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Accurate and complete measurement of single nucleotide
(SNP) and copy number (CNV) variants, both common and
rare, will be required to understand the role of genetic
variation in disease. We present Birdsuite, a four-stage
analytical framework instantiated in software for deriving
integrated and mutually consistent copy number and SNP
genotypes. The method sequentially assigns copy number
across regions of common copy number polymorphisms
(CNPs), calls genotypes of SNPs, identifies rare CNVs via a
hidden Markov model (HMM), and generates an integrated
sequence and copy number genotype at every locus (for
example, including genotypes such as A-null, AAB and BBB in
addition to AA, AB and BB calls). Such genotypes more
accurately depict the underlying sequence of each individual,
reducing the rate of apparent mendelian inconsistencies. The
Birdsuite software is applied here to data from the Affymetrix
SNP 6.0 array. Additionally, we describe a method,
implemented in PLINK, to utilize these combined SNP and
CNV genotypes for association testing with a phenotype.

Studies of SNPs and CNVs in human disease have to date been built
on different analytical approaches, and somewhat based on conflicting
assumptions. Specifically, SNP genotyping methods1,2 assume that
every individual has two copies of each locus, whereas studies of copy
number variation assume that individuals vary in their copy number
across the genome. Because SNPs and CNVs coexist throughout the
genome, they influence one another’s measurement, and may act both
separately and in concert to influence human phenotypes. Ignoring
CNVs during SNP genotyping results in failure to capture the true
underlying sequence at many sites (genotypes like AAB and A), and

can create the appearance of violations of mendelian inheritance or
Hardy-Weinberg equilibrium where none in fact exists3,4. Ignoring
SNPs in copy number analysis fails to incorporate allele-specific gains
and losses, as well as the potential to exploit linkage disequilibrium
between CNVs and nearby SNPs.

In addition, methods for copy number analysis have not previously
separated the ideas of genotyping known copy number polymorph-
isms (CNPs) from discovery of rare (and thus previously unobserved)
copy number variants (CNVs)5. In the former case, as in SNP
genotyping, existing information about known polymorphisms can
be used to design arrays, train clustering algorithms and assign a prior
probability of aberrant copy number to guide interpretation of
measurements. Discovery of rare variants, as in sequence analysis for
rare mutations, is a much more difficult problem—both because it is
more difficult to detect a single event than something seen many
times, and because of the intrinsic low prior probability of there being
such a variant at any particular location in the genome in any
individual. Here, we develop separate methods for analysis of rare
and common copy number variation. (For clarity, we use a nomen-
clature in which ‘copy number polymorphism’ (CNP) refers to the
subset of ‘copy number variants’ (CNVs) that segregate at greater than
1% frequency in the population; this is parallel to the use of ‘single
nucleotide polymorphism’ (SNP) to refer to sequence variants segre-
gating at greater than 1% frequency in a population.)

Below we describe a new suite of algorithms instantiated in software
for integrating these approaches. Our methods are informed
on a small scale by the individual response of characteristics of each
individual probe, and on a large scale by a high-resolution map of
common CNPs. Briefly, the approach first assigns copy number
across regions of known common CNPs. Second, at each SNP
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locus, samples expected to have two copies of the locus are assigned
genotypes: AA, AB or BB. Third, informed by probe-specific mean
and variance estimated in the second step, a hidden Markov model
(HMM) is used to discover rare or de novo CNVs. Fourth,
copy number and SNP allele information are combined to provide
an integrated genotype at each locus (Fig. 1). Although initially
developed for use with new, hybrid genotyping arrays designed
to capture SNP and copy number information simultaneously6,
these algorithmic approaches are general and can be applied to
other genotyping platforms as well.

