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ABSTRACT

Traditional epidemiological study concepts such as case-control or cohort
designs can be used in the design of genetic association studies, giving them a
prominent role in genetic association analysis. A different class of designs based
on related individuals, typically families, uses the concept of Mendelian trans-
mission to achieve design-independent randomization, which permits the testing
of linkage and association. Family-based designs require specialized analytic
methods but they have distinct advantages: They are robust to confounding
and variance inflation, which can arise in standard designs in the presence of
population substructure; they test for both linkage and association; and they offer
a natural solution to the multiple comparison problem. This chapter focuses on
family-based designs. We describe some basic study designs as well as general
approaches to analysis for qualitative, quantitative, and complex traits. Finally,
we review available software. � 2008, Elsevier Inc.
I. INTRODUCTION

Families have dominated genetic studies, dating back to Mendel’s first experi-
ments elucidating the concepts of inheritance in plants. Later, the work of
Galton, Fisher, and others on familial aggregation and segregation was built on
a wealth of information about inheritance patterns derived from family studies.
With the progress of the Human Genome Project, genetic markers spanning the
entire human genome have enabled widespread mapping efforts based on linkage
analysis using families with multiple affected individuals, leading to the
discovery of many genes for Mendelian diseases and traits.

Association analysis differs fundamentally from linkage in that it is not
mandatory to use families, and inferences can be made about genetic association
from unrelated individuals (see Chapter by Schork et al., this volume). We refer
to designs that use unrelated individuals as standard designs (typically case
control or cohort). Family designs for studying association based on trios (two
parents and an affected offspring) were introduced by Rubenstein et al. (1981)
and Falk and Rubinstein (1987), while the analysis of such designs was discussed
by Spielman et al. (1993), Ott (1989), and Terwilliger and Ott (1992).
A. Hypothesis testing in family designs

In testing for genetic association with a standard design, the null and alternative
hypotheses are simply given as:
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H0: no association between the marker and the disease
HA: association is present between the marker and the disease

A rejection simply implies that the disease trait of interest is associated
with the alleles at the marker. With a family-based test (FBAT), the null and
alternative hypotheses can be phrased in terms of the underlying genetics in the
population. As noted in Ott (1989), family designs have no power to detect
association unless linkage is present. Thus, when testing for association or
linkage with family designs, the alternative hypothesis is always HA: Both linkage
and association are present between the marker and a disease susceptibility locus
(DSL) underlying the trait.
There are three possibilities for the null hypothesis in a family design:

(1) H0: no linkage and no association between the marker and any DSL
underlying the trait.

(2) H0: linkage but no association between the marker and any DSL underlying
the trait.

(3) H0: association but no linkage between the marker and any DSL underlying
the trait.

When testing candidate genes, or in a whole genome scan, the appropriate null
hypothesis will ordinarily be the first null, H0: no linkage and no association.
However, if we are testing for association in a study that has known linkage in
the region of testing, then a more appropriate null hypothesis is the second, H0:
linkage but no association. This distinction is not relevant when our sample
consists of parents and one offspring. However, when the sample includes
multiple offspring from the same family, with or without parents, the distribution
of the test statistic under the null differs, depending on whether linkage is
assumed to be present. In Section III, we will show how to construct valid tests
under both types of null hypotheses.

The third null hypothesis, H0: association but no linkage was proposed
by Spielman et al. (1993), when they introduced their transmission disequilibrium
test (TDT) to test for linkage in a setting where association had been demon-
strated in several population studies, but conventional linkage analysis failed to
find evidence of linkage. However, as the distribution of family data under the
null hypothesis is the same for the first and third null hypotheses (i.e., the null
distribution depends only on whether linkage and multiple sibs are present), we
usually consider only the first and second nulls. We remark that some authors
(Guo et al., 2007) seem to prefer the null hypothesis

(4) H0: no linkage or no association between the marker and any DSL
underlying the trait.
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Because the distribution under the null must consider the possibility of linkage
without association, the distribution of the data under the null is the same as that
for the second null hypothesis, and the two are thus equivalent, in the sense that
any test valid for the second is valid for the fourth.
B. The TDT test for trios

The basic family design is the trio, consisting of two parents and one offspring.
The TDT test (Spielman et al., 1993) is the standard approach to the analysis
when the offspring is affected with the trait of interest. The analysis is similar in
principle to the alleles test in a case-control analysis, in that the number of
A alleles, for example, among the cases is compared to the number expected
under the null hypothesis. The main difference is how the number expected is
computed under the null. With a case-control (or more generally, a standard)
design, the number expected is computed by assuming the distribution of alleles
is the same in cases and controls under the null, and by using that common
distribution to derive an expectation for the affected group. In contrast, the trio
design, and family-based designs in general, relies on using Mendel’s laws to
compute expectations for the offspring based on their parent’s genotypes.

The basic design is diagrammed in Fig. 10.1. The analysis is very intuitive.
If any of the three null hypotheses mentioned above holds, then Mendel’s laws
dictate the transmission of alleles from parents to offspring. The mother can only
transmit the A allele and is thus not informative about association of any allele
with disease in the offspring. The father transmits either A or B with probability
50/50. Thus, the child is either AA or AB, with probability 50/50. The TDT test
consists of using the A alleles transmitted from heterozygous parents to their
offspring (nA). Under any H0, nA follows a binomial distribution with p ¼ 0.5
and n ¼ the number of heterozygous parents. Because parents’ transmissions
are independent, each heterozygote parent has probability 0.5 of transmitting
AB AA

p (AA) = 0.5 p (AB) = 0.5

Figure 10.1. Trio Design—the TDT. Family-trios are the basis of the transmission disequilibrium test

(TDT); it compares the observed number of the A alleles transmitted to the affected

offspring with those expected by Mendelian transmissions. An excess of A (or B) alleles

among the affected suggests that a DSL for the trait is in linkage and linkage disequilib-

rium (LD) with the marker locus.
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the A allele. Thus, one can compute an exact test of the null hypothesis, or an
asymptotic Z or �2 test based on this binomial distribution. The TDT usually refers
to the �2 version of the binomial test.

As in the alleles test commonly used in standard designs (Chapter by
Schork et al., this volume), the potential sample size is twice the number of trios
because each individual has two alleles. With the TDT test, however, that
advantage is offset, as the transmissions from homozygous parents are not used.
Thus, the effective sample size may be considerably less than the number of trios,
depending on allele frequency. If there are multiple affected offspring, then the
same test remains valid (counting n and nA as the total number of heterozygous
parent transmissions to all offspring and the number of A allele transmissions
from heterozygous parents to all offspring, respectively), provided the null
hypothesis tested assumes no linkage because parental transmissions to different
offspring remain independent when there is no linkage between the marker and
any DSL affecting the trait.

