values by subtracting f because we do not
know genotype Z . In Section 4, we describe a genotyping algorithm that incorporates the estimated f .

4. GENOTYPE CALLING

As mentioned above, we use a supervised learning approach for genotype calling. For most SNPs on the
arrays, we have independent genotype calls for all the samples in the HapMap data. These calls are based
on consensus results from various technologies and are considered a gold standard. We use HapMap
calls to define “known” genotypes which in turn permits us to define a training set. However, for the
100K data, these calls are not available for about 4% of the SNPs. For these, we use the initial guesses
described in Section 3.4 to define the known classes. With the training data in place, we use a 2-stage
hierarchical model and give likelihood-based closed-form definitions of the genotype regions as described
below.

For each SNP, we define two-dimensional genotype regions based on the sense and antisense M values.
However, even with 90 samples, there are genotype groups for some SNPs for which we have a very small
number of observations available at the training step. For these cases, the hierarchical model presented in
this section becomes very useful. Using empirically derived priors for the centers and scales of the other
genotype regions, we give a closed-form empirical Bayes solution to predict centers and scales for cases
with few or no observations.

4.1 The model

Let Zi, j be the unknown genotype for SNP i on sample j . As above, we code the genotypes by k = 1, 2, 3
for AA, AB, and BB, respectively. Figure 1 suggests that genotype regions are SNP-specific when con-
sidering (θA, θB) as the quantity of interest. Similar pictures for (M−, M+) (data not shown) demonstrate
that the same is true for the log-ratios. Furthermore, these pictures suggest that the behavior of the log-
ratio pairs can be modeled by bivariate normal distributions. We therefore propose a 2-level hierarchical
multichip model with the first level describing the variation seen in the location of genotype regions across
SNPs and the second, the variation seen across samples within each SNP. The model can be written out
as follows:

[Mi, j,s |Zi, j = k, mi,k,s] = f j,k(Xi, j,s) + mi,k,s + εi, j,k,s, (4.1)
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where Xi, j,s and f j,k are as in Section 3.4 but with the j and s notations reintroduced, mi,k,s is the SNP-
specific shift from the typical genotype region centers, and εi, j,k,s represent the measurement error. As
mentioned in Section 3.2, we expect different samples to have different biases, thus the effect function f
now depends on j . Note that the SNP-specific covariates X also depend on the sample because the average
signal S may vary from sample to sample. The m values represent the cluster center shifts not accounted
for by the covariates included in X.

To define the first level of our model, we denote the vector of SNP-specific region centers with
mi = (mi,1,+, mi,2,+, mi,3,+, mi,1,−, mi,2,−, mi,3,−)′. Data exploration shows that we can model the
distribution of this vector with a multivariate normal distribution (Supplementary Figure 5 available at
Biostatistics online). We will denote the variance–covariance matrix of m by V . Note that by defini-
tion, m is centered at 0 since the mean levels of the 3 genotypes are absorbed into f . This mean level,
J−1 ∑

j I−1 ∑
i f j,1(Xi, j,s), is roughly 3.

The second level of the model, the variability seen within the genotypes for each SNP, is described by
the ε values. We assume these to be independent (conditioned on the genotype Z ) normals across samples
and SNPs with SNP/strand-dependent variance σ 2

i,k,s . We use an inverse χ2 prior to improve estimates
when not enough data are available, that is

1

σ 2
i,k,s

∝ 1

d0,ks2
0,k

χ2
d0,k

,

where dk,0 are the degrees of freedom of the χ2-distribution and s2
0,k represent the variance of a typical

SNP.

4.2 The training step

Because the large number of SNPs permits us to estimate the f j s precisely, for simplicity, we treat them
as known. With this estimate of f j in place for each sample, all we need to make our likelihood-based
genotype calls are estimates of the m’s and σ ’s in (4.1). In this section, we describe our proposed super-
vised learning approach. The key idea is to consider the HapMap calls as known genotypes and use this
information to obtain maximum likelihood estimates (MLEs) of m and the σ values. A second step is to
update these estimates with posterior means derived from the hierarchical model. Below, we describe the
details.

