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Understanding the Metropolis—Hastings Algorithm

Siddhartha CHIB and Edward GREENBERG

We provide a detailed, introductory exposition of the
Metropolis—Hastings algorithm, a powerful Markov chain
method to simulate multivariate distributions. A sim-
ple, intuitive derivaticn of this method is given along
with guidance on implementation. Also discussed are
two applications of the algorithm, one for implementing
acceptance—rejection sanipling when a blanketing func-
tion is not available and the other for implementing the al-
gorithm with block-at-a-time scans. In the [atter situation,
many different algorithms, including the Gibbs sampler,
are shown to be special cases of the Metropolis—Hastings
algorithm. The methods are illustrated with examples.

KEY WORDS: Gibbs sampling; Markov chain Monte
Carlo; Multivariate density simulation; Reversible
Markov chains.

1. INTRODUCTION

In recent years statisticians have been increasingly
drawn to Markov chain Monte Carle (MCMC) methods
to simulate complex, nonstandard multivariate distribu-
tions. The Gibbs sampling algorithm is one of the best
known of these methods, and its impact on Bayesian statis-
tics, following the wark of Tanner and Wong (1987) and
Gelfand and Smith (199(), has been immense as detailed
in many articles, for example, Smith and Roberts (1993},
Tanner (1993), and Chib and Greenberg (1993). A con-
siderable amount of attention is now being devoted to the
Metropolis—Hastings (M—H) algorithm, which was devel-
oped by Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1933} and subsequently generalized by Hastings
(1970). This algorithm is extremely versatile and gives
rise to the Gibbs sampler as a special case, as pointed out
by Gelman (1992). The M-H algorithm has been used
extensively in physics, yvet despite the paper by Hastings,
it was little known to statisticians until recently. Papers
by Miiller (1993} and Tierney (1994) were instrumental
in exposing the value of this algorithm and stimulating
interest among statisticians in its use.

Because of the usefulness of the M—H alogrithm, appli-
cations are appearing steadily in the current literature (see
Miiller (1993), Chib and Greenberg (1994), and Phillips
and Smith (1994) for recent examples). Despite its obvi-
ous importance, however, no simple or intuitive exposi-
tion of the M—H algorithm, comparable to that of Casella
and George (1992) for the Gibbs sampler, is available.
This atticle is an attempt to fill this gap. We provide a
tutarial introduction to the algorithin, deriving the algo-
rithm from first principles. The article is self-contained
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since it includes the relevant Markov chain theory, is-
sues related to implementation and tuning, and empir-
ical illustrations. We also discuss applications of the
method, one for implémenting acceptance—rejection sam-
pling when a hlanketing function is not available, devel-
oped by Tierney (1994), and the other for applying the
algorithm one “black at a time." For the latter situation,
we present an important principfe that we call the prod-
uct of kernels principle and explain how it is the basis of
many other algorithms, including the Gibbs sampler. In
each case we emphasize the intuition for the method and
present proofs of the main results. For mathematical con-
venience, our entire discussion 1s phrased in the context
of simulating an ahsolutely continuous target density, but
the same ideas apply to discrete and mixed continuous-
discrete distributions.

The rest of the article 1s organized as follows. In
Section 2 we briefly review the acceptance—rejection
(A—R) method of simulation. Although not an MCMC
methad, it uses some concepts that also appear in the
Metropolis—Hastings algorithm and is a useful introduc-
tion to the tepic. Section 3 introduces the relevant Markov
chain theory for continuous state spaces, along with the
general philasophy behind MCMC methods. In Section 4
we derive the M—H algorithm by explaiting the notion of
reversibility defined in Section 3, and discuss some impor-
tant features of the algorithm and the mild regularity con-
ditions that justify its use. Section 5 contains issues related
to the choice of the candidate-generating density and guid-
anceonimplementation. Section 6 discusses how the algo-
rithm can be used in an acceptance—rejection scheme when
adominating density is not available. This section also ex-
plaing how the algorithm can be apphied when the variables
to be simulated are divided into blocks. The final section
contains two numerical examples, the first involving the
simulation of a bivariate normal distribution, and the sec-
ond the Bayesian analysis of an autoregressive model.

2. ACCEPTANCE-REJECTION SAMPLING

In contrast to the MCMC methods described be-
low, classical simulation techniques generate non-Markov
(usually independent) samples, that is, the successive ob-
servations are statistically independent unless correlation
is artificially introduced as a variance reduction device.
An important method in this class is the A-R method,
which can be described as follows:

The objective is to generate samples from the abso-
lutely continuous rarger density n(x) = f(x)/K, where
x € R, f(x) is the unnormalized density, and K is the
{possibly unknown) normalizing constant. Let A(x) be a
density that can be simulated by some known method, and
suppose there is a known constant ¢ such that f(x) < ¢h{x)
for all x. Then, to abtain a random variate from m(.),

! Gencfate a candidate Z from k(-) and a value o
from U0, 1}, the uniform distribution an (0, 1).
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o Ifu < f(Z)/ch(Z)
—return Z = y.
e Else
—goto (*).