The derivation of the TDT leads to an intuitive justification for the
premise that both linkage and association must be present under the alternative.
If there is association, but no linkage, between the marker and the DSL in
the parent population, then the marker alleles in the parents are transmitted
independently of the DSL alleles, and there will be no association between the
marker and any DSL in the offspring. If there is linkage of the two loci in
the parents, but not association, then the two loci will be linked in the offspring,
but different marker alleles will be transmitted with different DSL alleles in
different families, so there will be no “population” association in the offspring.
Formally, Vansteelandt et al. (2007) have shown that conditioning on the
parents’ genotypes serves to eliminate any potential confounding in the test of
association, making it robust not only to population stratification and admixture
but also to potential model misspecification.
C. Extensions to the TDT

Because of its great success in the analysis of trio data, there is a wealth of literature
on extensions of the basic TDT. Curtis and Sham (1995a), Bickeboller and
Clerget-Darpoux (1995), and Spielman and Ewens (1996) describe extensions
for multiallelic tests. Schaid (1996) put the TDT test into a more general context
of a score test for multinomial data, showing that the TDT is optimal for an
additive alternative, and providing tests for dominant and recessive models as well.
Spielman and Ewens (1998), Curtis and Sham (1995b), S c h a id a nd L i ( 19 97 ),
Rabinowitz and Laird (2000), and Fulker et al. (1999) discuss family tests when
parents are missing and/or for general pedigree designs. Martin et al. (2000),
Horvath and Laird (1998), and Lake et al. (2000) describe methods for general
pedigrees that are also valid when testing for association in the presence of linkage.
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Fulker et al. (1999), Abecasis et al. (2000), Rabinowitz (1997), Horvath et al.
(2001), and Laird et al. (2000) discuss extensions for quantitative traits. An
overview of analysis methods for family designs is given by Zhao (2000). We will
consider many of these extensions in Sections III and IV.
D. Design issues

There are many possible family configurations that can be used in family designs:
trios, sib pairs, general nuclear families (with or without parents), and more
general pedigrees. The trio design is generally the most powerful among family
designs with one affected offspring per family. Although many methods have
been proposed for using incomplete trios with only one parent, such methods can
be biased (Curtis and Sham, 1995b) with biallelic markers, and generally it
will be necessary to have at least one additional offspring to capture information
from the family. Figure 10.2 shows some power comparisons for four designs: the
case-control, the trio, discordant sib pairs (DSPs) (without parents), and discor-
dant sibships (no parents, one unaffected offspring and two unaffected siblings).
All four of these designs have the same number of affected cases. Panel (A)
shows power for a rare disease (prevalence 0.1%) and panel (B) shows power for a
common disease (14%). Both cases assume an additive disease model with allelic
odds ratio of 1.3.

With rare disease, the trio design, followed by the case-control, is the
most powerful relative to the number of affected offspring that need to be
recruited. However, more genotyping is required (three genotypes per case, as
opposed to two per case in the case-control design). In addition, it can be difficult
to recruit parents; notable exceptions are childhood illnesses and when using
samples originally designed for linkage analysis. With more common diseases, the
case-control design is more powerful, followed closely by the parent–offspring trio
and the discordant sibship trio. At both levels of prevalence, the DSP design is
considerably less powerful than either the trio or the case-control (Witte et al.,
1999), although it requires less genotyping than either of the other family designs.

We note that unaffected siblings are most commonly used in family-
based designs to compensate for missing parents. However, even when parents
are present, information can be gained about association by using transmissions
to unaffected offspring in the case of common disorders (Lange and Laird, 2002a;
Whittaker and Lewis, 1998).

Figure 10.3A shows how the power of the basic TDT can be increased
(or decreased) by using information from an additional unaffected offspring
when disease prevalence is 0.3. Here the dotted horizontal line indicates power
for the TDT that discards the unaffected offspring. The unaffected offspring are
included by using an offset �Y (see Section III); when the offset is zero, unaffected
offspring are not included. When the offset is close to the prevalence, the
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Figure 10.2. Power comparison between case-control studies and family-based designs. The estimated power levels for a case-control study with 200 cases

and 200 controls are compared with those for various family-based designs: 200 trios (of an affected offspring plus parents), 200

discordant sibling (sib) pairs (DSPs; one affected and one unaffected) without parents, 200 “three discordant offspring (at least 1

affected and 1 unaffected) and no parents.” Discordant sib pair designs have 50% less power than case-control designs, (Witte et al.,

1999). For the rare diseases (A), trio designs are more powerful than case-control designs. For common diseases (B), case-control

designs are slightly more powerful than trio designs and designs with 3 discordant sibs. Although it is not shown here, for larger-effect

sizes (e.g., odd ratios greater than 2), unaffected probands contain more information and the DSP design can achieve power levels

that are similar to those of trios designs. The power calculations for both the family designs and the case-control designs were done in

PBAT (v3.3) using Monte-Carlo simulations. These figures are reprinted from Laird and Lange (2006).
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power is maximized; but if the offset is too large, too much weight is given to
unaffected offspring and power is lost relative to the TDT. With rare disease,
there is little to be gained from using an offset, as the maximum power is only
slightly above the TDT, but again, using an offset that is too large can have
negative consequences (Fig. 10.3B).

Table 10.1 shows some design and power considerations for binary traits
that depend upon ascertainment conditions and family design. These power con-
siderations assume that the optimal offset is used (see Section III) and that there is
no environmental correlation between sibling phenotypes. As such, they may
be slightly optimistic for designs with multiple affected offspring. For 200 families,
we consider a common and a rare disease and two ascertainment conditions.



Table 10.1. Design and Power Considerations for Dichotomous Traits

No. of genotypes

per family

Family type:

No. of offspring

No. of

parents

K ¼ 0.3,

MAF ¼ 0.2

K ¼ 0.05,

MAF ¼ 0.05

A B A B

2 2 0 0.40 0.55 0.46 0.48

3 1 2 0.52 – 0.73 –

3 3 0 0.65 0.68 0.61 0.61

4 2 2 0.69 0.59 0.76 0.73

4 4 0 0.79 0.79 0.70 0.70

5 5 0 0.92 0.85 0.83 0.83

K: disease prevalence, A/B: Ascertainment condition, MAF: minor allele frequency of DSL.
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Ascertainment conditionA requires at least one affected offspring per family, while
ascertainment condition B requires at least one affected and one unaffected off-
spring per family. We assume the disease prevalence is used for the offset.

For a prevalence of 30%, DSPs without parents are as powerful as trios
consisting of one affected proband and parents. When the parental genotypes are
missing, discordance-ascertainment conditions can more than compensate for
the power loss caused by the missing parental information. When two or more
additional offspring are available, there is little effect of the ascertainment
condition on power, except that if parents are available, it is advantageous to
have more affected offspring, making ascertainment condition A preferable.

For rare disease/rare variant, if parents are missing, it is necessary to
genotype more individuals per family to attain comparable power to those cases
without missing parents. As a rule of thumb, three additional siblings compen-
sate for the power loss caused by two missing parents. Here there is little effect of
ascertainment scheme on power because with a rare disease, most siblings will be
unaffected.

The situation with quantitative phenotypes is somewhat different.
Although it is certainly possible to ascertain individuals into a study based on
their level of a quantitative trait (Risch and Zhang, 1995), such designs are
difficult to implement. More likely, individuals are ascertained according to a
qualitative trait, and quantitative phenotypes are also measured, for example,
asthma and FEV1, or obesity and BMI. With the availability of large cohort
studies with family data, we can have family designs in which there is no
ascertainment with respect to trait of interest. This can be a significant advan-
tage for the analysis of quantitative traits, although population-based samples
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will generally not be very useful for the analysis of rare qualitative traits.
Ascertainment of subjects relative to the phenotype of interest is important
because it can dictate how the analysis should be carried out (see Section III),
and the power can depend quite heavily on the combination of ascertainment
conditions and analytic method.

