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Genome-wide association studies are set to become the
method of choice for uncovering the genetic basis of human
diseases. A central challenge in this area is the development of
powerful multipoint methods that can detect causal variants
that have not been directly genotyped. We propose a coherent
analysis framework that treats the problem as one involving
missing or uncertain genotypes. Central to our approach is a
model-based imputation method for inferring genotypes at
observed or unobserved SNPs, leading to improved power over
existing methods for multipoint association mapping. Using
real genome-wide association study data, we show that our
approach (i) is accurate and well calibrated, (ii) provides
detailed views of associated regions that facilitate follow-up
studies and (iii) can be used to validate and correct data at
genotyped markers. A notable future use of our method will be
to boost power by combining data from genome-wide scans
that use different SNP sets.

It has been known for over 10 years that genome-wide association
studies may be a powerful alternative to more traditional family-
based linkage studies for mapping the genetic variants that underlie
common human diseases1. It has taken the Human Genome
Project, comprehensive SNP databases, substantial catalogs of
human haplotype variation2, extensive case series collections and
technological advances in genotyping for these studies to become
a reality.

Current genome-wide association studies assay a very dense set of
markers (4100,000) across the genome in individuals affected and
unaffected by a disease using one of the commercially available
genotyping chips. The simplest analysis strategy involves carrying
out a test of association at each assayed SNP. As the set of SNPs
on the chip is unlikely to include the true causal variant, we can
think of this approach as using the markers on the chip as predictors
of possible untyped disease variants. It is widely accepted that this
approach will not be the most powerful for studies of this sort3.
A major challenge in this field is gaining added value for the analysis
by combining information across markers and using existing
catalogs of variation such as HapMap. Various so-called ‘multipoint
approaches’ have been suggested in the literature to address the

first of these concerns, but there is currently no consensus on the
best approach.

In this paper, we suggest a coherent framework for thinking about
this problem and then illustrate this with a number of different
applications. The main idea behind our approach is to think of the
problem as one involving a combination of observed data and missing
data, where the core aim is to predict (or ‘impute’) the missing
data based upon the observed data. All multipoint methods can be
thought of in terms of this prediction aspect, but many are not
routinely described as such. Informally, we use (i) data from the
SNPs genotyped in our study, (ii) the HapMap data and estimates of

100 6

5

4

3

2

1

0

80

60

40

20

0.5 0.6 0.7 0.8 0.9 1.0

0

P
er

ce
nt

ag
e 

m
is

si
ng

 g
en

ot
yp

es 100

80

60

40

20

0

P
er

ce
nt

ag
e 

m
is

si
ng

 g
en

ot
yp

es

Calling threshold (by genotype)

0.5 0.6 0.7 0.8 0.9 1.0

Calling threshold (by SNP)

P
ercentage discordance

6

5

4

3

2

1

0

P
ercentage discordance

C
on

co
rd

an
ce

Expected accuracy (by genotype) Expected accuracy (by SNP)

1.0

0.8

0.6

0.4

0.2

0.0

C
on

co
rd

an
ce

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1 Accuracy and calibration of imputed genotypes. The upper left

panel shows the discordance (solid line) and missing data rate (dashed line)

for different calling thresholds applied to the imputed genotypes one at a

time (see text for details). The lower left plot shows how well the
probabilities estimated by the method are calibrated. The plot shows the

predicted accuracy of the genotype calls versus an estimate of the actual

accuracy measured as concordance with the Illumina calls. The upper right

and lower right panels show the discordance, missing rate and calibration

plots, where the calling threshold is applied on a per-SNP basis to the

average maximum posterior genotype call probability.
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the fine-scale recombination map across the genome and (iii) a
population genetics model to simulate or impute genotypes at
SNPs not assayed in our study (see Methods). These ‘in silico’
genotypes can then be used as if the SNPs involved were directly
genotyped. For example, association with disease can be tested at a
much finer grid of locations across the genome by directly testing
this much larger set of SNPs, and data at imputed SNPs can be
combined directly with data from other studies that use different
genotyping chips.

A key feature of our approach is our use of an approximate
population genetics model that gives more weight to genotypes
that are consistent with the local patterns of linkage disequilibrium
(LD). This approach has advantages over other multipoint methods:
the population genetics approach uses information from all
markers in LD with an untyped SNP, but in a way that decreases
with genetic distance from the SNP being imputed, thus avoiding the
decisions faced in some other prediction methods, such as to how
many markers to use, how to use them or over what physical distance
to define haplotypes for haplotype analyses4,5.