RESULTS
Genotyping of common copy number polymorphisms
Previous approaches to copy number analysis7–10 involve searching a
single individual’s genome for regions in which evidence of copy
number deviation exceeds a genome-wide significance threshold—an
approach that does not make use of prior knowledge. Yet the variation
at more than 90% of the loci at which any two individuals differ in
copy number across a region 410 kb in size seems due to a limited
universe of common CNPs6. At such loci, a copy number variant
unambiguously exists and segregates at an appreciable frequency, and
the problem can be redefined not as a problem of ab initio discovery,
but rather of accurate measurement (genotyping) of each individual’s
integer copy number level5.

The first step in our methodology, Canary (copy number analysis
routine), determines the copy number of each individual at each
predefined CNP locus. A high-resolution map of common CNPs is
needed to define these loci; we used the map of McCarroll et al.6, but
improved maps can be substituted as they emerge. Although an
individual probe inside a given CNP may not provide enough
information to give an accurate integer measurement of copy number
(a copy number ‘genotype’)11 (Fig. 2a), multiple probes that
interrogate the same CNP segment typically show highly correlated
and reproducible patterns of intensity6 (Fig. 2b,c). The measurements
for the probes in the same CNP (or, in some cases, for a predefined
high-performing subset of those probes; Fig. 2c) are combined into
a single summarized intensity measurement, resulting in one
summarized measurement per sample (Fig. 2d). The summarized
measurements for a batch of samples are then clustered into discrete
copy number classes using a one-dimensional Gaussian mixture
model (GMM), where the expected location of copy number clusters
is informed by the results of previous experiments (Fig. 2d–f).
The resulting clusters are used to assign a CNP genotype to each

sample at each CNP, as well as a score reflecting the confidence of each
assignment (Supplementary Methods online).

Validation of the CNP genotypes from such an approach is
important, but currently hampered by the lack of a gold-standard
set of reference genotypes (such as HapMap12 has provided for SNPs).
The vast majority of CNPs have not been previously genotyped with
accuracy demonstrated in a set of reference samples. We created one
such reference dataset (on the basis of consistency across two
independent studies of 263 HapMap samples) that has few mendelian
inconsistencies, conforms to Hardy-Weinberg equilibrium and shows
strong concordance to fosmid end-sequenced samples6. However, this
specific dataset is inappropriate for validation of Canary, as it would
be statistically overfit and therefore inflate measures of performance.

Instead, we assessed the quality of Canary-derived CNP genotypes
by examining (i) inheritance in 91 independent parent-offspring trios
and (ii) reproducibility across many laboratories. For the 1,177
diallelic CNPs tested (consisting of only a simple deletion or duplica-
tion, but not both), genotypes in 91 trios showed a mendelian
inconsistency rate of approximately 0.005 per trio per CNP
(Table 1). Copy number genotypes for 96 multiallelic CNPs6 were
assessed for inheritance using Fisher’s h, which was distributed closely
around 1.0, with only one CNP generating a P value o0.01. Canary
genotypes were reproducible across the same HapMap samples run
across seven independent labs, achieving an average sample call rate of
96.1% and a sample concordance with our reference dataset of 98.0%.
Concordance with 783 independent copy number genotypes obtained
by quantitative PCR (in 27 CNPs and 29 samples) averaged 97.6%
across the seven labs. This is less complete and accurate than that for
SNP genotypes, suggesting that further refinements are needed to
either the algorithms or the underlying array data. Nonetheless, this
performance across 41,000 CNPs far exceeds that of the small
numbers (o100) of CNPs that have been genotyped in any previous
study of appreciable sample size.

Genotyping of SNPs
We next turn to SNP genotyping (Fig. 3). For any given genomic
segment containing a SNP, samples with two copies of the locus per
diploid genome are expected to have one of the canonical SNP
genotypes of AA, AB or BB. For most autosomal SNPs we expect all
samples to have two copies, but for those overlapping a CNP other
possibilities may be observed13 (Fig. 3a). For such SNPs, we use the
information from Canary (above) to restrict initial SNP genotyping to
those samples whose CNP genotype (integer copy number) is
two (Fig. 3b). Such a partitioning allows for the model of diploid
SNP clustering not to be misled by samples that have fewer or
extra copies (as might happen if one clustered the raw SNP data
shown in Figure 3a).