Because we are treating Zi, j and f as known, we can define the MLEs for m and the σ values in
closed form:

m̂i,k,s = N−1
i,k

∑
j∈Ji,k

{Mi, j,s − f j,k(Xi, j,s)}, (4.2)

σ̂ 2
i,k,s = (Ni,k − 1)−1

∑
j∈Ji,k

{Mi, j,s − f j,k(Xi, j,s) − m̂i,k,s}2. (4.3)

Here, Ji,k is the set of indexes associated with samples of genotype k on SNP i and Ni,k is the number of
indexes in J j,k . Note that we may also use robust versions of (4.2) and (4.3).

As mentioned above, there are various cases for which not enough data are available to trust m̂ and σ̂ 2

as reliable estimates of a region center and scale. The hierarchical model described in Section 4.1 provides
closed-form solutions for the posterior means which can be viewed as a useful shrinkage of the estimates
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that automatically take care of cases with few observations. The shrinkage step is defined as follows:

m̃i = (V −1 + Ni			
−1)−1Ni			

−1m̂i , (4.4)

σ̃ 2
i,k,s = (Ni,k − 1)σ̂ 2

i,k,s + d0,ks2
0,k

(Ni,k − 1) + d0,k
, for Ni,k > 1. (4.5)

For N � 1, there is no sample variance to use in (4.5) and we simply use σ̃ 2
i,k,s = s2

0,k . Here, m̂ is the
vector of sample means (m̂i,1,+, m̂i,2,+, m̂i,3,+, m̂i,1,−, m̂i,2,−, m̂i,3,−)′, 			 is a 6×6 diagonal matrix with
			k,k = 			k+3,k+3 = s2

0,k , and Ni is a 6×6 diagonal matrix with entries (Ni,1, Ni,2, Ni,3, Ni,1, Ni,2, Ni,3).

In order to apply (4.4) and (4.5), we need prior parameters d0,k , s2
0,k , and V . We use the empirical Bayes-

type approach described in Lönnstedt and Speed (2002) and Smyth (2004).
Note that (4.4) and (4.5) are simply weighted averages of the prior and observed means, with the

weights controlled by sample size and the prior means for the variances. In Section 6, we give an example
of the utility of the update defined by (4.4) and (4.5).

These estimated parameters, m̃ and σ̃ 2, are stored and used to call genotypes in other data sets. This
is described in Section 3.

4.3 Likelihood-based calls

The final step is to make a genotype call for any given pair (sense and antisense) of observed log-ratios,
(Mi, j,−, Mi, j,+). Note that these M values can come from any study, and we will use the centers and
scales, defined by (4.4) and (4.5), estimated from the HapMap data. We do this by forming a likelihood-
based distance function δ defined by

δi,k ≡
∑

s∈{−,+}

{
log(σ̃i,k,s) +

(
Mi, j,s − f j,k(Xi, j,s) − m̃i,k,s

σ̃i,k,s

)2
}

.

Our prediction is the genotype k that minimizes δi,k . Furthermore, the log-likelihood ratio (LLR) tests
serve as useful measures of confidence. Specifically, our measure of confidence is δi,2 − δi,k for homozy-
gous calls and min(δi,1 − δi,2, δi,3 − δi,2) for heterozygous calls. Supplementary Figure 3(D) (available at
Biostatistics online) demonstrates that if we apply this method to the HapMap data (the training data), we
obtain an impressive concordance rate as described in more detail in Section 5.

5. RESULTS

Most algorithms provide a measure of uncertainty for each call, in our case its the LLR described in
Section 4.3, and define a cutoff for this limit. If this limit is not reached for a given SNP at a particular
sample, no call is made. The proportion of cases where no calls are made is referred to as the “no-call
rate.” A common way to assess genotyping algorithms is to compare their concordance rates with the
HapMap project calls to their no-call rate. In this section, we demonstrate that using our methodology
provides better separability of cluster, no-call rates, and across-lab agreement than RLMM and BRLMM.