RESULTS
Imputation accuracy
We validated our approach using control data from the Wellcome
Trust Case Control Consortium (WTCCC)6. Specifically, we assessed
the accuracy of imputation using individuals from the 1958 British
Birth Cohort, who were typed at approximately 500,000 SNPs on the
Affymetrix GeneChip Mapping Array Set (the ‘Affymetrix 500K chip’)
and separately typed on a custom Illumina chip at approximately
15,000 largely nonsynonymous SNPs. We used a filtered data set of
1,444 individuals6 and considered 10,180 autosomal SNPs typed on
the Illumina chip that were also polymorphic in the CEU HapMap
sample. We used the called Affymetrix genotypes at SNPs passing
WTCCC quality control filters and having minor allele frequencies
(MAFs) 41% for these individuals and imputed genotypes, as
described below, for each of the 10,180 Illumina SNPs. (For
Illumina SNPs that were also on the Affymetrix chip, we ignored
the Affymetrix data at that SNP when doing the imputation.)
Our imputation method outputs probabilities associated with each
possible genotype call for each individual. The comparisons showed
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Figure 2 Power versus region-wide type I error for the mapping methods described in the main text, based on simulating case-control data sets conditional

upon the haplotype data in the ten ENCODE regions. To measure the power of each method, we compared the distribution of the maximum Bayes factor

across each simulated case-control data set with the distribution using the set of null data sets. This takes into account the different numbers of Bayes

factors used in each approach and hence corrects for multiple comparisons. The eight plots break down the power according to the properties of the

causal SNP. For example, the upper left plot shows the power for causal SNPs that are not in the pseudo-HapMap panel, have a low allele frequency

(MAF o 5%) and are not tagged by a multi-marker prediction (MMP) using the Affymetrix (‘Affy’) SNPs in the ENCODE regions. The properties of the

causal SNPs are indicated by the title of each plot. As described in the main text, ‘hidden’ SNPs are those for which no data are available in the HapMap

or in the disease study.
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the imputed genotypes to be accurate. For example, if all genotypes
with a maximum posterior genotype probability of greater than
0.95 are considered, the agreement with the Illumina genotypes is
98.4%. In addition, our method is well calibrated in that its estimates
of uncertainty are also accurate (Fig. 1).

The power of imputation-based association tests
Imputed genotypes may be used in many different downstream
analyses. A notable application is in testing for association in
genome-wide studies. A key question is what gain we achieve using
imputed genotypes over single-locus approaches in detecting associa-
tions. Similar imputation approaches7,8 have been shown to be useful
in other contexts, but none has attempted to quantify the potential
gains in power in association studies. To answer this question, we
compared the power of our approach with other mapping methods
through a previously suggested strategy5 of creating case-control
panels using empirical genotype data from the ten ENCODE regions
analyzed as part of the HapMap project. We took each of the 9,842
segregating SNPs in the ENCODE regions of CEU data in turn and

simulated a case-control data set using that SNP as the causal SNP (see
Methods). The effect size of the causal SNP was set to achieve a power
of 95% at a nominal P value of 0.01. These data sets were then thinned
to include only those SNPs found on the Affymetrix 500K chip in the
ENCODE regions in order to provide an assessment of the power of
the different approaches in a realistic situation. As in other studies2,
the ENCODE data were also thinned to produce pseudo-HapMap
panels of data for use in the various multipoint approaches.
(The ENCODE regions have a higher SNP density in HapMap than
the rest of the genome, and this thinning is required to allow
extrapolation to the remainder of the genome.) An additional set
of ‘null’ data sets was simulated under a model of no association to
allow empirical assessment of Type I error. Note that in using a
single statistic for each region, our approach automatically handles
multiple comparisons.

We compared four different strategies for detecting the causal
variants: (i) a simple single-SNP approach that tests only the SNPs
on the Affymetrix chip, (ii) an established multipoint approach in
which single-SNP tests are augmented with multimarker prediction
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Figure 3 Power versus region-wide type I error for mapping methods described in the main text, based on simulating case-control data sets conditional

upon the haplotype data in the ten ENCODE regions. To measure the power of each method, we compared the distribution of the region Bayes factor across

each simulated case-control data set with the distribution using the set of null data sets. This takes into account the different numbers of Bayes factors

used in each approach and hence corrects for multiple comparisons. The eight plots break down the power according to the properties of the causal SNP.