SNP genotyping is done using Birdseed (see Supplementary Meth-
ods and the BirdSuite web site), a specialized two-dimensional GMM,
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where the two dimensions are summarized probe intensities for each of
the two alleles (A and B). Like Canary, Birdseed utilizes prior models
representing the expected allele intensity information for each genotype
class, built from previous data for samples of known genotype at each
SNP (in this case, 270 HapMap samples and genotypes). Briefly, the
algorithm utilizes expectation-maximization14 to determine the loca-
tion of the AA, AB and BB clusters for each SNP (Fig. 3c and
Supplementary Fig. 1 online). These clusters are used to assign a
genotype (AA, AB or BB) to each sample along with a score reflecting
the confidence of each call. Special procedures are used on the X, Y and
mitochondrial chromosomes. Birdseed performance was validated on
HapMap samples run on the Affymetrix SNP 6.0 array6 across seven
different labs, not including any experiments used to generate the
models or develop the algorithm. At the default confidence threshold,
call rate on the HapMap samples was 99.47%, and these confident
genotype calls were 99.74% concordant with HapMap genotypes,
approaching the estimated error rate of HapMap itself. Like previous
algorithms, Birdseed is not without bias: minor-allele homozygotes are
less well genotyped when the minor allele frequency is low, affecting
both call rate and concordance of this class of genotypes. However,

Birdseed compares favorably to the BRLMM
algorithm1 (comparison done on Affymetrix
500K data, as BRLMM does not work on the
Affymetrix SNP 6.0 array; see Supplementary
Fig. 2 online). Birdseed as a stand-alone
program has been used to genotype over
50,000 samples at the Broad Institute with
an average call rate 499% (S.B.G., unpub-
lished observations).

Discovery and genotyping of rare CNVs
Although the first two steps in the framework

focus on accurate typing of known, common polymorphisms, it is also
possible using the same platforms to identify rare and de novo copy
number variants for which there is no prior knowledge. Such
problems of ab initio discovery are fundamentally more difficult
because of the need to distinguish a relatively small number of real
CNVs at unknown sites from the statistical fluctuations that arise in
any genome-scale dataset. The heterogeneity of probe performances
on array platforms further complicates this problem: different probes
show different intrinsic measurement variance across samples (a fact
seldom modeled by CNV discovery algorithms); furthermore, differ-
ent SNP probe sets show different quantitative responses to having 0, 1
or 2 copies of each allele (Supplementary Fig. 1). We therefore sought
to model the empirical properties of each probe in order to maximize
the power to detect rare CNVs. As in most other algorithms10, we
search for consistent evidence for copy number variation across
multiple neighboring probes to reduce the effect of normal statistical
fluctuations.

We consider first the task of accurately estimating copy number at a
single location in the genome. Having previously run Canary and
Birdseed aids in this task, in that they define copy number and
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allele-specific properties of each probe, as well as noise properties
specific to each sample. The locations and variances of the Birdseed
posterior clusters (corresponding to AA, AB and BB genotypes in
intensity space) together represent an accurate estimate of the emis-
sion probability (the probability density function of intensity mea-
surements given a particular underlying state) for each probe on the
array in response to a sample with two copies at that locus. The
expected intensity profile of ‘copy-variable’ genotypes (A-null, AAB
and so on) can then be imputed from the locations of the Birdseed
two-copy clusters (Fig. 3d). Combining these profiles across genotypes
of equivalent copy number models the emission probability of a probe
given a sample with 0, 1, 3 or 4 copies of a locus. For the copy number
probes on the array, we model only a single cluster per locus
representing two copies, which represents the emission probability
of normal samples; alternative copy number emission probabilities are
imputed analogous to the method for imputing additional SNP
clusters (Supplementary Methods).