[t is easily shown that the accepted value y is a random
variate from #(-). For this methed to be efficient, ¢ must
be carefully selected. Because the expected number of
iterations of steps 1 and 2 to obtain a draw is given by ¢ ™",
the rejection method is optimized by setting

c=sP Iix)
Even this choice, however, may result in an undesirably
large number of rejections,

The notion of a generating density also appears in the
M-H algorithm, but before considering the differences
and similarities, we turn to the rationale behind MCMC
methads.

3. MARKQOV CHAIN MONTE CARLO
SIMULATION

The usual approach to Markav chain theory on a contin-
uous state space is to start with a transition kernel P(x, A)
forxe RYand A € B, where B is the Borel ¢-field on R
The transition kernel is a conditional distrihution function
that represents the probability of moving from x to a point
in the set A. By virtue of its being a distribution function,
Plx, ﬂ%d) = [, where it is permitted that the chain can make
a transition from the point x to x, that is, P(x, {x}) is not
necessarily zero.

A major concern of Markov chain theor, [see
Nummelin (1984), Billingsley (1986), Bhattacharya and
Waymire (1990), and, especially, Meyn and Tweedie
(1993)] is to determine conditions under which there exists
an invariant distribution 7* and conditions under which it-
erations of the transition kernel canverge to the invariant
distribution. The invariarit distribution satisfies

W*(dy]:/ P{x, dy)m(x) dx (1)
3{!\‘

where 7 is the density with respect to Lebesgue measure
of 7* (thus #*{dy) = #(y) dy). The nih iterate is given by
PU(x Ay = [5o PY"U(x, dy)P(y,A), where PV(x,dy) =
P(x, dy). Under conditions discussed in the following, it
can be shown that the nth iterate converges to the invariant
distribution as v — oo,

MCMC methods turn the theory around: the invariant
density is known (perhaps up to a constant multiple)}—it is
a(-), the target density from which samples are desired—
but the transition kernel is unknown. To generate samples
from 7(-), the methods find and utilize a transition keinel
P(x, dv) whose mth iterate converges to w(-) for large n.
The process is started at an arbitrary x and iterated a large
number of times. After this large number, the distribu-
tion of the observations generated from the srmulation is
approximately the target distribution.

The problem then is to find an appropriate Plx, dy).
What might appear to be a search for the proverbial needle
in a haystack is somewhat simplified by the following con-
siderations. Suppose that the transition kernel, for some
function p(x, y), 1s expressed as

Plx,dy) = p(x, y) dy + r(x)8:{dy}, (2)
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where p(x, x) = 0,8,(dy) = 1 if x € dyand 0 otherwise, and
Hx) = | — fou p(x,y) dy is the prabability that the chain re-
mains at x. From the possibility that #(x) # 0, it should be
clear that the integral of p(x, y) over y 1s not necessartly 1.

Now, if the function p(x, y) in (2) satisfies the reversibil-

4% e

ity condition (also called “detailed balance,” “microscepic
reversibility,” and “time reversibility™)
m{x)p(x, ) = m(¥)p(y, 1), (3)

then (-} is the invariant density of P{x, -) (Tierney 1994).
To verify this we evaluate the right-hand side of (1):
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Intuitively, the left-hand side of the reversibility condition
1s the unconditional probability of maving from x to y,
where x 1s generated from 7( }, and the right-hand side is
the unconditional probability of moving from y to x, where
y is also generated from #(-). The reversibility condition
says that the two sides are equal, and the above result
shows that m*(.) is the invariant distribution for P{-, -).

This result gives us a sufficient condition (reversibility)
that must be satisfied by p{x, y). We now show how the
Metropolis—Hastings algorithm finds a p(x,y) with this
property.

4, THE METROPOLIS-HASTINGS
ALGORITHM

As in the A-R method, suppase we have a density
that can generate candidates. Since we are dealing with
Markov chains, however, we permit that density to de-
pend on the current state of the process. Accordingly,
the candidate-generating density is denoted g(x, y), where
{ g{x,¥)dy = 1. This density is to be interpreted as saying
that when a process is at the point x, the density generates
a value y from g(x, y). If it happens that g{x, y) itself sat-
isfies the reversibility condition (3) for all x, y, our search
is over, But most likely it will not. We might find, for
exanple, that for some x, v,

mx)g(x, y) > T(¥g(y, x). (5)

In this case, speaking somewhat loosely, the process
maves from x to y too often and from y to x too rarely.
A canvenient way to correct this condition 18 to reduce the
number of moves from x to v by introducing a probabhility



afx,y) < 1 that the move is made. We refer to a(x, v} as
the probability of move. 1f the mave is not made, the pro-
cess again returns x as a value from the target distribution.
(Note the contrast with the A—R methad in which, when
a y is rejected, a new pair (y,u) is drawn independently
of the previous value of y.) Thus tansitions from x to y
{v # x) are made according ta

pMH(xa y) = Q(xa y)o:(x,y), X ?é b

where a(x, v} 18 vet to be determined.