For example, the upper left plot shows the power for causal SNPs that are not in the pseudo-HapMap panel, have a low allele frequency (MAF o 5%)

and are not tagged by a multi-marker prediction (MMP) using the Affymetrix (‘Affy’) SNPs in the ENCODE regions. The properties of the causal SNPs

are indicated by the title of each plot. As described in text, ‘hidden’ SNPs are those for which no data are available in the HapMap or in the

disease study.
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(MMP) tests derived from the pseudo-HapMap panel5, (iii) single-
SNP tests at the Affymetrix SNPs plus tests at imputed pseudo-
HapMap panel SNPs and (iv) tests on imputed genotypes at a grid
of 100 hypothesized SNPs completely unobserved in the ENCODE
data set. The inferred genotypes are sometimes (appropriately) uncer-
tain, so we found it necessary to develop tests of association (both
frequentist and bayesian) that take account of the uncertainty in
the genotypes we impute (see Methods). For each of the
above approaches, we calculated Bayes factors at each tested SNP
(see Methods).

To assess the power of each method, we considered two different
summaries of the evidence of association in a given region. The first
summary is the maximum of the Bayes factors in each region3,5, and
the second is a region Bayes factor (see Methods). We compared the
distribution of each of these statistics across the simulated case-control
data sets with their distributions from the set of null simulations we
carried out.

To gain a detailed understanding of how the performance of the
various methods differ, we cross-classified causal SNPs according to
(i) whether they were common (MAF Z 5%) or rare (MAF o 5%),
(ii) whether they were in the pseudo-HapMap panel and (iii) whether
the SNP was tagged by a chip SNP or an MMP (that is, whether
it had r2

Z 0.8 with either a SNP on the chip or an MMP). Figures 2
and 3 show the results for the maximum and region Bayes factor
summary statistics in each of the eight resulting categories. Both of
our methods provided a clear boost in power for causal SNPs
that were not tagged. The effect was more pronounced for rare
SNPs, which in general are harder to tag using a small number of
surrogate SNPs and are better predicted by the extended haplotypes
upon which the SNP mutation resides. As our methods have no
arbitrary window size or tag set size but rather make use of all the
surrounding SNP data modulated by the local recombination rate, we

are able to predict these SNPs better. For
tagged variants, the difference between meth-
ods is generally small, but overall the new
imputation-based methods provide an
increase in power over both the single-SNP
tests and the MMP tests (Supplementary
Figs. 1 and 2 online).

We were interested to find that the relative
performance of our two methods depends on

which test statistic is used. Our method of imputing completely
unobserved SNPs tends to produce elevated Bayes factors in an
extended region around the causal SNP, whereas our method of
imputing HapMap SNPs tends to produce larger signals at a smaller
set of locations. The region Bayes factor reduces to the average of the
Bayes factors across a region, so it tends to produce a large signal when
there are many reasonably elevated signals and thus works well in
combination with our method of imputing unobserved SNPs. In
contrast, the maximum Bayes factor will perform well when the signal
is large and localized rather than small and extended and thus is more
suited to the method of directly imputing known SNPs. This differ-
ence is clear for rare, untagged causal SNPs, which tend to produce
elevated signals over the length of the extended haplotype upon which
the causal SNP resides. Most genome-wide association studies
(GWAs) currently underway will not be well powered for rare causal
SNPs (even with the improvements in power offered by our
approach). For such studies, our recommendation would be6 to
impute HapMap SNPs (and to favor analyses using maximum Bayes
factors over appropriate regions).

Application to real genome-wide data
We have applied this method to all seven GWAs carried out as
part of the WTCCC study, with full results and detailed discussion
reported elsewhere6. As an illustration, we applied our approach
to the WTCCC data in the region of the known type 2 diabetes
gene TCF7L2 (ref. 9) (Fig. 4). The imputation was based on
1,924 type 2 diabetes cases and 2,938 control subjects at all geno-
typed SNPs that passed WTCCC quality control filters and that had
MAF 4 1%.