The assumption that copy number is an integer allows for pre-
defined, strongly modeled states to increase sensitivity. For both SNP
probe sets and copy number probes, these emission probabilities allow
us to estimate the relative likelihood of each possible copy number
level (0, 1, 2, 3 or 4) in a way that is informed by the specific
performance of each probe. We note that although this considerably
improves performance when assessing germline copy number, it may
make Birdseye less suitable for applications where average copy
number at a locus is noninteger (such as detection of mosaic copy
number changes in heterogeneous tumor DNA).

Even after an empirically modeled interpretation of intensity mea-
surements, the estimate of copy number from single probes can be
noisy. The next step is therefore to integrate information across
neighboring probes to find strong, consistent evidence for altered
copy number states. Birdseye, an HMM-based algorithm, utilizes
dynamic programming to perform this search quickly and efficiently
across each chromosome15 (Fig. 4). Each segment of discrete copy
number is assigned a lod score indicating the relative probability of the
variant versus normal copy number in the region (which can be used
in downstream analyses to prioritize discovered CNVs on the basis of
confidence). Because the approach uses probe-specific variances,
noisier probes are inherently downweighted with respect to more
responsive probes, reducing the number of false positives one would
find by assuming all probes are equal (Supplementary Methods).

To assess the sensitivity and specificity of Birdseye (and lacking a
gold-standard dataset), we simulated CNVs across a range of sizes via
an in silico gender-mixing experiment. Intensity measurements
from consecutive X-chromosome probes from a female sample were
replaced with the intensities of the corresponding probes from a male
sample, in order to create virtual samples with deletions at known
locations (Methods).

Using this simulation framework, iterated thousands of times over
dozens of independent female and male samples, we find that for
deletions spanning 3, 5 and 10 probes (corresponding to mean sizes of
5 kb, 8 kb and 17 kb), Birdseye identified with lod of 2 or greater 10%,
51% and 97.5% of the events, respectively; as expected, mean reported
lod score also increased with deletion size (Supplementary Table 1
online). Breakpoints were typically determined to within a single
probe of the simulated CNV, and fewer than one false positive is
expected per genome at a lod of 2 or greater (Fig. 4d). We note
that because the simulation removes local autocorrelation of noise,
this may overestimate performance on actual data; higher lod cutoffs
may be appropriate in different datasets. Nonetheless, this simulation
indicates that the combination of the Affymetrix SNP 6.0 array and
the Birdsuite seems highly sensitive for deletions of 10 kb or larger.

Because the mutation rate to create de novo CNVs is exceedingly
low6,16, when observed in individuals with a sporadic disease pheno-
type they are particularly good candidates to be causal factors5.
However, in searching for de novo events it is critical not only to
evaluate the evidence in favor of a CNV in a proband (or a tumor), but
also to accurately estimate the likelihood against the presence of the
CNV in the parents (or normal tissue). Birdseye is designed to address
this need: in addition to reporting the evidence in favor of a CNV, it
can be used to reassess a discovered region in other samples (such as the
proband’s parents) using a framework that does not involve a stringent
genome-wide discovery threshold (Fig. 4b,c). Thus one can filter a list
of CNVs on the basis of strong evidence against variation in parents, as
opposed to simply failing to achieve genome wide–significant evidence
in favor of variation (which is frequently a false negative).

Combining copy number and SNP allele information
The CNV events identified by Birdseye, together with the Canary
genotypes for common CNPs, yield an assessment of copy number for
each sample across its genome; the SNP genotypes from Birdseed
describe sequence variation for samples at SNPs with the expected two
copies of each locus. The fourth component of Birdsuite, Fawkes (‘fast
analysis with kopy-number et SNPs’), merges these results to yield an
integrated picture of the genetic variation in each sample. Fawkes
utilizes the imputed locations (in A/B intensity space) of copy-variable
clusters to assign an allele-specific copy number genotype (such as
AAB, ABBB, A or B) at each SNP (Fig. 1 and Supplementary
Methods). Notably, the genotype assignment for a sample is con-
strained to the set of clusters corresponding to its integer copy number
as determined by Canary and Birdseye; allelic copy number is thus
informed by measurements not only from the SNP probe, but also
from nearby SNP and copy number probes. This approach differs
fundamentally from earlier attempts to estimate allele-specific copy
number from intensity data at individual SNPs13,17.