Consider again inequality (5). It rells us that the move-
ment from y to x is not made often enough. We should
therefore define afy, x) to be as large as possible, and
since 1r is a probability, its upper limit is 1. But now the
prohability of move ad(x, ) is determined by requiring that
aulx, v) satisfies the reversibility condition, because then

T(x)glx, y)olx, y) = m(y)g(y, x)aly, x)
= 7m(y)g(y,x). (6)

We now see that adfx,v) = #(ylg(y,x)/m(x)gix,y). Of
course, if the inequality in (5) is reversed, we set alx, y) =
| and derive ey, x) as above. The probabilities a(x, v} and
afy, x) are thus introduced to ensure that the two sides of
{5) are in balance or, in other words, that py(x, ¥) satis-
fies reversibility. Thus we have shown that in order for
Puulx, ¥) to be reversihle, the probability of move must be
set to

afx, ¥} = min [%, 1} , if ml)gle, y) = 0

=1, otherwise.

To complete the definition of the transition kernel for
the Metropolis—Hastings chain, we must consider the pos-
sibly nonzero probability that the process remains at x. As
defined above, this probability is

Hx)=1- /ﬂ L qlx,y)olx, y) dy.

Consequently, the transition kernel of the M—H chain, de-
noted by Puu(x, dy), is given hy

Pun(x, dy) = g(x, y)o(x, y) dy
+ [1 - /R _qlx, y)odx, y) dy| d.(dy),

aparticular case of {2). Because pyu{x, v) s reversible by
construction, it follows from the argument in (4) that the
M-H kernel has 7(x) as its invariant density.

Several remarks about this algorithm are in order. First,
the M-H algorithm is specified by its candidare-generating
density g{x, y} whose selection we take up in the next sec-
tton. Second, if a candidate value is rejected, the current
value is taken as the next item in the sequence. Third,
the calculation of a(x, ¥) dees nor require knowledge of
the normalizing constant of 77{-) because it appears both in
the numerator and denominator. Fourth, if the candidate-
generating density is symmeitric, an important special case,
q(x,¥) = g{y,x} and the probability of move reduces to
w(y)/7{x); hence, if w(v} > #{(x), the chain moves to y;
otherwise, it moves with probability given by #{y)/m{(x).
In other words, if the jump goes “uphill,” it is always ac-
cepted; if “downhill,” it is accepted with a nonzero proba-
bility. [See Fig. | where, from the current point x, a move

TLE) A

%) ~

— T
z i Ya

Figure 1. Calculating Probabilities of Move With Symmetric
Candidate-Generaling Function (see text).

to candidate y; is made with certainty, while a move to
candidate y; is made with probahility 7(y;)/n(x).] This
is the algorithm proposed by Metropolis et al. (1953). In-
terestingly, it also forms the basis for several optimization
algorithms, notably the method of simulated anneafing.
We now summarize the M—H algorithm in algorithmic
form initialized with the (arbitrary) value x:
Repeatforj=1,2,... N
Generate y from g(x*", ) and  from WO, 1).
If o < ot 3)
—get x(.a""“l] =y
Else
— get xUth = 540
e Return the values {x"}, x™, ... x™}.

As in any MCMC method, the draws are regarded as a
sample from the target density m(x) only after the chain has
passed the wransient stage and the effect of the fixed starting
value has become so small that it can be ignored. In facr,
this convergence to the invariant distribution occurs under
mild regularity conditions. The regularity conditions re-
quired are irreducibility and aperiodicity [see Smith and
Roberts (1993)). What these mean is that, if x and y are in
the domain of (-), 1t must be possible to move from x to dy
in a finite number of iterations with nonzero probability,
and the number of moves required to move from x to dy is
not required to he a multiple of some integer. These con-
ditions are usually satisfied if g(x, y) has a positive density
on the same support as that of (-). It is usually also satis-
fied hy a g(x, y) with a restricted support {e.g., a uniform
distribution around the current point with finite width).

These conditions, however, do not determine the rate of
convergence [see Roberts and Tweedie (1994}, so there
is an empirical question of how large an initial sample
of size #y (say) should bhe discarded and how lang the
sampling should be run. One possibility, due to Gelman
and Rubin (1992}, is to start multiple chains from dis-
persed initial values and compare the within and between
variation of the sampled draws. A simple heuristic that
works in some situations is to make rq and N increasing
functions of the first-order serial correlation in the output.
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This entire area, however, is quite unsettled and is being
actively researched. For more details the reader should
consult Gelman and Rubin (1992) and the accompanying
discussion.

5. IMPLEMENTATION ISSUES:
CHOICE OF ¢(x,y)

To implement the M—H algorithm, it is necessary that a
suitable candidate-generating density be specified. Typi-
cally, this density is selected from a family of distributions
that requires the specification of such tuning parameters
as the location and scale. Considerable recent work is be-
ing devoted ta the question of how these choices should
he made and, although the theory is far from complete,
enough is known to conduct mast practical simulation
studies.