We imputed data at all Phase II HapMap SNPs in the region. The
figure shows test statistics at both imputed SNPs (red circles) and
genotyped SNPs (black circles). The imputation provides a much
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Figure 4 Results of imputing SNPs in the region

of the TCF7L2 gene from the WTCCC data. The

upper part of plot shows the –log10 P value for

the additive model versus a model of no

association. The P values were calculated using

called genotypes (black circles) and imputed

genotypes (red circles), called at a threshold of

0.9. The middle panel shows a measure of

certainty for each SNP, which is defined as the

average maximum posterior genotype call

probability. The lower panel shows the fine-scale

recombination rate across the region (blue) and

the cumulative recombination rate measured

away from the most highly associated genotyped

SNP (orange). The vertical dashed lines on the
plot delineate the main region of association.

The largest –log10 P value at a genotyped

SNP (rs4506565) is 12.25, whereas the

largest –log10 P value at an imputed SNP

(rs7903146) is 13.57.
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more detailed view of the associated region. The results from imputed
SNPs are useful in (i) assessing strength of signal within the region;
(ii) providing a wider range of SNPs for follow up and (iii) indicating
possible locations for causal variants. For example, there is a
substantially stronger signal from an imputed SNP (rs7903146) in
the region than for any of the typed SNPs. This predicted pattern is
confirmed by direct genotyping of the SNPs in question10. The use of a
bayesian measure of association leads to a similar picture (Supple-
mentary Fig. 3 online).

In addition, we observed strong correlation between the extent and
decay of the signal of association and the underlying recombination
rate. Furthermore, estimates of the certainty of the imputation at each
SNP indicate that the underlying model shows high confidence for our
imputations. These observations are not restricted to this region. For
example, in the 15 regions in the WTCCC study with strong signals of
association at genotyped SNPs for the trend test, there were nine in
which the P value for the best imputed SNP reduced the P value of the
best genotyped SNP passing quality control by a factor of at least
1.5, and there were four where the change was by more than an order
of magnitude6.

Validation and missing data imputation at genotyped SNPs
Another application of our imputation engine is in validation of called
genotypes and imputation of missing data at SNPs that are actually
genotyped in a study. Genotypes can still be imputed at such SNPs
(excluding the genotypes at the SNP from the information used for
imputation) to provide independent estimates of genotypes at any
typed SNP. To illustrate this, we show the normalized intensity data
from which genotypes are called for a SNP genotyped in the 1958
birth cohort of the WTCCC study on the Affymetrix chip (Fig. 5). The
SNP was also typed on a custom Illumina chip. There is a significant
amount of overlap between clusters; this is one of the common
reasons for genotype-calling problems6 and can lead to elevated
false positive rates if cohort effects are not taken into account in the
calling11. CHIAMO, the genotype calling algorithm used6 here, calls
7% of the genotypes as missing, as it cannot be confident of accurate
calls in the region of overlap.

When we used our approach to impute the
genotypes at this SNP, we found that the
average maximum posterior genotype call
probability was 0.998, suggesting that the
method is very confident of its imputed
calls. These imputed calls had a 2.3% dis-
cordance with the cluster-based calls among
the 1,444 individuals typed on both the
Affymetrix and Illumina platforms. The
calls made by Illumina at this SNP agreed
perfectly with the imputed calls, leading us to
conclude that the imputed calls substantially
improve data quality at this SNP.

Although we chose this SNP as a particu-
larly good example of the benefits of imputa-
tion, we have found that our method offers
systematic improvements across a range of
SNPs with less marked calling difficulties and,
for example, that across the unfiltered set of
SNPs in the WTCCC study, using imputed
rather than actual genotype data can
noticeably reduce false positive rates (data
not shown). The optimal way to combine
called genotypes with imputed data is not

clear and is likely to vary from study to study and to depend on the
downstream analysis methods used. For this reason, it is not straight-
forward to quantify the gain in power from this particular use of
imputation, but the issue seems worthy of further attention and
empirical study.

DISCUSSION
All multipoint methods for testing association in genome-wide studies
can be thought of as predicting missing data at untyped variants, and
it is becoming clear that a missing data approach has great utility for
many problems in genetics7,12–14. In this paper, we have described an
imputation engine for genotypes with a primary focus on association
studies, but we also emphasize the broader implications of this work
in pointing toward a unifying framework for genetic studies. For
example, we note that our approach for testing for association is
directly comparable to that used in parametric linkage analysis, in
which the genotypes of an untyped variant are imputed and averaged
over to test for correlation between genetic type and disease status.
Both methodologies use a genetic map across the genome to weight
the contribution made by the markers surrounding each putative
causal locus, and both methods use a likelihood of the same form that
involves summation over untyped variation. A significant difference is
that in parametric linkage, precise familial relationships are used
together with a model of haplotype inheritance to impute untyped
variation, whereas in case-control studies, known familial structure is
replaced by an unknown population genealogy. Imputation of variants
based on an unknown genealogy is a more challenging problem that is
facilitated by the use of a population genetics model.