Figure 10.4 illustrates the effect on power of ascertainment conditions
and analysis choices when dealing with a quantitative trait. The figure compares
two strategies: random sampling from the population and selection of only those
subjects whose trait is in the top 10% (considered affected). The analytic choices
are to use a TDT with only affected offspring or to use the quantitative trait in
the analysis (see Section III). When there is no ascertainment condition relative
to the trait, then it is far preferable to analyze the quantitative trait, with an
offset close to the population mean, which can be well estimated by the sample
mean in this setting. With ascertainment of affected offspring only, using the
basic TDT on the affected is always the best strategy; considerable power may
be lost by analyzing the quantitative trait, unless the offset is carefully selected.
Using the sample mean as an offset gives poor results because the sample mean is
a biased estimate of the population mean.
II. ANALYSIS METHODS: FBAT AND PBAT

Here we discuss a very general approach to the analysis of family-based data. This
approach permits any type of genetic model, multiallelic data, general family
design, different null hypotheses, any phenotypic trait (binary, time-to-onset,
measured, repeated measures, multivariate), haplotypes, and multiple markers.
To motivate this approach, it is important to consider those aspects of the TDT
that make it so robust and powerful. First, the test statistic is computed condi-
tionally on the observed parental genotype. This conditioning serves to elimi-
nate any assumptions about the distribution of alleles in the population, such as
Hardy-Weinberg, or that allele frequencies are the same in cases and controls
under the null. Second, the test statistic is computed conditional on the trait;
this serves to eliminate assumptions about the distribution of the trait in the
population. Finally, the random variable is the offspring genotype. Its distribu-
tion under the null is computed using Mendel’s first law—thus the validity of the
test statistic relies only on Mendel’s law of random transmission of each parental
allele with equal probability to each offspring.

The FBAT approach (Laird et al., 2000) to the analysis of family data
uses these same underlying principles in constructing a test statistic that gen-
eralizes the TDT to more complex situations. The general idea is the same:
We condition on the traits (which can include any type and number of traits)
and on parental genotypes (which can include multiple markers and haplotypes),
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FBAT for offset choices between 0 and 1. Significance level � ¼ 0.01; (A) Additive

model—total population sample with mean y� ¼ 0:39, maximal power of FBAT 0.75,

power of FBAT-o 0.74, power of PDT 0.73, and power of QTDT 0.74 (n ¼ 200);

(B) Additive model—affected sample with phenotypic mean y� ¼ 2:2, maximal power

of FBAT 1.00, power of FBAT-o 0.04, power of PDT 0.034, and power of QTDT 0.01

(n ¼ 200). These figures are reproduced from Lange et al. (2002).
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and we compute the distribution of the test statistic from the distribution of
offspring genotypes under the null. When parents’ genotypes are missing, we
condition, instead, on the sufficient statistic for parental genotype (denoted Si);
see subsection onMissing Parents or Founders below. When analyzing haplotypes,
we condition on the sufficient statistic for missing phase as well.
A. General test statistic

The test statistic uses a natural measure of association between two variables,
a covariance between the traits and the genotypes. We define the covariance as

U ¼ STijðXij � EðXijjSiÞÞ; ð1Þ
where i indexes family and j indexes nonfounders in the family, and summation is
over all i and j. Here, Tij is a coding function for the trait of interest and Xij is a
coding function for the genotype. The usual sample covariance centers both vari-
ables around their samplemeans, but with the FBAT statistic, Xij is centered around
its expected value, E(XijjSi), conditional on the sufficient statistic for the parental
genotype, and computed underMendel’s laws. As we discuss below,Tij is typically a
centered phenotype. The coding function for the trait allows us to incorporate both
qualitative and quantitative phenotypes, as well as time to onset. This basic formula
can be used in virtually every setting; the key is the definition of the coded traits and
the coded genotypes and how the distribution is computed under the null.

Note that the “centered genotype” (Xij�E(XijjSi)) can be thought of as
the residual of the “transmission” of parental genotype to offspring. For any coded
genotype, (Xij�E(XijjSi)) ¼ 0 if both the parents of the ijth offspring are
homozygous, regardless of what particular genotypes the parents have—that is,
transmissions from homozygous parents do not contribute to the test statistic.
With one homozygous parent, if we define Xij as the number of A alleles, then
(Xij�E(XijjSi)) ¼ 1/2 if A is transmitted and �1/2 if the A is not transmitted
(because again, transmissions from the other parent, who is homozygous, do
not count). Finally, with two heterozygous parents, (Xij�E(XijjSi)) equals 1, 0,
or �1, depending upon the number of A alleles transmitted (2, 1, or 0). Thus, in
the special case where Tij ¼ 1 for all i and j (see below),U simply counts the total
number of A transmissions from heterozygous parents, minus their expected
number (nA– n/2), in the notation of Section I.B.
B. Coding the genotype

The coded genotype is chosen to reflect the selected mode of inheritance.
For example, for the additive model, Xij counts the number of A alleles; for
the recessive, Xij is 1 if the ijth offspring’s genotype is AA and 0 otherwise.
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In a multiallelic setting with p alleles, Xij is a p-dimensional vector, each element
of the vector coding for a different allele. In this case, U will also be a
p-dimensional vector. Other specifications for Xij will be discussed under multiple
markers and haplotypes.
C. Coding the trait: Dichotomous outcomes

Consider first the case where the phenotype of interest is affection status. Setting
Tij ¼ 1 if affected and Tij ¼ 0 otherwise means the test statistic will not
incorporate information about transmissions to unaffected offspring. Note that
this is equivalent to including only affected individuals in the test statistic.
To incorporate unaffected individuals into the test statistic, we use an offset,
letting Tij ¼ (Yij � �), where Yij is the original 1/0 phenotype and � is a user-
defined offset parameter. Thus, for a dichotomous trait, with Yij ¼ 1 if affected
and 0 otherwise, Tij ¼ 1 – � for affected individuals and �� for unaffected. The
optimal offset (Lange and Laird, 2002a; Whittaker and Lewis, 1998) is approxi-
mately the prevalence of the disorder, � ¼ E(Y). Note that the U statistic can
now be thought of as a contrast between transmissions to affected offspring
weighted by (1��) and unaffected offspring, weighted by �. A contrast is used
because an overtransmission of the A allele to affected offspring should corre-
spond to an undertransmission to the unaffected. As noted in Section I.D
however, assigning too much weight to the unaffected (� much larger than the
prevalence) will result in a loss of power relative to using affected offspring only.
When � ¼ 0, only affected individuals are included.

Of course, a general problem is lack of knowledge about population
prevalence. In addition, with dichotomous traits, ascertainment on the trait
usually means that it is not possible to estimate � from the data in hand.
Fortunately, power of the test is reasonably good in a neighborhood around �
(Lange and Laird, 2002a). An alternative approach to choosing the offset is to
choose � to minimize var(U). This gives an easily computed offset (Lunetta et al.,
2000) that is close to the sample prevalence. However, the offset can be very
large if a large number of unaffected individuals are included in the sample.
Because minimizing the variance does not maximize power, we suggest limiting
the offset size to a maximum of 0.5.