One family of candidate-generating densities, that ap-
pears in the work of Metropolis et al. (1953), 1s given
by g(x, ) = ¢1{¥ — x), where g,(-) is a multivariate den-
sity [see Miiller (1993)]. The candidate y is thus drawn
according to the process y = x + z, where z is called the
increment random variable and follows the distribution g,.
Because the candidate is equal to the current value plus
noise, this case is called a random wafk chain. Possihle
choices far g, include the multivariate normal density and
the multivariate-z with the parameters specified according
to the principles described below. Note that when ¢ is
symmetric, the usual circumstance, g,(z) = ¢;{—z); the
probability of move then reduces to

alx,y) = min{w, I}‘
m(x)
Asmentioned earlier, the same reduction occurs if g(x, y) =
g(y, x).

A second family of candidate-generating densities is
given by the form g{x, v} = g2(y) [see Hastings (1970}].
In contrast to the random walk chain, the candidates are
drawn independently of the current location x—an inde-
pendence chain in Tierney's (1994) terminology. As in
the first case, we can let ¢2 be a multivariate normal or
multivariate-t density, but now it is necessary to specify
the location of the generating density as well as the spread.

A third choice, which seems to be an efficient solu-
tion when available, 15 to exploit the known form of #(-)
to specify a candidate-generating density [see Chib and
Greenberg (1994)]. For example, if (¢} can be written as
() o P()ha(r), where h(¢) is a density that can be sam-
pled and (¢) is uniformly bounded, then set g(x, ¥} = A(y)
(as in the independence chain) to draw candidates. In this
case, the probability of move requires only the computa-
tion of the ¢ function (not « or 4) and is given by

048, 1}
W(x)’

A fourth method of drawing candidates is to use the A-R
methad with a pseudodominating density. This method
was developed in Tierney (1994), and because it is of inde-
pendent interest as an M—H acceptance—rejection method,
we explain it in Section 6.1.

A fifth family, also suggested by Tierney (1994}, is
represented hy a vector autoregressive process of or-
der 1. These autoregressive chains are produced by letting

alx,y) = min{
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y=a+ B(x — a) + z, where a is a vector and B is a matrix
{both conformable with x} antd z has g as its density. Then,
g(x,y) = g{y — a — B(x — a)). Setting B = —J produces
chains that are refiected about the point ¢ and is a sim-
ple way to induce negative correlation between successive
elements of the chain.

We now return to the critical question of choosing the
spread, or scale, of the candidate-generating density. This
is an important matter that has implications for the ef-
ficiency of the algorithm. The spread of the candidate-
generating density affects the behavior of the chamn n at
feast two dimensions: one is the “acceptance rate” (the
percentage of times a move to a new point is made), and
the other is the region of the sample space that is covered
by the chain. To see why, consider the situation in which
the chain has converged and the density is being sampled
around the mode. Then, if the spread is extremely large,
some of the generated candidates will he far from the cur-
rent value, and will therefore have a low probability of
heing accepted (because the ordinate of the candidate is
small relative to the ordinate near the mode). Reducing
the spread will correct this problem, but if the spread Is
chasen too small, the chain will take longer to traverse the
support of the density, and low probability regions will be
undersampled. Both of these situations are likely to be
reflected in high autocorrelations across sample values.

Recent wark by Roberts, Gelman, and Gilks (1994) dis-
cussed this issue in the context of g, (the random walk pro-
posal density). They show that if the target and proposal
densities are normal, then the scale of the latter should be
tuned so that the acceptance rate is approximately .45 in
one-dimensional problems and approximately 23 as the
number of dimeusions approaches infinity, with the op-
timal acceptance rate being around .25 in as low as six
dimensions. This is similar to the recommendation of
Miiller (1993), who argues that the acceptance rate should
be araund .5 for the random walk chain.

The choice of spread of the proposal density in the
case of g, (the independence proposal density} has also
came under recent scrutiny. Chib and Geweke [work in
progress] show that it is important to ensure that the tails of
the proposal density dominate those of the targer density,
which is similar to a requirement on the importance sam-
pling function in Monte Carlo integration with importance
sampling [see Geweke (1989)]. It is important to mention
the caveat that a chain with the “optimal™ acceptance rate
may still display high autocorrelations. In such circum-
stances it is usually necessary o try a different family of
candidate-generaiing densities.

6. APPLICATIONS OF THE M-H ALGORITHM

We hope that the reader is now convinced that the
M-H algorithm is a useful and straightforward device with
which to sample an arbitrary multivariate distribution. In
this section we explain two uses of the algorithm, one
involving the A-R methed, and the other for implement-
ing the algorithm with block-at-a-time scans. In the latter
situation many different algorithms, including the Gibbs
sampler, are shown to arise as special cases of the M-H
algorithm.