The imputation methods at the core of our approach are analogous
to the Elston-Stewart15 and Lander-Green16 algorithms used in
linkage. A similar relationship exists between our methods and
those used in model organisms17 and suggests that there exists a
general statistical framework that may unify ideas across disciplines
and stimulate the development of methods for detecting risk factors in
a general class of genetic studies. For example, most linkage studies use
nonparametric linkage methods. These methods search for regions of
elevated allele sharing between affected individuals and are known to
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be robust to allelic heterogeneity. Along these lines, we are currently
developing analogs of allele sharing approaches for genome-wide
association mapping.

Genome-wide association studies will be used extensively in the
coming years to uncover disease genes. It is becoming clear6 that most
such disease variants will have small effects (odds ratios of 1.2 or
smaller). Even today’s large studies are underpowered to detect most
of these effects, and combination of data across studies will be
essential. Thus, a major use of imputation is likely to be in combining
data from studies that use different genotyping chips to facilitate these
meta-analytic approaches. Other extensions of our approach include
(i) the imputation of other types of genetic variants that may show
substantial association with phenotypes, such as CNVs18, microsatel-
lites and HLA loci, (ii) imputation of genotypes for different study
designs such as trio designs for association mapping and mapping by
admixture LD (MALD) studies and (iii) development of statistical
information measures for untyped variants.

We have seen that assessment of imputation methods requires care.
For example, imputation accuracy will depend on SNP density as well
as the similarity of LD patterns between the data used and the
HapMap populations, making it impossible simply to compare head-
line measures of accuracy across studies.

Our approach makes various modeling assumptions that will not be
true in practice. There is growing general evidence that the population
genetics model underlying our approach19, captures many features of
human variation data20. A particular concern in our context is
population structure, for two different reasons. First, differences in
LD patterns between the study sample and the HapMap sample used
are likely to reduce the accuracy of imputation, and second, whether
imputed or genotype data are used, population structure within a
study sample can result in false-positive associations. In the analysis
presented here, we used the CEU HapMap haplotypes to impute
genotypes in a UK sample and saw that accuracy was high, but there is
no reason why the other HapMap panels may not be used as well for
other studies. Previous work21 suggests that by conditioning on these
panels and including a model of ancestry22 into our approach, the
accuracy of imputation will extend to other less homogeneous studies,
and data on the extent to which HapMap data captures LD in other
populations are also encouraging here23. Obviously, there will be
limits, and we would advise caution when applying this approach to
data from severely isolated populations. (In a similar way, our model,
which assumes a uniform mutation rate, no indels and a recombina-
tion rate estimated from HapMap, will not be a cause for concern if
the study samples are not too dissimilar from the HapMap popula-
tions.) If there is population structure within a study sample,
imputation may still work well (as informally, what matters is that
haplotypes like those in the study sample occur in the HapMap sample
used), but the structure could nonetheless lead to false-positive associ-
ations. Approaches for dealing with population structure for geno-
typed SNPs (such as conditioning on inferred covariates that code for
population stratification24 or applying Genomic Control25) can also
be applied to imputed SNPs and should work just as well.

The standard paradigm for association analysis is based on detect-
ing disease variants based on their marginal effects, but this may not
be the most powerful strategy if significant allelic heterogeneity or
gene-gene interactions have a role in the genetic architecture of
complex traits26. The use of imputed genotypes is not restricted to
marginal analysis, and we envisage the development of more complex
models of association that allow for these effects. In our current
framework, our method of imputing completely unobserved SNPs has
some flexibility to accommodate possible allelic heterogeneity at a

locus that may occur owing to an underlying multilocus or haplotype
model of disease risk.