We evaluated the genotypes provided by Fawkes of autosomal SNPs
across a set of 790 ancestrally diverse samples. Across these samples
(comprising 689,451,960 total genotypes) Fawkes changed 717,301
SNP genotypes in 267,070 unique SNPs as compared to running
Birdseed alone. A small fraction of SNPs (5,600) had a copy-variable
call in at least 1% of unrelated individuals. In the 91 parent-offspring
trios available in this dataset, Birdsuite genotypes showed a lower rate
of mendelian inconsistencies versus those from Birdseed alone
(Table 1). In fact, every family analyzed showed a lower rate of
mendelian inheritance errors, with an average decrease of 5% and a
maximum decrease of 45% (Fig. 3f). This indicates that copy number
variation is an infrequent but not insubstantial source of apparent
mendelian inconsistency in all samples, and a major contributor in
select samples (potentially owing to cell line artifacts that affect whole

Table 1 Genotyping performance of Birdsuite judged by mendelian

inheritance (MI) patterns

Diallelic CNPs

Autosomal

SNPs

Autosomal SNPs within

known6 CNPs

Number in category 1,177 872,276 11,256

MI rate Birdseed n.a. 0.0868% 0.1497%

MI rate Fawkes 0.5200% 0.0822% 0.0926%

These data were generated from a cohort of diverse ancestry which included 91 trios; we
thus do not expect nor test for Hardy-Weinberg equilibria. The higher rate of MI observed
for diallelic CNPs indicates that there is a substantial subclass of CNPs whose
genotyping quality varies considerably from batch to batch. n.a., not applicable.
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chromosomes). As expected, the rate of mendelian inconsistency was
particularly reduced across the 11,256 SNPs that lie within common
CNPs6, with an average reduction of 33% (Fig. 3e).

The removal of errors due to copy number variation, whether the
CNVs originated in the germ line, somatically, or during cell culture,
results in higher-quality data and increases the number of SNPs that
pass typical filters applied to whole-genome association studies.

Comparison to other algorithms
We carried out a preliminary analysis to test the ability of Birdsuite as a
whole to call CNVs. CGH- or sequence-confirmed CNVs discovered
using fosmid end sequencing on eight HapMap samples were used as a
reference dataset18. Combining Canary calls surpassing the default
confidence threshold with Birdseye calls surpassing a lod cutoff of 5,
we recovered 56% of the reference CNVs that overlap at least 2 probes
on the array, and 94% of those that overlap at least 20 probes. We
compared these results to those from two commercial copy number
analysis platforms, Nexus and Partek, using the same set of CEL files as
input and default thresholds. At these settings, Nexus recovers 26%
and 73% of CNVs overlapping at least 2 probes and at least 20 probes,
respectively, and Partek recovers 4% and 12%. Relaxing the Nexus
parameters to allow significantly more total CNV calls per genome
than Birdsuite calls boosts Nexus sensitivity to 36% and 74%, still well
below that of Birdsuite (Supplementary Note online).

Association testing in regions of altered
copy number
The methods above, in conjunction with a
map of common polymorphisms (both single
nucleotide and copy number) and hybrid
arrays for detection6, allow characterization
of the genetic variation in each sample with
high accuracy and in a more comprehensive

manner than previously possible. In addition to providing discrete
calls, this framework provides a confidence of each call, which serves
as a good guideline as to data and genotype quality. (In the down-
stream analyses that follow, we use these confidences only as a
threshold for inclusion or exclusion of data; we note that such filtering
has the potential to introduce bias, and methods that incorporate the
uncertainty may perform better.)