Quantitative and time-to-onset traits, as well as adjustment for
covariates, will be discussed in Section II.H.
D. The test statistic: Large sample distribution under the null

The distribution of the FBAT statistic under the null hypothesis is obtained by
treating the Xij as random, but conditioning on the trait, Tij, and the sufficient
statistic. As E(U) ¼ 0 by construction under H0, it remains to normalize U by
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its standard deviation, again computed under the conditional distribution of
offspring genotype, given offspring trait and Si. For univariate X or T

Z ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðUÞp ; or equivalently; �2

FBAT ¼ U2

varðUÞ ;

where

varðUÞ ¼
X
i

X
j;j0

TijTij0covðXij;Xij0 ; Si;Tij;Tij0 Þ ð2Þ

and covðXij;Xij0Si;Tij;Tij0 Þ is computed conditional on the traits and the suffi-
cient statistics, assuming the null hypothesis is true. Note that this covariance
only depends on Si and not the traits when no linkage is part of the null
hypothesis. For testing no association in the presence of linkage, an empirical
variance can be used to estimate var(U) (Lake et al., 2000). For large samples, Z is
approximately distributed as N(0,1), and �2

FBAT is distributed as approximately
�2 on one degree of freedom. In the setting where U is a vector because of either
multiple alleles or multiple traits, var(U) is a variance/covariance matrix, and
the test statistic is the quadratic form UTvar(U)�U, which is distributed as
�2 with degrees of freedom equal to the rank of var(U) (Laird et al., 2000;
Lange and Laird, 2002b).
E. The TDT and x2
FBAT

When we include only affected offspring (Tij ¼ 1), and all parents are known,
then as previously noted,U¼ (nA� n/2), where nA is the number of heterozygous
transmissions of A to all affected children, and n is the number of heterozygous
parent–child pairs. Under a null hypothesis that includes no linkage, multiple
offspring are independent, and var(U) reduces to

varðUÞ ¼ Sij varðXijjSiÞ ¼ n
1

2

� �2

because each transmission has variance equal to (1/2)2. As a result

�2
FBAT ¼ ðnA � n=2Þ2

nð1=2Þ2 ¼ ðnA � nBÞ2
n

where nB is the number of transmissions of the B allele from heterozygous parents
to affected offspring. Thus, �2

FBAT is identical to the TDT when (1) only affected
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offspring are included, (2) parents’ genotypes are known, and (3) the null
hypothesis assumes no linkage. In other cases, �2

FBAT can be viewed as generalizing
the TDT.
F. Computing the distribution with general pedigrees and/or
missing founders

As defined above, the test statistic is very general. It applies to trios, parents with
multiple offspring, families without parents, and general pedigrees, with or
without founder genotypes. The summation over i denotes the independent
pedigrees or families, and the summation over j denotes summation over all
offspring in the pedigree. However, exactly how the distribution of each Xij is
computed depends upon the family structure and whether founder genotypes are
known. For trios, it is straightforward to compute the distribution of Xij given
parents with known genotype, using Mendel’s first law. When there are multiple
offspring and no linkage, transmissions to all offspring in the family are indepen-
dent, and one can treat each offspring as if it comes from a separate family. When
linkage is present, the covariance between multiple offspring in the same family
depends upon the unknown recombination fraction. To remove dependence of
the joint distribution on the unknown recombination fraction, we can condition
the distribution on patterns of identity by descent observed among the offspring
(Rabinowitz and Laird, 2000). This approach to computing the conditional
distribution of Xij leads to discarding many families as noninformative, especially
when parental genotypes are unknown. Thus, we generally use an empirical
variance, as described above.

These basic ideas extend easily to general pedigrees, where the geno-
types of all founders are known, and instead of conditioning on parents, we
condition on the founders of the pedigrees. There is potential for a considerable
gain in power in this setting when we analyze pedigrees, rather than treating all
families within the pedigree as separate families (Laird and Lange, 2006;
Rabinowitz and Laird, 2000).

When parents or founder’s genotypes are unknown, the situation is
slightly more complex, but the joint distribution of offspring outcomes can
be calculated using the conditioning algorithm described in Rabinowitz and
Laird (2000). The basic idea of this algorithm is to condition the distribution
of observed offspring genotypes on the sufficient statistics for the unobserved
parental genotypes. In this way, the distribution will not require making any
assumptions about the distribution of the unobserved parental genotypes, and
robustness to population substructure is maintained. To give an example, suppose
we have a family with two offspring and no parents. The conditional distribution
of the two offspring genotypes depends upon what genotypes are observed in the
two offspring. If we observe that both genotypes are AA [or BB], then nothing
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can be inferred about the parents except that eachhas anA [or a B]. The probability
of other possible outcomes for the two offspring will depend upon the unknown
parental alleles. Thus, such pairs of offspring are not informative.

If instead, we observe one AA and one BB offspring, then we know that
the parents are both AB. To condition on the sufficient statistic for missing
parents, we require that all possible outcomes contain one AA and one BB
offspring. Any other possible outcome—for example, (AA,AB)—would not
allow us to infer that the parents are both AB. Thus the two possible outcomes
conditioning on the sufficient statistics are (AA,BB) and (BB,AA), assuming
order matters. For an additive coding with X denoting the number of A
alleles, it is straightforward to show that E(Xi1jSi) ¼ E(Xi2jSi) ¼ 1, var(Xi1jSi)
¼ var(Xi2jSi)¼ 1 and cov(Xi1, Xi2)¼ –1. Now consider this family’s contribution
to U and var(U). Using Eqs. (1) and (2) above, we can show that the contribu-
tion to U is (Ti1 � Ti2) and the contribution to var(U) is (Ti1 � Ti2)

2, assuming
the first child is AA and the second is BB. Thus, families in which the trait is
constant (i.e., both affected or both unaffected) will make no contribution to the
test statistic, but DSPs will be informative.

Finally, if we observe (AA,AB), we know that one parent must be AB
and the other must have an A, but otherwise we cannot distinguish between
[AA,AB] parents and [AB,AB] parents. Because transmission probabilities differ
for the two possible parents, we must therefore keep fixed the set of observed
genotypes, and permute them between the two offspring, as above. Again, only
DSPs will be informative.

The conditioning algorithm determines the joint distribution of all
offspring genotypes in a family or a pedigree; hence, it is also possible to carry
out exact tests of H0 by computing the exact probability that the random �2

FBAT

test statistic exceeds the observed statistic under the null (Schneiter et al., 2005).
The exact p value can also be estimated via Monte Carlo by drawing from the
conditional distribution of offspring genotypes.
G. Haplotypes and multiple markers

A common scenario in association studies uses multiple, closely spaced markers,
usually single nucleotide polymorphisms (SNPs), often within the same gene.
Here, the null hypothesis of interest may be whether any marker is associated
with a DSL underlying the trait. Testing each marker separately and then using
FDR or Bonferonni to adjust the p values for multiple testing is one strategy, but
may be quite inefficient when SNPs are in high linkage disequilibrium with each
other (Chapter 10 ). Two approaches we discuss here use haplotypes (Chapter by
Liu et al., this volume) or multimarker tests.
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Amultilocus haplotype refers to the set of alleles, one from each marker,
that are inherited from a single parent, either from the mother or from the father.
There are several circumstances when using haplotypes for testing may be prefer-
able to single-marker testing. If a disease locus is present in the region spanned by
themarkers, but does not correspond exactly to any of themarkers tested, theDSL
may not be in sufficiently high disequilibrium with any one marker to be detected
by one-at-a-time testing of the markers. If we use enough markers to capture the
haplotype diversity in the population, then the haplotypes should capture the
variation directly at the disease locus. Alternately, if the DSL is a series of changes
in base pairs at two or more of the observed markers, then using haplotypes should
again be more powerful than one-at-a-time testing. However, if a single marker
corresponds to only DSL in the region, or if many markers are included in the
haplotype construction that are not in high LDwith the putative DSL, then using
haplotypes can be a poor testing strategy.