METHODS
Imputation of missing genotypes. We use H ¼ fH1; . . . ;HNg to denote a set

of N known haplotypes, where Hi ¼ fHi1; . . . ;HiLg is a single haplotype,

Hij 2 f0; 1g and L is the number of SNP loci. For all the analyses in this

paper, we have set H to be the 120 CEU haplotypes estimated as part of

the HapMap project2. We let G ¼ fG1; . . . ;GKg denote the genotype data

on the K individuals in a new study, where Gi ¼ fGi1; . . . ;GiLg and

Gij 2 f0; 1; 2;missingg. We partition G into an observed and missing compo-

nent G ¼ fGO;GMg. To impute the missing genotypes, we require the joint

distribution of observed and missing genotype data, and we make the modeling

assumption that each individual’s genotype vector can be considered indepen-

dently of the others. That is,

PrðGM jGO;HÞ / PrðGM ;GOjHÞ ¼ PrðGjHÞ ¼
YK

i¼ 1

PrðGijHÞ

Our model for each individual’s genotype vector, PrðGijHÞ, is a Hidden

Markov Model in which the hidden states are a sequence of pairs of the N

known haplotypes in the set H. That is,

PrðGijHÞ ¼
X

Z
ð1Þ
i

;Z
ð2Þ
i

PrðGijZð1Þ
i ;Z

ð2Þ
i ;HÞPrðZð1Þ

i ;Z
ð2Þ
i jHÞ

where Z
ð1Þ
i ¼ fZð1Þ

i1 ; . . . ;Z
ð1Þ
iL g and Z

ð2Þ
i ¼ fZð2Þ

i1 ; . . . ;Z
ð2Þ
iL g are the two

sequences of hidden states at the L sites and Z
ðjÞ
il 2 f1; . . . ;Ng. These hidden

states can be thought of as the pair of haplotypes in the set H that are being

copied to form the genotype vector Gi. The term PrðZð1Þ
i ;Z

ð2Þ
i jHÞ defines our

prior probability on how sequences of hidden states change along the sequence,

and PrðGijZð1Þ
i ;Z

ð2Þ
i ;HÞ models how the observed genotypes will be close to

but not exactly the same as the haplotypes being copied. This model extends a

related haplotype model19 to genotype data. The model allows for recurrent

mutation at each SNP but assumes a uniform mutation rate across the genome.

The fine-scale recombination map (in units of cM/Mb) estimated from the

phase II HapMap is used as a fixed set of parameters in the model and is scaled

by a (user-defined) estimate of the effective population size to obtain the

population scaled recombination map (r) across the region. The precise forms

of these terms are described in Supplementary Methods online. Our approach

can also deal with the situation in which the set G consists of haplotypes in

which case a haplotype model19 is used directly to impute unobserved alleles in

these haplotypes.

Under our model, the imputation at a particular SNP can theoretically

combine information from all typed SNPs on the same chromosome, although

the influence of these SNPs decreases with increasing genetic distance from the

locus of interest. Ideally, we would like to consider only the typed SNPs that

could plausibly influence the imputation of a given untyped SNP. This can be

accomplished in practice by including all SNPs within some ‘large’ window in

the analysis. For the analysis of the WTCCC project, we analyzed regions in

10-Mb windows, padded in each direction with 500-kb buffers to avoid edge

effects in the prediction.

We use this model to calculate the (marginal) probability of each possible

genotype (0, 1, 2) for each of the missing or unknown genotypes in the study.

We also provide a probability distribution for each called genotype to facilitate

correction of genotyping errors. These probabilities can be used to carry out

association tests at all typed and untyped SNPs.

Imputation of completely missing SNPs. We have also developed methodol-

ogy for imputing genetic variation at SNPs that are completely unobserved (so-

called ‘hidden’ SNPs) in both the set of haplotypes H and the set of sampled

genotypes G. Our method proceeds by simulating M realizations of each such

SNP in the N observed haplotypes in the set H. Variation in the set G at the

SNP is then simulated by conditioning upon this sample. An approximation to

a population genetics model is used to carry out this simulation and is

described in more detail in Supplementary Methods. Currently, this approach
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is implemented only in the case in which the haplotype phase of the set G is

known, so in practice this would require a preprocessing step of haplotype

estimation. A version of this approach that can handle genotype data is

currently in development.