6.1 An M-H Acceptance-Rejection Algorithm

Recall that in the A~R methad described earlier, a con-
stant ¢ and a density A(x) are needed such that ch{x)
dominates or hlankets the (possibly) unnormalized target
density f(x). Finding 4 ¢ that does the trick may be dif-
ficult in some applications; moreover, if f(x) depends on
parameters that are revised during an iterative cycle, find-
ing a new valtue of ¢ for each new set of the parameters
may significantly slow the computations. For these rea-
sans it is worthwhile to have an A—R method that does not
require a blanketing function. Tierney’s (1994} remark-
able algorithm does this by using an A-R step to generate
candidates for an M—H algorithm. This algorithm, which
seems complicated at firsr, can be derived rather easily
using the intuition we have developed for the M—H algo-
rithm.

To fix the context again: we are interested in sampling
the target density w{x}), m(x) = f(x)/K, where K may be
unknown, and a pdf A4( ) is available for sampling. Suppose
¢ > 0 is a known constant, but that f{x) is not necessarily
less than ch(x) for all x; that is, ci(x) does not necessarily
dominate f(x). It is convenient to define the set € whete
domination occurs:

C = {x: f{x) < ch(x)}.

In this algorithm, given x = x, the next value x“*Y is
ohtained as follows: First, a candidate value z is obtained,
independent of the current value x, by applying the A-R
algorithm with ¢h(.) as the “dominating” density. The A—
R step is implemented through steps 1 and 2 in Section 2.

What is the density of the rv y that comes through this
step? Following Rubinstein (1981, pp. 4546, we have

g(y) = P(y | U < f(Z)/ch(Z))
_P(U < f(Z))HZ) | Z=y) X h(y)
B Pr(U < f(Z)/ch(Z)) '

But because P(U < f(Z)/c(Z) | Z = y) = min{f(y}/
ch(y), 1}, it follows that

q(y) = mi“{f(y)/ChéJ’)a L} < iy

where d = Pr(U < f(Z)/ch{Z)). By simplifying the nu-
merator of this density we abtain a more useful represen-
tation for the candidate-generating density:

qyy=fjed, yel
= h(y)/d, ify ¢ C. (7)

{Note that there is no need to write g(x, y) for this density
because the candidate y is drawn independently of x.}

Because ch{y) does not dominate the target density in
C* (by definition), it follows that the target density is not
adequately sampled there. See Figure 2 for an illustration
of a nondominating density and the C region. This can be
corrected with an M-H step applied to the y values that
come through the A-R step. Since x and vy can each be in
Corin C°, there are four possible cases: (ajx € C,y € C;
(byand(c)x gC,y e Corx € C,y¢ Ciand (d) x ¢ C,
y ¢C.

The objective now is to find the M—H moving proba-
bility afx, ¥} such that g{y)a{x, y) satisfies reversihility.

| ¢
Figure 2. Acceplance—Rejection Sampling With Pseudadominat-
ing Density chix).

To proceed, we derive a(x, v} in each of the four possible
cases given above, As in (2), we consider m(x)g(y) and

m{y)q(x} [or, equivalently, f(x)q(y} and f(y)q(x}] to see
how the probability of moves should be defined to ensure

reversibility, That is, we need to find afx, ¥) and oy, x)
such that

fx)g(y)olx, y) = f(y)glx)aly, x)
in each of the cases {a)—(d), where g(y) is chosen from (7).

Casefa): x € C,y € C. Inthiscaseitiseasy to verify
that f{x)g(y¥) = f(x)f(¥)/cd is equal to f(v)g(x). Accord-

ingly, setting a(x, y) = afy, x) = 1 satisfies reversibility.
Cases (b) and (c): x ¢ C,y € Corx € C,y ¢ C.

In the first case f(x) > chix), or h{x) < f(x)/e, which

implies (on multiplying both sides by f( y)/d) that

fOhx) _ fOY @)

d cd
or, from (7}, f(¥)g(x) < f(x)g{y). We now see that there
are relatively too few transitions from y to x and too many
in the opposite direction. By setting ey, x} = 1 the first
problem is alleviated, and then afx, v} is determined from

Jhx) _ F&F )
d - CE()C,}J) Cd
which gives al{x, y) = ch{x}/f(x). If x € C, v & C, reverse
the roles of x and y above to find that af(x,y) = 1 and

oy, x) = ch(y)/f(y).

Case (d): x ¢ C,y ¢ C In this case we have
fg(y) = fOok(y)/d and f(Ngx) = f(yIx)/d, and
there are two possibilities. There are too few transitions
from y to x to satisfy reversibility if

FOn(y)
d

[n that case set af y, x) = 1 and determine a(x, y} from

o y)f(x);(y) _ f(yﬁ:@ |

> f(¥)g(x).
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which implies

_ o [fOhhlx)

If there ace too few transitions from x to y, just interchange
x and y in the above discussion.