If each person’s haplotype is observed, then the set of markers forming
the haplotypes can be considered as a single marker with many alleles, and
methods used for testing association with multiallelic markers apply. Although
more can be inferred about haplotypes in the family-based setting than in
population-based studies because of knowledge of parents or sibling genotypes,
phase (i.e., which parent transmitted which allele) cannot always be resolved
even in families, especially if parents’ genotypes are missing. The principle of
conditioning on the sufficient statistics for missing parental genotypes extends
quite straightforwardly to handle missing parental phase (Horvath et al., 2004).
One now obtains a distribution for the phased offspring genotype, conditioning
on the sufficient statistic for both parental genotypes and possibly missing phase.
The FBAT test statistic can be computed in the same way, recognizing that the
set of markers forming the haplotypes is treated as one multiallelic marker with
each haplotype forming an allele. In principle, with n SNPs, there can be 2n

haplotypes, but in practice the number of haplotypes observed in a family-based
analysis is usually quite a bit less than 2n. The availability of family data enables
one to eliminate many possibilities as not compatible with observed family data.

The haplotype analysis implemented in FBAT uses the principle of
conditioning on the sufficient statistics for both phase and any missing parental
data, and on offspring traits, and hence is not biased by population stratification
and/or admixture. Either biallelic or multiallelic tests are computed in the usual
way, and the empirical variance option can be used to account for the presence of
linkage. Any trait can be used. A feature of the implementation of the condi-
tioning algorithm is that it also allows one to recover information from only
partially phase known families by using weights (Horvath et al., 2004).

As the number of SNPs increases substantially (more than 5–10), the
attractiveness of a haplotype analysis diminishes because of increasing difficulty
in resolving phase. In addition, if founder information is missing, it may take
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considerable computer time to determine the conditional distribution. In such
cases, an alternative approach uses multimarker tests. The basic idea of a multi-
marker approach is very straightforward; in the context of a case-control study,
it is similar to a Hotelling’s T2 test where the vector of marker values is tested for
equality in the cases and controls. In the family context, multimarker tests are
constructed by letting Xij be a vector, where each element of the vector corre-
sponds to a different coded marker value. The full-joint distribution of the
different elements of Xij would require knowledge of the haplotype distribution,
as discussed above. To circumvent conditioning on unknown phase, we instead
use an empirical estimator of var(Xij) in calculating var(U). The resulting �2

FBAT

has the same quadratic form as in the multiallelic setting, with degrees of
freedom again equal to the rank of var(U). The rank will be generally equal to
the number of markers, unless two or more of the markers are in near perfect LD
(Rakovski et al., 2007). Another approach to the multimarker testing with
families is discussed by Xu et al. (2006).

H. Coding the trait for complex phenotypes: Age-to-onset
phenotypes, quantitative outcomes, and FBAT-GEE

In principle, Tij can be any function of the phenotype and other individual
characteristics, as long as the trait does not depend on the genotype being tested.
When the phenotype of interest is time to onset, a strategy similar to the log-rank
test may be used, letting Tij be log-rank residuals, computed at each failure time
(Lange et al., 2004a).

For quantitative phenotypes, typically, a phenotypic residual is used for
the coded trait, that isTij¼ (Yij� �), where Yij is the original phenotype and � is a
user-defined offset parameter. Unless subjects have been ascertained into the
study on the basis of their quantitative trait, the optimal choice is the phenotypic
sample mean. In such situations, the FBAT statistic for quantitative phenotypes
has higher statistical power than for dichotomous traits (Lange et al., 2002).
However, to benefit from the advantages of quantitative traits in the analysis, a
few hurdles have to be overcome. Quantitative traits such as BMI or lung volume
also depend on many other nongenetic factors. These can be proband character-
istics but also include environmental influences. For example, BMI will depend
on age and gender as well as on smoking history and dietary habits. The unadjust-
ed, raw measurements of such traits will not accurately reflect affection status
(e.g., obesity) or the severity of the disease. In such situations, it is preferable to
adjust the raw measurements for all known covariates because this decreases the
outcome variability, and to compute the FBAT statistic based on the phenotypic
residuals.

For lung-function phenotypes, such as FEV, standard adjustment for-
mulas have been derived (Ware and Weiss, 1996). However, such adjustment
formulas typically are based on unaffected probands and, consequently, do not
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always incorporate all disease-specific confounding variables. For example, for
FEV1, the standard adjustment includes gender and height but not smoking
history, which is an important factor when looking at diseases such as chronic
obstructive pulmonary disease. A detailed discussion of the limitations is given
by Naylor et al. (2005).

In such situations, an alternative approach is to adjust the raw pheno-
typic measurements, by regressing the phenotype on such confounding variables,
and use the phenotypic residuals in the analysis. Such an adjustment will be
study specific, requires statistical model building, and might not be reproducible
in other studies that may not have recorded the same confounding variables.
The goal of such a within-study adjustment is to measure and incorporate all
environmental factors and other covariates into the analysis. However, for many
phenotypes, the confounding variables are not necessarily known prior to the
study design or can be difficult to measure and model.

A second analysis issue for quantitative traits is the multiple testing
problem. While affection status is defined by only one variable, the disease and
its severity are often described and characterized by a set of quantitative pheno-
types. Such quantitative phenotypes typically cluster together into symptom
groups. For example, in asthma studies, multiple quantitative phenotypes are
recorded that describe lung function (FEV, FVC) (DeMeo and Silverman, 2003).
For most complex diseases, such symptom groups of quantitative phenotypes can
be defined based on clinical knowledge, knowledge about the underlying
biological processes, or simply based on phenotypic correlation. In such situa-
tions, it is not desirable to test all quantitative phenotypes individually and
adjust for multiple testing. There are two reasons for this: first, the association
tests for one symptom group will be correlated, and adjustments for multiple
testing tend to be conservative in such situations. Second, if the assumption
holds that the phenotypes in a symptom group are influenced by the same
pathway or share similar environmental confounding, it will have more power
to look at the entire symptom group and test all phenotypes jointly in a single
multivariate test, without having to adjust for multiple comparisons.