The utility of genotypes from the Birdsuite, however, is not
realizable unless analysis tools can accept and evaluate CNVs and
noncanonical SNP genotypes, and test them for association with
phenotype in a statistically robust manner. Specifically, in addition
to performing the typical SNP test of association, one needs to assess
the potential relationship of phenotypes to total copy number and
allele-specific copy number (for example, AAB versus ABB). For
example, a locus may be haploinsufficient when the remaining copy
carries a low-expression allele, but not linked to the phenotype if the
remaining copy is a high-expression allele. It is also important to
assess association of phenotype with a collection of individually rare
CNVs that overlie a common locus.

We have developed and implemented one such initial approach to
test for such associations. For sites showing both allelic and copy
number variation, we regress the phenotype (either a quantitative trait
or disease status) on both the sum and the difference of the number of
copies of each allele. A significant regression coefficient for the sum
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represents an association with overall copy number, whereas a
significant coefficient for the difference represents an association
with variation tagged by a SNP. If there is either no CNV or no
SNP at a site, we fit a reduced model by removing the appropriate
term (the sum or the difference, respectively), effectively giving a
standard one-dimensional regression of phenotype.

Simulations indicate that this model is often considerably more
powerful than the traditional approach that does not explicitly
represent noncanonical genotypes (Supplementary Table 2 online).
This joint approach is particularly powerful under certain scenarios,
such as if a duplicated form of a ‘low-activity’ allele shows normal
activity comparable with the wild-type allele (for example, when A
and BB have similar phenotypes, different from B). In addition, the
joint model can often disentangle SNP and CNP effects; for example, it
can indicate whether a duplication or the allele that happens to be
duplicated (or both) affects phenotype. The new release of the whole-
genome association toolset PLINK19 now directly accepts Birdsuite
output to perform these tests.

As has been observed in SNP genotyping20, results of association
analyses using Canary CNP genotypes can be sensitive to differential
bias that can arise when data from individual plates or batches are
incorrectly clustered. It is prudent to search for any individual plates

or batches for which the Canary clustering may be incorrect; this can
be accomplished by visual inspection of the underlying intensity data,
or by automated identification of individual plates for which the
frequency of the observed genotype classes is statistically unusual given
the distribution on the other plates.

For rare or de novo CNVs, one might expect a potentially stronger
effect on phenotype—but in a smaller number of samples, as is the
case with the 16p11.2 deletion recently discovered (using Birdseye)
that seems to explain 1% of idiopathic autism21, or one of numerous
deletions associated with schizophrenia22. In such a scenario, aggrega-
tion of events in cases at a particular locus, coupled with a lack of
events in controls, can indicate that the region affects the assayed
phenotype. The new release of PLINK includes a set of tools for
manipulating, summarizing and analyzing rare and de novo CNVs
output from Birdseye (see URLs section in Methods).

DISCUSSION
Birdsuite is qualitatively different from previous algorithms in that it
approaches SNP genotyping and copy number analysis as a problem
of joint estimation in which the sequence and copy number aspects of
data analysis inform one another. Although we developed the Bird-
suite to make use of data generated by a specific SNP and CNP
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variation using Birdseye. (a) Raw data from a copy number

probe, with one sample (arrow) colored green (top left). Raw

data from a neighboring SNP, with the same sample (arrow)

colored green (top right). Although the sample is relatively

low in intensity, one would not have confidence calling a
deletion on the basis of these data alone (bottom). A view

across a larger region surrounding these two probe locations.

A point is placed at the estimated copy number for this

sample at each queried locus (without taking into account

neighboring probes). With enough probes to support the

evidence of a deletion, the HMM transitions to call a

heterozygous deletion in this sample across an 85-kb region

(blue line). (b,c) In addition, calling the deletion in the sample shown in a, Birdseye determines the relative log-likelihood of the identical deletion in each

parent of this sample. Owing to strong evidence against this deletion in the parents, the region represents a de novo event in the child. (d) Data from

in silico gender-mixing experiment. Sensitivity and breakpoint accuracy to discover simulated deletions of varying size (left). A deletion was considered

discovered only if the lod score for the deletion was above 2. Sensitivity to discover the simulated deletions plotted against expected number of

false-positive discoveries per genome (right). Points are placed at lod thresholds of 5, 2, 1 and 0.
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genotyping array, the concepts and approach described here represent
a general strategy that can be applied to any genotyping platform. The
approach is model-based and empirically derived, offering a sensitive
and mutually consistent description of sequence variation, and
substantially reducing apparent errors (of mendelian inheritance and
Hardy-Weinberg equilibrium) that actually reflect a true state of the
individual’s genomic sequence.