We thus see that jn two of the cases, thase where x € C,
the probability of move to yis 1, regardless of where y lies.
To summarize, we have derived the following probability
of move to the candidates y that are produced from the
A-R step:

o Let Cl = {f(x) < ch(X)}; and C2 = {f(y) < ch(y)}.
s Generate u from U{CQ, 1) and
—if €1 =1, thenlet & = 1;
—if C1 =0 and C2 = 1, then let & = {chlx) /f(x));
—if C1 = ¢and C2 = O, then let & = min{{f{yh(x}/
FRHOLY.
e [fu<ao
—return y.
+ Else
—return x.

6.2 Block-at-a-Time Algorithms

Another interesting situation arises when the M-H al-
gorithm is applied in turn to subblocks of the vector x,
rather than simultaneously to all elements of the vector.
This “block-at-a-time” or “'variable-at-a-time” possibility,
which is discussed 1n Hastings (1970, sec. 2.4), often sim-
plifies the search for a suitable candidate-generating den-
sity and gives rise to several interesting hybrid algorithms
obtained by combining M—H updates.

The central idea behind these algorithms may be 1l-
lustrated with two blocks, x = (x|, %), where x; € R%.
Suppose that there exists a conditional transition kernel
P {xy, dy | xa) with the property that, for a fixed value
of xz, i (- | x2) is its invariant distribution (with density
7l | %)), that is,

maldy [ 1) = /Pl(xl:d}’l | x)mialxr | %) dxy. (8)

Also, suppose the existence of a conditional transition ker-
nel Pa(xy,dya | x1) with the property that, for a given xy,
:rr;“(- | x1) 1s its invariant distribution, analogous to (8).
For example, P, could be the transition kernel generated
by a Metrapolis—Hastings chain applied to the block x,
with x; fixed for all iterations. Now, somewhat surpris-
ingly, it turns out that the product of the transition kernels
nas m(x,x) as its invariant density. The practical sig-
nificance of this principle (which we call the praduct of
kernels principle) is encrmous because it allows us to take
draws in succession frem each of the kernels, instead of
having to run each of the kernels to convergence for every
value of the conditioning variable. In addition, as sug-
gested above, this principle is extremely useful because it
1s usually far easier to find several conditional kernels that
converge to their respective canditional densities than to
find one kernel that converges to the joint.

To establish the product of kernels principle it is nec-
essary to specify the nature of the “scan™ through the
elements of x (Hastings mentions several possibilities).
Suppose the transition kernel P (-, - | x2) produces y; given
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x; and xi, and the transition kernel P,(-, - | y;) generates
y2 given x; and y;. Then the kernel formed by multiplying
the conditional kernels has 7*(-, -} as its invariant distsi-
hution:

// Pi(xy,dy | x2)Py{xg,dyy | y){xy, X2) dxy dxy

= /Pg(xg,ffyz | ¥1) {/ Pi(xy,dyy | x2)my (x| X2} dx

% ®y{xa}dxy
- f Py, dya | yOymialdy, | xamaa) d

(x| Oy
Ta(x2)

= m'{dy) /Pz(xz;d}’z | yodman(xa | yi)dxy

=7 {dy )y (dya | y1)
=7 (dy, dy),

where the third line follows from (8), the fourth from Bayes
theorem, the sixth from assumed invariance of Py, and the
last from the law of total probability.

With this result in hand, several important special cases
of the M—H algorithm can be mentioned. The first special
case is the so-called “Gibbs sampler” This algorithm is
obtained by letting the transition kernel P {x;,dy, | x2) =
ﬂr|g(dy1 | x2), and Py{xa, dys | y1) = "'Tz“(dﬁ [ 1), that
is, the samples are generated directly from the “full con-
ditional distributions.” Note that this method requires that
it be possible to generate independent samples from each
of the full conditional densities. The calculations above
demonstrate that this algorithm is a special case of the
M-H algorithm. Alternatively, it may be checked that the
M-H acceptance probability afx, y} = 1 for all x, y.

Another special case of the M-H algorithm is the so-
called “M-H within Gibbs™ algorithm (but see our com-
ments an terminology below), in which an intractable full
conditional density [say mj2(ys | x2)] is sampled with the
general form of the M—H algorithm described in Section 4
and the others are sampled directly from their full condi-
tional distributions. Many ather algorithms can be sim-
ilarly developed that arise from multiplying conditional
kernels.

We conclude this section with a brief digression on ter-
minology. It should be clear from the discussion in this
subsection that the M—H algorithm can take many different
forms, one of which is the Gibbs sampler. Because much
of the literature has overlooked Hastings’s discussion of
M-H algarithms that scan one block at a time, some un-
fortunate usage (“M-H within Gibbs," for example) has
arisen that should be abandoned. In addition, it may he de-
sirable to define the Gihbs sampler rather narrowly, as we
have done ahave, as the case in which all full conditional
kernels are sampled by independent algorithms in a fixed
order. Although a special case of the M—H algorithm, it is
an extremely important special case.