In the FBAT context, such a multivariate test was introduced by Lange
et al. (2003b), the so-called FBAT-GEE statistic. Like the original FBAT statis-
tic, FBAT-GEE is easy to compute, tests all phenotypes simultaneously, and does
not need distributional assumptions about the phenotypes that will be tested,
even if the tested phenotypes are of different variable types (e.g., normally
distributed phenotypes, count variables). Assuming that m traits have been
recorded for each proband and they form a symptom group that we want to
test simultaneously, we denote the vector containing all m observations for each
proband by Yij ¼ (Yij1, . . ., Yijm) where Yijk is the kth phenotype for the jth
offspring in the ith family. The multivariate FBAT-GEE statistic is then derived
by defining a coding vector Tij.
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Tij ¼ Yij � Ŷij ¼
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Ŷijm

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

where the Ŷijk’s are either the observed sample means for the kth trait or
the predicted trait values based on a regression model for covariates. Then the
univariate coding variable Tij in the FBAT statistic is replaced by the vector Tij

and the FBAT-GEE statistic is given by,

TFBAT�GEE ¼ CTV�1C:

Under the null hypothesis, the FBAT-GEE statistic has a �2 distribution with
m degrees of freedom. The FBAT-GEE can also be derived based on a generalized
estimating equation model with appropriated assumption about the link func-
tions for each phenotype and the covariance structure. However, because
the FBAT-GEE test is a score test, all these assumptions cancel out in the
derivation of the test statistic and the FBAT-GEE statistic is obtained, making
the multivariate FBAT-GEE robust against distribution assumption about the
phenotype.
I. A General approach to complex phenotypes: Separating the
population and family information in family data

The conditioning of the FBAT statistic on the traits and parental genotypes
means that the FBAT statistic does not use all of the information about linkage
and association that is available in the sample. While this means we retain
robustness, the test is generally not the most efficient. Here we discuss how the
extra information in the data that is not used by the FBAT statistic can be used
for enhancing power of the test statistics. In particular, with the multiple
comparison and model selection issues that arise in modeling complex traits
and in large-scale association studies, this extra information can be used to guide
the testing strategy. Here, we consider a general approach that is based on
separating family data into two independent partitions corresponding to the
population information, and the within family information. The population infor-
mation that is subject to bias by population substructure is used for screening,
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or model development, and the within subject information is used for confirmatory
testing. The idea is similar to cross-validation, except that the partition into the
t wo c om po ne nts i s n ot ra nd om .

Consider a simple case of offspring–parent trios. The full distribution
for the data consists of a joint distribution for the offspring phenotype, Y,
the offspring genotype, X, and the parental genotype, P (or more generally the
sufficient statistics for parental or founder genotypes, S). We partition the joint
distribution into two independent parts:

Pð Y ; X ; SÞ ¼  PðXj Y ; SÞP ðS ; Y Þ: ð 3Þ
Model building, hypothesis generation, and screening can be based on S

and Y, so that subsequent hypothesis testing using any test statistic whose
distribution is based on P(X j S,Y) will be independent of the selected model.
Note that Eq. (3) simplifies further under a null hypothesis assuming no linkage
because P(X j Y,S) can then be replaced by P(X jS).

There are numerous ways to model P(S,Y), in order to obtain information
about association. In general, the approach will depend on the specific design, for
example, is Y quantitative or qualitative. To illustrate, consider testing a quantita-
tive phenotype with a single marker. To utilize a population-based approach,
we ( Lange et al., 2002, 2003a) proposed a “conditional mean model”:

Eð Y Þ ¼  m þ aEð Xj SÞ ð4Þ
The parameter a which determines the effect size can be fit using

ordinary regression of the phenotype Y on E(Xj S). Note that for doubly homozy-
gous parents, X ¼ E(X jS); otherwise we can think of X as missing if parents are
informative, and E(X jS) replaces the missing X. In effect, Eq. (4) defines a
population regression where some Xs are imputed using parental information
(or the sufficient statistics for parental information if parents are missing).

As the regression uses only ( Y,S ), all the information from the regres-
sion will be independent of the FBAT statistic by Eq. (3). Model (4) can be fit
repeatedly for any choice of genetic model, any number of phenotypes, and any
number of markers. The results of the regression can be used for generating
p-values for testing the H0; a ¼ 0 or by computing the conditional power of the
FBAT statistic for an effect size of a. The power calculation also depends upon the
observed parental genotypes and traits (La ng e et al., 2002, 2 00 3a ). I n g e n e ra l,
selection based on the conditional power is preferable (Van Steen et al., 2005).

This basic approach has been extended to handle longitudinal and
repeated measures (FBAT-PC) (Lange et al., 2004b) and multivariate data
( Su et al ., 2006 ) by using the screening stage to select optimal linear combina-
tions of traits for subsequent testing and testing for multiple markers (Xu et al.,
2006). Jiang et al. (2006) proposed a method to determine the genetically
relevant age range for time to onset that is particularly useful for diseases in
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which an early onset suggests a strong genetic component, while a late onset is
mainly attributable to environmental effects, for example Alzheimer or child-
hood asthma.
J. Testing strategies for large-scale association studies

Amajor scientific obstacle in genome-wide association studies is the hundreds of
thousands of SNPs and potential statistical tests that may be computed, resulting
in multiple testing issues. Multistage designs have been proposed for case/control
studies (Hirschhorn and Daly, 2005; Thomas et al., 2004) as one way of handling
this problem. The number of genotyped SNPs is reduced in each stage of the
design, so that genome-wide significance is achieved step-by-step. The screening
approach for family studies described above is well suited to a genome-wide
association study with quantitative traits (Van Steen et al., 2005). The approach
is illustrated in Fig. 10.5.

With family-based designs, the screening procedure uses all families,
even the “noninformative ones.” Assuming moderate to low effect sizes, simula-
tion studies suggest that if a true DSL or a SNP in LD with a DSL is included in
the data set, it is sufficient to select the highest 10 or 20 SNPs for further testing
and retain high power. The advantage of family-based screening is that the same
data set is used for the screening step and the testing step. This means only one
sample needs to be recruited, and replication in other studies serves the purpose
of generalizing a significant finding to other populations. The strategy has been
successful applied to a 100 k SNP scan for obesity in families from the Framing-
ham Heart Study. Table 10.2 displays the top 10 SNPs from that study, as
determined by estimated power, selected from the 100 k scan, along with their
p values. A novel SNP for BMI was discovered (FBAT p value 0.0026) that would
have been missed by standard approaches (e.g., the Bonferroni or Hochberg
corrections for multiple testing). Using the same genetic model, the finding
was replicated in four independent studies, including cohort, case-control, and
family-based samples (Herbert et al., 2006).
III. OTHER APPROACHES TO FAMILY-BASED ANALYSES,
INCLUDING THE PDT AND THE QTDT

Many methods have been suggested to handle specific issues that arise with
family designs, such as quantitative traits, multiple siblings, or missing parents.
It is beyond the scope of this chapter to provide a review of all such methods, but
here we mention a few of the more popular methods used to handle general
family data, with either quantitative or qualitative outcomes. We first make some
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Figure 10.5. The screening technique. The conditional mean model approach is used to minimize

the multiple testing problem. In this example, we look at 1 quantitative trait and

M SNPs. In the first step, the marker information in the offspring is assumed to be

missing and imputed, using the expected markers scores conditional upon the parental

genotypes/sufficient statistic. Then the conditional mean model is used to estimate the

power of the FBAT statistic for each SNP. The power depends on observed parental

genotypes and the effect size estimated from the conditional mean model. In the final

step, the K SNPs with the highest power estimates are tested for association with the

FBAT statistic at a Bonferroni-adjusted significance level of � 0=K. Since only K SNPs

have been selected for testing, it is only necessary to adjust for K comparisons instead

of M. (A) Step 1: Screen SNPs with conditional mean model for testing via the FBAT

statistic. (B) Step 2: Select the top K SNPs for testing via the FBAT statistic.

The p value of the FBAT statistic has to be significant at � 0=K in order to achieve

overall significance. These figures are reproduced from Laird and Lange (2006).
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general remarks about likelihood approaches to the analysis and how they
connect with the FBAT approach. Then we consider the PDT and QTDT in
more detail.