To assess the separability of clusters, we compare the median silhouette widths (Rousseeuw, 1987), a
standard approach used in the unsupervised learning literature to measure cluster tightness (across-cluster
distance to within-cluster distance ratio). Figure 9(A) shows the empirical cumulative distribution function
for the RLMM, BRLMM, and CRLMM clusters. In particular, note that the 99% worst distance is almost
3 times better for CRLMM over RLMM. The improvements are dramatic. Similar improvements over
BRLMM are observed.
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Fig. 9. Illustration of usefulness of CRLMM. (A) Empirical cumulative distribution function (eCDF) of the silhouette
widths for the SNP-specific genotype regions for RLMM, BRLMM, and CRLMM. (B) For a particular SNP, data
from HapMap are shown with empty symbols and the data from Lab 3 with solid symbols. Note that for the HapMap
data, there are no AA samples. The dashed ellipses are defined using the HapMap data. The top dashed ellipse is the
AA region predicted with the Bayesian correction (4.4). The solid lines are the regions derived after recalibration for
the Lab 3 data. For the Lab 3 data, it appears that we have 1 AA sample and it is predicted correctly.

In Rabbee and Speed (2006), cross-validation was used to estimate the error rates. However, Figure 2
demonstrates that within-lab/study error rates are not necessarily accurate. This is due to the fact that
supervised learning procedures may over adapt to results from one lab which may result in poor perfor-
mance when we switch to data from other labs/studies. For this reason, we do not use cross-validation
to evaluate the methods. Supplementary Figure 3(C) (available at Biostatistics online) shows correct call
rates for the initial guesses provided by the mixture model fit described in Section 3.4. Note that the initial
guesses, which are not based on a supervised learning approach, slightly outperform RLMM. Supplemen-
tary Figure 3(D) (available at Biostatistics online) shows how call rates, within the training data, increase
close to perfection. Even with a no-call rate of 0%, calling every single SNP on every array, we obtain
concordance rates of 99.85% from heterozygotes and 99.92% from homozygotes.

Figure 2 demonstrates how CRLMM provides predictions that are useful across labs/studies. In
Figure 2(C), the ellipses were obtained from the training data. Note how only for CRLMM do the data
for other 2 studies fall in, or are close to, the regions defined by training on the HapMap data. Thousands
of other SNPs show behavior similar to that shown in Figure 1. Figure 9(B) is a particularly interesting
example. For this SNP, the HapMap data had no AA calls. Note how the prediction defined by (4.4) and
(4.5) creates a region for which data from another lab, that appears to come from an AA, fall close enough
to be called AA.

6. DISCUSSION

We have described a preprocessing algorithm for Affymetrix SNP arrays that greatly improves upon ex-
isting methods. The procedure is based on 4 steps: 1) Feature intensities are corrected for fragment length
and sequence effects. 2) We then quantile normalize using a predefined reference distribution. 3) Next,
median polish is used to summarize feature intensities into one number for every allele keeping sense and
antisense summaries separate. 4) As a final step, a mixture model is used to correct for fragment length
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and intensity-dependent biases on the log-ratio of the summarized intensities. We refer to this approach
as SNP-RMA.

The summarized data, sequence information, fragment lengths, and intensity effects can then be used
to make genotyping calls. Note that at this stage, one can use MPAM-, RLMM-, or BRLMM-like proce-
dures to make genotype calls. We demonstrate that the supervised approach used by RLMM works very
well in conjunction with a correction based on a posterior mean derived from a carefully derived hierar-
chical model. Although we use HapMap calls to define known classes and a training set, these calls could
be avoided entirely and the preliminary calls from our mixture model could be used in their place to give
a set of high-quality calls for determining the cluster centers.
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