=/P1(x1,dy2 |y

ma(xa) dxa

7. EXAMPLES

We next present two examples of the use of the M—-H
algorithm. In the first we simulate the bivariate normal
to illustrate the effects of various choices of g{x, v}; the



second example illustrates the value of setting up blacks
of variables in the Bayesian posterior analysis of a second-
order autoregressive time series model.

7.1 Simulating a Bivariate Normal

To illustrate the M—H algorithm we consider the simu-
lation of the bivarate normal distribution Nao{u, X)), where
o = (1,2)" is the mean vector and ¥ = {(0;;): 2 x 2 is the
covariance matrix given by

(3 %)

Because of the high correlation the contours of this dis-
tribution are “cigar-shaped,” that is, thin and positively
inclined. Although this distribution can be simulated di-
rectly in the Choleski approach by letting y = p + Plu,
where # ~ Ny(G,f,) and P satisfies PPP = X, this
well-known problem is useful for illustrating the M-H
algorithm.

From the expression for the multivariate normal den-
sity, the probabhility of move (for a symmetric candidate-
generating density) is

exp [—5(y — )27 (y — p)] :
exp [—lx — pyY S e —w)] |’
xyeR. (9

aelx, y) = min{

We use the following candidate-generating densities, for
which the parameters are adjusted by experimentation to
achieve an acceptance rate of 40% to 50%:

1. Random walk generating density (y = x + z), where
the increment random variable z is distributed as bivariate
uniform, that is, the ith component of z is uniform an the
interval {—4;, &). Note that §; controls the spread along
the first cootdinate axis and 4, the spread along the second.
To avoid excessive moves we let §; = .75 and 6, = 1.

2. Random walk generating density {y = x + 2) with
7 distributed as independent normal Ny(Q, D), where D =
diagonal{.6, .4},

3. Pseudorejection sampling generating density with
“dominating function” ch(x) = ¢Qm)~'[D|~'/* exp[—3
{x — pYD(x — )], where D = diagonal(2,2) and ¢ = 9.
The trial draws, which are passed through the A-R step,
are thus obtained from a hivariate, independent normal
distribution. '

4. The autoregressive generating density y = g1 — (x —
1) + 2, where z is independent uniform with & = 1 = &,.
Thus values of y are obtained by reflecting the current
peint around g and then adding the increment,

Naote that the prabability of move in cases 1, 2, and 4 is
given by (9). In additien, the first two generating densities
do not make use of the known value of i, although the
values of the 4, are related to . In the third generating
density we have set the value of the constant ¢ to be smaller
than that which leads to true demination. For domination
it 1s necessary to let all diagonal entries of D be equal to
1.9 (the largest eigenvalue of ) and to set ¢ = /|D|/|Z|
[see Dagpunar (1988, p. 159)].

Each of these four candidate-generating densities repro-
duces the shape of the bivariate narmal distribution being

simulated, although overall the best result is obtained from
the fourth generating density. To illustrate the character-
istics of the output, the top panel of Figure 3 contains
the scatter plat of N = 4,000 simulated values from the
Choleski approach and the bottom panel the scatter plot
of N = 6,000 simulated values using the fourth candidate-
generating density. More observations are taken from the
M-~H algorithm to make the two plots comparable. The
plots of the output with the ather candidate-generating
densities are similar to this and are therefore omitted. At
the suggestion of a referee, points that repeat in the M~H
chain are “jittered” to improve clarity. The figure clearly
reveals that the sampler does a striking job of visiting the
entire support of the distribution. This is confirmed by the
estimated tail probabilities computed from the M—H out-
put for which the estimates are extremely close to the true
values. Details are not reported to save space.

For the third generating density we found that reduc-
tions in the elements of D led to an erosion in the number
of times the sampler visited the tails of the distribution.
In addition, we found that the first-order serial correlation
of the sampled values with the first and second candidate-
gererating densities is of the order .9, and with the other
two it is 3¢ and .16, respectively. The high senal cor-
relation with the random walk generating densities is not
unexpected and stems from the long memory in the can-
didate draws. Finally, by reflecting the candidates we see
that it 1s possible to obtain a beneficial reduction in the
serial correlation of the output with little cost.

7.2 Simulating a Bayesian Posterior

We now illustrate the use of the M-H algorithm to sam-
ple an intractable distribution that arises in a stationary
secand-order autoregressive [AR(2)] time series model.
Our presentation is based on Chib and Greenberg (1994),
which contains a more detailed discussion and results for
the general ARMA( p, g} model.