Birdsuite is also the first algorithm that takes a central idea of SNP
analysis—that an empirical catalog of polymorphisms can be used to
disentangle the problem of ab initio discovery from that of highly
accurate measurement—and applies it to copy number analysis. For
SNPs, discovery and genotyping use separate technologies and algo-
rithms (sequencing and genotyping technology, respectively), but in
copy number analysis, these problems have been treated as one: CNV
‘calls’ have been based on the results of genome-wide discovery
algorithms. This can lead to false negatives and positives that might
be tolerated in the creation of initial CNV catalogs, but that create
tremendous problems in association studies that rely on accurate
genotyping across large cohorts.

The genotype-calling framework instantiated in Birdsuite and the
new release of PLINK supports sensitive, high-resolution identifica-
tion of CNVs, estimates of SNP and CNP allele frequencies, and tests
of association with phenotype. When combined with higher-density
hybrid arrays and maps of genome variation at lower frequencies and
in more diverse samples (see URLs section in Methods) it should soon
be possible to undertake a next generation of genome-wide association
studies that provide unbiased, phenotype-driven genome screens for a
deeper and more detailed examination of the role of DNA variation in
human disease.

METHODS
Samples. DNA from the 270 HapMap individuals (Coriell) was independently

prepared, labeled and hybridized to the SNP 6.0 arrays (in distinct plate

layouts) at Affymetrix and the Broad Institute. Varying subsets of these samples

were prepared and hybridized at seven different testing labs to test reprodu-

cibility of genotypes. DNA from 790 individuals (part of the collection of

‘HapMap Phase III’ samples (Coriell)) was prepared, labeled and hybridized at

the Broad Institute.

Normalization and transformations of raw data. The set of 6.9 million probe-

specific measurements from each sample was normalized and summarized

(using standard Affymetrix quantile normalization protocol) on a batch-by-

batch basis. This yielded 2.7 million measurements per sample (from 932,915

copy number probes and 906,600 thousand SNPs with two measurements each

(one per allele)).

in silico gender-mixing experiment. We created 4,000 simulated samples

containing a known deletion–1,000 each of a 3-probe deletion, a 5-probe

deletion, a 10-probe deletion and a 20-probe deletion. Each simulated sample

with deletion size N was generated as follows: (i) choose a random female

sample, (ii) choose a random male sample, (iii) randomly permute the order

of both the SNP and copy number probes on chromosome X, excluding

the pseudo-autosomal regions (this removes natural copy number variation

that may occur in either sample), (iv) insert 200 probes from the female

sample, (v) insert N probes from the male sample and (vi) insert 200

probes from the female sample. Each simulated deletion used a new random

(female, male) pair.

Canary (‘CNP genotyping’). Canary is a one-dimensional GMM to cluster

samples into discrete copy number classes. The initial conditions for each

cluster are specified in a prior-models file that contains CNP-specific estimates

of cluster locations and variances; a series of models are tested consisting of

different number and combination of genotype clusters. Cluster parameters are

updated via expectation-maximization, iteratively estimating cluster member-

ship (E step) and maximizing cluster parameters (M step).

A series of heuristics are used to determine which GMM model is best. Using

this model, each sample i (with intensity xi) is genotyped as the copy number of

the cluster j (with mean mj, s.d. sj and frequency wj), which maximizes

the equation

PðjjiÞ ¼ ðwj=sjÞ� expð�ðxi � mjÞ2=ð2s2
j ÞÞ

Samples are furthermore assigned a confidence reflecting the relative like-

lihood of belonging to the next-best cluster (Supplementary Methods).