Table 10.2. Screening and Testing of SNPs for Association with BMI

Ranking from

screen SNP Chromosome Frequency

Informative

families p value FBAT

1 rs3897510 20p12.3 0.36 30 0.2934

2 rs722385 2q32.1 0.16 15 0.1520

3 rs3852352 8p12 0.33 34 0.7970

4 rs7566605 2q14.1 0.37 39 0.0026
5 rs4141822 13q33.3 0.29 27 0.0526

6 rs7149994 14q21.1 0.35 31 0.0695

7 rs1909459 14q21.1 0.39 38 0.2231

8 rs10520154 15q15.1 0.36 38 0.9256

9 rs440383 15q15.1 0.36 38 0.8860

10 rs9296117 6p24.1 0.40 44 0.3652

Genome-wide SNPs (86,604) were screened using parental genotypes to find those likely to affect

offspring BMI. The top 10 SNPs from the screening step (ranked by power from most likely to least

likely) are shown. These SNPs were tested using offspring genotypes for association with BMI using

the FBAT. The rs7566605 SNP is highlighted in bold.
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The general likelihood method specifies a probability density for the
observed data, along with a model for how the genotype affects the phenotype.
Either likelihood ratio or score tests can be used to test the hypothesis of no
association. Self (1991) proposed a likelihood method for case-parent trios based
on creating “pseudocontrols,” using pairs of the nontransmitted alleles as unaf-
fected siblings. Assuming a relative risk model for the genetic effect yields the
conditional logistic regression likelihood; using a log-additive relative risk model
yields a likelihood ratio test equivalent to the TDT. As such, this approach
can be implemented using standard software packages for conditional logistic
regression. This popular approach has been extended to haplotypes (Dudbridge,
2003), gene–environment interactions, and gene–gene interactions (Cordell,
2004). It can be easily generalized to multiple affected offspring in the context
of testing a null hypothesis that includes no linkage. When parents are missing
and unaffected siblings are available, the conditional logistic regression approach
still applies, conditioning on family (Witte et al., 1999).

Another approach for the analysis of trios with dichotomous phenotype
data is based on multinomial likelihoods. The contribution of a case parent trio
to the likelihood of the data can be factored as:

Lt ¼ LcLp;

where Lc is proportional to the probability density of the child’s genotype
conditional on parents genotype and the child’s disease status and Lp is
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proportional to the probability density of the parental mating type, given the
child’s disease status. Note that Lc depends only on Mendel’s laws plus
the unknown penetrance functions, that is P(diseasejX), whereas Lp depends
on those factors as well as on the mating type frequencies. Thus, robust and
efficient tests of association can be constructed from Lc alone that do not require
making any assumptions about parental mating type frequencies. Likelihood
ratio tests based on Lc are easily constructed for testing genetic association,
using different genetic models (e.g., additive, dominant) (Clayton, 1999;
Schaid and Li, 1997; Whittemore and Tu, 2000). However, score tests are
generally more popular than likelihood ratio tests, partly because they yield the
TDT when an additive genetic model is used; these score tests are also equivalent
to FBAT tests. More importantly, score tests provide a simple way to extend the
model to accommodate multiple offspring, including unaffected, without the
need to specify the joint distribution of offspring under the alternative. Score
tests only require specifying the distribution of the data under the null. This
approach to factoring the likelihood and constructing score tests has been
extended to encompass quantitative and time-to-onset phenotypes, as well as
multiple offspring (Shih and Whittemore, 2002).

The FBAT statistic is a score test under more general assumptions about
the distribution of the offspring phenotypes (Laird et al., 2000). When parents are
observed, a score test from Lc as defined above will be equivalent to the FBAT
statistic for dichotomous traits. The FBAT and the likelihood approaches diverge
in the treatment of missing parental data, or in the case of haplotypes, when
parental phase is unknown. When parents are missing, the FBAT approach
replaces conditioning on parents by conditioning on the sufficient statistics for
parental genotypes, S. However, the likelihood approach estimates the probabil-
ities of parental mating types from the likelihood, Lp, of the observed parents and
averages E(XjP) over the estimated distribution of parental mating types. It is thus
easy to see that likelihood approaches are generally more efficient: Single cases
without any parents do not have to be discarded as they are in the FBAT condi-
tioning approach, but their inclusion relies on the assumption that their parental
mating type can be estimated from the data on other parents. This is a strong
assumption, and one that is unrealistic in the presence of population substructure.

A series of papers (Kistner and Weinberg, 2004; Kistner et al., 2006;
Umbach and Weinberg, 2000; Weinberg, 1999; Weinberg et al., 1998) describes
an extension of the multinomial model to the Poisson that allows the incorpora-
tion of methods for testing for parental imprinting, gene–environment interac-
tion, and quantitative phenotypes. Rather than score tests, these authors use
likelihood ratio tests. To incorporate multiple siblings, they use Wald tests
computed with an empirical variance to avoid specifying the joint distribution
under the alternative. Missing parents are again handled by estimating a distri-
bution for mating types from the observed parents.
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Likelihood-based approaches to the analysis of family data with quanti-
tative traits assume that the trait follows a normal distribution, with mean
depending linearly on X (Abecasis et al., 2000; Fulker et al., 1999; Gauderman,
2003). Unlike the setting described above, where inference about association is
based on Lc, inferences about the genetic parameters are based directly on the
normal likelihood for phenotype given genotype. Note that Lt can alternatively
be factored as

Lt ¼ Lyx Lx

Where as before, Lt is the likelihood for all the trio data, Lyx is the likelihood
associated with the phenotype distribution, and Lx is the likelihood of the
genotypes, both offspring and parents. Note that basing inferences on Lyx is
potentially biased but fully efficient because there is no information in Lx
about association. A correction for population substructure is made by incorpor-
ating (Xij � E(XijjPi)) into the model for the mean, as described below. We refer
to this as a model-based approach because its validity will generally depend upon
the correctness of the model for the distribution of the phenotypes. Likelihood
ratio tests based on these models can be sensitive to distributional assumptions
and ascertainment conditions.

In general, likelihood-based approaches will often be more efficient than
score tests or other nonparametric approaches, and offer the possibility of testing
nested models, but their validity generally depends upon the correctness of the
assumed likelihood model, that is the distributional assumption about the pheno-
type or the appropriateness of the model for parental mating types when some
parents are missing. Simulation studies are a common way of attempting to
validate likelihood-based approaches in the presence of model misspecification,
but in the absence of theory, simulations offer only limited assurance. In contrast,
the validity of the conditioning approach depends on correctly identifying the
sufficient statistics and specifying the conditional distribution under the null
hypothesis.
A. The PDT and APL