Forourillustration, we simulated 100 observations from
the madel

V= v+ Y + £, e=1,2,...,100, (10)

where ¢ = 1, ¢y = ~.5, and ¢, ~ N(0,1}. The values
of ¢ = (¢, ¢2) lie in the region § © R’ that satisfies the
stationarity restrictions

L+ ¢ < I —r+gy < 15 ¢ > — L

Following Box and Jenkins (1976}, we express the {exact
or unconditional) likelihood function for this model given
the 1 = 100 data values ¥, = (y;,vs, ..., y.) as

(g, 0% = T, a") x () @272

1 i
X exp {—? > Gy - wicﬁ)l} . (1D
=1

where w, = (y,_1, y,_1),

e |
U(p,a%) = (a®)" V| exp [—@nv ‘h} (12)
is the density of Y2 = (i, y2)',
V_'l=< - ¢ —¢1(1+¢2))
G (l+y)  1—¢F )’
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Figure 3. Scatter Plots of Simulated Draws. Top panel: Generated by Choleski approach. Bottom panel: Generated by M—H with reflection

candidate-ganerating density

and the third term in (11} is propottional to the density of
the observations (ys, ..., y.) given ¥,

[f the only prior information available is that the process
is stationary, then the posterior distribution of the param-
eters is

'ﬂ'(qﬁ),gz | Yu) o 1(4310'1)[[@5 € S]]

where I[¢ € S]is 1 if ¢ € S and 0 otherwise.

How can this posterior density he simulated? The an-
swer lies in recognizing two facts. First, the blocking
strategy is useful for this problem by taking ¢ and o2 as
blocks. Second, from the regression ANOVA decomposi-
tion, the exponential term of (11) is proportional to

1 - -
exp —T‘g(ﬁﬁ —¢)'G(g — @),
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where ¢ = G Y (wiyy) and G = 3, Gwyw)). This is
the kernel of the normal density with mean ¢ and covari-
ance matrix ¢ *G~". These observations immediately lead
to the following full conditional densittes for ¢* and ¢:

I. The density of o* given ¢ and ¥, is inverted gamma
with parameters n/2 and ¥V =1¥, + 577 (y, — wigh)?.
2. The density of ¢ given ¢2 and ¥,, is

(¢ | ¥y 0%) o U(d, 0" % {fulp | 6, 0°G™ M4 € S},
(13)
where £, 15 the normal density function.

A sample of draws from m(a?, ¢ | ¥,) can now be ob-
tatned by successively sampling ¢ from n(¢ | ¥,, ¢%), and
given this value of ¢, simulatng ¢* from #(a? | ¥,, ¢).
The latter simulation is straightforward. For the former,



Table 1. Summaries of the Posterior Distribution for
Simuated AR(2} Mods!

Fosterior

Faram. Mean WNum. 8E SO Median Lower Upper Corr,

P 1.044 002 082 1.045 882 1.203 133
s —.608 001 082 —.810 —.763 —.445 109
a? 1.160 003 A70 1143 877 1.544 020

because it can be shown that |[V=!|'/? is bounded for all
values of ¢ in the stationary region, we generate candi-
dates from the density in curly braces of (13), following
the idea described in Section 5. Then, the value of ¢ is
simulated as: At the jth iteration (gtven the current value
oMy, draw a candidate ¢+ from a normal density with
mean ¢ and covariance o %G ™!; if it satisfies stationarity,
maove ta this point with probability

o[l g M
mm{ T(gh. gy 1}

and otherwise set ¢ = ¢ where W(-, ) is defined in
(12). The A-R method of Section 2 can also be applied
to this problem by drawing candidates ¢“* from the nor-
mal density in (13) until U < W@+, o). Many draws
of ¢ may be necessary, however, befare one is accepted
because T(¢, o?) can become extremely small. Thus the
direct A-R. method, although available, is not a competi-
tive substitute for the M—H scheme described above.

In the sampling process we tgnore the first ny = 500
draws and collect the next N = 5,000. These are used
to approximate the posterior distributions of ¢ and oZ.
It is worth mentioning that the entire sampling process
toak just 2 minutes on a2 50 MHz PC. For comparison we
obtained samples from the A-R method, which took about
4 times as Jong as the M—H algaorithm.

The posterior distributions are summarized in Table [,
where we report the posterior mean {the average of the
simulated vafues), the numerical standard error of the pos-
terior mean (computed by the batch means methad), the
posterior standard deviations {the standard deviation of
the simulated values), the posterior median, the lower 2.5
and upper 97.5 percentiles of the simulated values, and
the sample first-order serial correlation in the simulated
values (which is low and nat of concern). From these re-
sults it is clear that the M-H algorithm has quickly and
accurately praduced a posterior distribution concentrated
on the values that generated the data.

8. CONCLUDING REMARKS

Our goal in this article is to pravide a tutorial expo-
sition of the Metropelis—Hastings algorithm, a versatile,
efficient, and powerful simulation technique. It borrows
from the well-known A-R method the idea of generating
candidates that arve either accepted or rejected, but then
retains the current value when rejection takes place. The
Markov chain thus generated can be shown to have the
target distribution as its limiting distribution.  Simulat-
ing from the target distribution is then accomplished by

running the chain a large number of times. We provide
a simple, intuitive justification for the form taken by the
probability of move in the M—H algorithm hy showing its
relation to reversibility. We also discuss implementation
issues and two applications, the M—H acceptance rejection
algorithm and the use of the algorithm in block-at-a-time
setting. Finally, the procedures are illustrated with two
examples.

[Received April 1994, Revised Janary 1995}
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