Testing association at a SNP or within a region. Once genotypes have

been imputed, we can carry out a test of association at a much larger set of

SNPs than we had originally typed. By testing each SNP in turn, we assume

that disease variants will be detectable based on their marginal effects. As

our imputation engine generates probability distributions of untyped geno-

types, we found it useful to develop single-SNP tests of association that

take this uncertainty into account. A detailed description of the statistical

theory and methods we have developed and their relationship to standard

tests of association is given in Supplementary Methods. A main part of

this development involves bayesian measures of single-SNP association

known as Bayes factors. Bayes factors are somewhat analogous to frequentist

P values, and their use is beginning to emerge in the literature as a more

powerful and interpretable alternative to classical tests of association27.

There are several advantages of using Bayes factors over frequentist test

statistics or P values. Proper interpretation of P values requires knowledge of

the power of the tests used6. Informally, a small P value may arise by

chance under the null or from a true association. Assessing which of these

might be the case is difficult without knowledge of the power of the study for

likely effect sizes (for example, for an underpowered study, we would expect

most significant P values to arise by chance). Calculation of Bayes factors, like

power calculations, requires assumptions about effect sizes, but Bayes

factors have a natural interpretation in their own right as the factor by which

our prior odds of association are changed in light of the data. Bayes factors can

be naturally combined across different models of association at a given

SNP. For example, we can average the Bayes factor across additive, dominant,

recessive and general models to avoid having to specify a single model to

use at a locus. A similar idea can be used to combine Bayes factors across SNPs

within a region. Following recent evidence about the gains in power from

bayesian approaches27, we focused on test statistics based on Bayes factors and

compared methods within the two sets of test statistics used in order to focus

the results on the ability of each method to predict the causal variants rather

than focusing on differences in the power of different test statistics. We used the

non-conjugate and conjugate priors (Supplementary Methods) for the analysis

of the type 2 diabetes data set and the simulated data sets, respectively, to reflect

our belief about the genetic effect sizes that are appropriate for these data sets.

Simulated case-control data sets. We simulate case and control individuals

conditional upon a set of known haplotype data and an estimate of the fine-

scale recombination rate across a region. This approach allows the specification

of a SNP in the set of known haplotypes as the causal SNP together with the

disease model parameters in terms of relative risks. Genotypes at the causal

SNP are simulated under the disease model, and data at flanking SNPs are

simulated conditional upon the known haplotypes using a Hidden Markov

Model approximation to a population genetics model19. This approach is

preferable to a direct resampling approach5, which will tend to produce a set of

new haplotypes that are too similar to the HapMap haplotypes. We used the

phased data from parents of CEU trios in the ten ENCODE 500-kb regions

generated as part of the HapMap project. These haplotypes are expected to be

very accurate as a consequence of the trio design of the CEU HapMap panel2.

We used the fine-scale recombination rates estimated by the PHASE program

across these regions (in preference to other estimates of fine-scale recombina-

tion rates, because the model underlying PHASE is close to the one on which

our imputation is based). As in similar studies3, we reduced the considerable

computational burden of the simulation studies by boosting effect sizes so that

variants are detectable in smaller studies. The data sets simulated in the paper

thus consisted of haplotypes for 100 case and 100 control individuals, but we

would expect conclusions based on comparisons of methods to extend to

the larger sample sizes and smaller effect sizes typical of GWAs for common

human diseases3.

We created a ‘pseudo’ HapMap panel by thinning the ENCODE data to

match the SNP density and MAF distribution of the phase II HapMap data,

with the added restriction that this panel contain the SNPs on the Affymetrix

500K mapping chip that lie within a given region. Multi-marker predictors

(MMPs) were designed using the Affymetrix SNP set in each region based on

LD patterns within the pseudo-HapMap panels. We searched for the best

MMPs of sizes 2 and 3 that predict SNPs in the panel with a sample r2
Z 0.8,

with the constraint that all pairs of predictor and predicted SNPs in each MMP

rule lie within 200 kb of each other.

Software implementation. Three programs were written to carry out the

analysis described in this paper. A program called IMPUTE was written to

determine the probability distribution of missing genotypes conditional upon a

set of known haplotypes and an estimated fine-scale recombination map.

A program called SNPTEST was written that implements all of the frequentist

and bayesian tests used in this paper and described in the Supplementary

Methods. A program called HAPGEN was written to simulate case-control data

sets conditional upon a set of observed haplotypes. These programs are

available on the website http://www.stats.ox.ac.uk/~marchini/#software.

Note: Supplementary information is available on the Nature Genetics website.
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