Another family-based association test that is conceptionally very similar to the
FBAT-approach is the PDT, the pedigree disequilibrium test (Martin et al., 1997).
Both the PDT and the FBAT are score tests that share a similar numerator,
but instead of using E(XjS) with missing parents, these tests use contrasts between
affected and unaffected offspring in the same family. Additionally, the PDT
approach relies on empirical variance estimators instead of variances that are
analytically derived. The PDT approach is a valid test for all three null hypotheses.
To obtain a more powerful test for association in the presence of linkage (second
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null hypothesis), the PDT approach has been extended to incorporate linkage
information, the so-called “test for association in the presence of linkage” (Martin
et al., 2000). In contrast to the FBAT approach, which does not attempt to
estimate the joint transmission probabilities to the offspring, but estimates directly
the variance of the test statistic using an empirical variance/covariance estimator,
the APL approach models the joint transmission probabilities to multiple offspring
based on the identity by descent status. The transmission probabilities are esti-
mated using the EM-algorithm and are used in the computation of the test statistic
directly. The approach has been extended to general nuclear families with missing
parental information, to haplotype analysis, to the analysis of the X-chromosome,
and to handle ordinal/rank-based phenotypes such as age of onset (Ch ung et al.,
2006, 2007a,b; Martin et al., 2003).
B. Quantitative traits: The QTDT

The QTDT is a widely used method for testing association with family data and
quantitative traits. The essential idea relies on assuming a standard QTL model
for the phenotype, that is,

EðYij Þ ¼ �þ � Xij

To make a correction for population substructure admixture, we may add and
subtract � E(Xij jPi ) to the mean to obtain:

Eð Yij Þ ¼ �þ �½ Xij � Eð Xij jPi Þ� þ � Eð Xij jPi Þ
Subscripting the two � s by w and b, to denote within subject and between subject
effects, we write:

EðYij Þ ¼ �þ �  w ½Xij � EðXij j Pi Þ� þ � b Eð Xij j Pi Þ ð4Þ
As shown in Abecasis et al. (2000) , OLS estimates of �w remain unbi-

ased for the true genetic effect in the presence of population stratification, while
estimates of �b are contaminated by population stratification. The model 4 is the
basis for the QTDT test that further assumes normality of the error terms and
uses a likelihood ratio test for the null hypothesis H0: �w ¼ 0, leaving �b
unspecified. A score test for H0: �w ¼ 0 that is derived from the same likelihood
function will be equivalent to the FBAT statistic for quantitative traits
(Lange et al ., 2003a).

The original model proposed by Fulker et al. (1999) was designed for sib
pairs, or more generally sibships, with missing parental genotypes. Here, assuming
an additive model, E(XijjPi) is replaced by the mean of the offspring genotypes
in the ith family that is equivalent to E(XijjSi). In this case, the model can be
expanded to include variance and covariance terms between siblings, which
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include components due to the genetic variance, and residual sibling resem-
blance. With siblings, likelihood ratio tests can also be constructed to test for
linkage. However, when the observed marker is the DSL (perfect LD between
the marker and the DSL), there is no power to test for linkage. As the LD
between the marker and DSL decreases, the power to detect association of the
trait and the marker decreases, but the power to detect linkage increases (Sham
et al., 2000).

An advantage of the approach is that it provides estimates of the associ-
ation parameter, �w, and the recombination parameter. However, the method
does not lend itself to extension to haplotypes or multiple endpoints. Although
the estimate of �w is robust for population substructure, the contaminated esti-
mate for the between-component �b does not cancel out in the construction of the
likelihood ratio test, causing an inflated type-1 error (Yu et al., 2006).
IV. SOFTWARE

With family-based designs, there is generally a need for special software to
analyze the data. Fortunately there is now a wide variety of software packages
available. Most of the packages were developed by the original authors of the
methods and are home-grown. Despite the lack of general support for such
software packages in academia, the packages have proven to be reliable and
user-friendly tools. Recently, commercial packages with professional user-
support and documentation have become available that are particularly suited
for less statistical-oriented users and for large-scale projects. Table 10.3 shows an
overview of the most popular packages and their functions.
V. DISCUSSION

The advent of whole-genome association scans offers great promise for genetic
association studies. Most projections agree that large samples of individuals will
be necessary to disentangle the wheat from the chaff in these large genome scans,
no matter what the design (Clayton et al., 2005; Hirschhorn and Daly, 2005; Van
Steen et al., 2005). While it is inescapable that large samples from existing cohort
or case-control studies that do not include data on relatives are generally much
easier to obtain than large numbers of suitable families, we believe that the
creative use of the population information contained in family data for screening
and hypothesis generation, coupled with their robustness to population substruc-
ture, make these family studies competitive. In addition, with technology avail-
able for handling pedigrees with missing founders, family data already collected
for linkage studies can, in many cases, be recycled for association.



Table 10.3. Software Programs for the Analysis of Family-Based Association Tests

Package

Genetic analysis

capability

Phenotypic analysis

capability Special features

APL/PDT Single marker,

haplotype

Binary traits, quanti-

tative traits, ranked

traits, time-to-

onset

X-chromosome

FBAT Single marker, haplo-

type, multimarker

Binary traits, quanti-

tative/multivariate

traits, ranked traits,

time-to-onset

X-chromosome,

permutation tests

P2BAT/PBAT,

PBAT

GoldenHelix

Single marker, haplo-

type, multimarker

Binary traits,

quantitative traits/

multivariate,

ranked traits,

time-to-onset,

gene–environment

interaction

Covariate adjustment,

VanSteen algo-

rithm for multiple

testing,

X-chromosome,

permutation tests

QTDT Single marker Quantitative traits Permutation tests
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There are several features of family-based designs that make them less
attractive than their population-based counterparts. One feature is the consider-
able sensitivity to genotyping errors (Gordon and Ott, 2001; Gordon et al., 2001,
2004). It is clear that genotyping errors can lead to false inferences because the
test distribution depends crucially on the assumption that parental genotypes are
correct. In the population-based setting, nondifferential genotyping errors will
only make tests conservative under the null, but with FBATs, random genotyp-
ing errors can inflate the false positive rate, sometimes substantially (Hirschhorn
and Daly, 2005). This underscores the importance of validating the genotyping
for any significant finding.

There is widespread belief that gene–environment (and gene–drug)
interactions as well as gene–gene interactions play an important role in many
complex diseases. For example, genetic interactions with smoking status and/or
smoking history are believed to be determinants of the severity of chronic
obstructive pulmonary disease (Celedon et al., 2004; DeMeo et al., 2005).

Possible unmeasured gene–environment or gene–gene interactions are
often thought to be responsible for lack of reproducibility of many genetic associa-
tions. Although such hypotheses about interactions between genes and exposure
variables are widely accepted in the field, adequate development of statistical meth-
odology to test such hypotheses has lagged behind other technical developments.
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While some family-based approaches have been proposed for special settings
(Cordell et al., 2004; Gauderman, 2002; Lake and Laird, 2004; Umbach and
Weinberg, 2000; Witte et al., 1999), the general problem is hampered by reliance
on statistical models for main and interaction effects (which may not correspond to
biological models) (Cordell et al., 2004) and the difficulty of testing interactions
when main effects are assumed to be present.

Much work remains to develop better statistical methods for complex
disorders that are characterized by multiple, possibly interacting genes and envi-
ronmental factors, and are characterized by numerous interrelated traits. The
focus here has been on family-based designs for testing this is appropriate when
mapping via linkage disequilibrium is the major objective. However, as we move
from discovery to verification and characterization, the focus will appropriately
shift to effect estimation. The development of models for complex disease phe-
notypes with multiple covariates, genes, and interactions will be crucial for
characterizing the role of individual polymorphisms in complex disease. The
challenge will be to model pathways incorporating several genes at the same
time, in combination with gene–environment interactions and endophenotypes,
where modest effects may add up to a substantial impact on disease.
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