Birdseed (‘SNP genotyping’). Birdseed is a two-dimensional GMM to cluster

diploid samples into the canonical SNP genotype classes AA, AB and BB. The

algorithm is analogous to that of Canary, extrapolated to two dimensions

(Supplementary Methods).

Birdseye (‘CNV discovery’). Birdseye is an HMM to find regions of variable

copy number in a sample. The hidden state is the true copy number of the

individual’s genome; the observed states are the normalized intensity measure-

ments of each probe on the array.

For each copy number probe, emission probabilities are empirically esti-

mated for an underlying hidden state of 2 copies as a normal distribution, with

parameters determined by the intensities of all samples in the batch (excluding

those already determined to be copy variable via Canary). Emission probabil-

ities for a state of 0 or 1 copies are imputed using regression parameters learned

from probes with known copy number variation (copy number probes on the

X chromosome (males versus females), and single autosomal SNP probes (the

A allele probe in AA, AB or BB samples)). Emission probabilities for extra

copies are imputed assuming that the differences in like parameters between the

model for each copy number state increase as a power law.

For each SNP, the emission probability for a state of 2 copies is the union of

the three normal distributions specified by Birdseed (modeling the AA, AB and

BB clusters). The natural copy number variation inherent to the individual

alleles across these clusters allows for direct estimation of the null, A, B, AAB,

ABB and AABB clusters. (Future iterations could model and compensate for

crosstalk between the two alleles9.) Emission probabilities for increasing

dosages of each allele are imputed similar to copy number probes.

The transition probabilities between underlying copy number states are

asserted such that transitioning out of a state reflecting normal copy number

(typically 2, but varying for the sex chromosomes) is low, whereas transitioning

within the same state or returning to normal copy number is relatively high.

Furthermore, the transition probability is dependent on the distance between

neighboring probes8. (The algorithm is fairly robust to reasonable variations in

these settings.)

The emission and transition probabilities are combined to find a path

S ¼ {s1, s2...sn} (representing the copy number state at each probe) that

maximizes the probability of observing the data X

logðPðx1; x2::xnÞÞ ¼Si¼1 to nðlogðPðxijsiÞÞ+ logðPðsijsi�1ÞÞÞ+

logðPðstate ¼ 2jsnÞÞ

This maximization is carried out using the standard Viterbi algorithm14.

Segments of continuous copy number C are assigned a lod score reflecting the

log-likelihood of the path including the event (Si ¼ {F1i, Ci, Ci, Ci, y F2i}

versus the log-likelihood of the path excluding the event Si ¼ {F1i, F1i, F1i, F1i,

y F2i} or Si ¼ {F1i, F2i, F2i, F2i, y F2i}), where F represents the copy number

of the flanking segment (Supplementary Methods).

Association testing of CNVs and embedded SNPs. Our model regresses the

phenotype Yon both the sum and the difference of the allelic dosage (0,1,2,3 or

4) for the two alleles, A and B:

Y ¼ b0 + b1 A+Bð Þ+ b2ðA� BÞ+ e

A 2-degree-of-freedom test of the null hypothesis H0: b1 ¼ b2 ¼ 0 provides a

combined test of CNV and allelic variation; the null H0: b1 ¼ 0 gives a test of

copy number variation; the null H0: b2 ¼ 0 gives a test of allelic SNP effects. If

there is either no copy number variation or no SNP variation at a site, we fit a
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reduced model by removing the appropriate term (A + B or A – B,

respectively), equivalent to a standard regression of phenotype on allele dosage

(assuming constant copy number) or copy number alone (assume a constant

allelic background). Moderate correlation between CNV and allelic variation

can impact the interpretation of specific tests of either b1 or b2, although the

joint 2-d.f. test will be valid.

URLs. Birdsuite, http://www.broad.mit.edu/mpg/birdsuite/; PLINK CNV ana-

lysis tools, http://pngu.mgh.harvard.edu/purcell/plink/cnv; 1000 Genomes,

http://www.1000genomes.org.

Note: Supplementary information is available on the Nature Genetics website.
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