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Recent years have witnessed a consider-
able increase in the development and use
of mathematical and computer-based
models in infectious disease epidemiology.
As a measure of this increase, Bailey (1)
finds that the literature in this field has
grown at a greater-than-exponential rate
over the past two decades. uthough one
may suspect that some of the published
models have greater value as exercises in
mathematics than as contributions to “real
disease” epidemiology, this is certainly not
true of all of them; and many examples can
be cited of major contributions of mathe-
matical models in revealing relationships
underlying complex epidemiologic phe-
nomena, in hypothesis testing, and in the
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rational formulation of public health pol-
icy (1-4).

A further motive for the development of
models, and one which is sometimes over-
looked, relates to their usefulness in class-
room teaching. Indeed, it might even be
argued that it is through this medium that
models have had their greatest impact
upon the practice of epidemiology today. It
is probable that discussions of Muench's
(5) catalytic models (especially at Harvard
University) and of Macdonald’s (6) malaria
equations (especially at the School of Hy-
giene and Tropical Medicine in London)
have been of major and enduring value to
many epidemiologists and public health
officers, by introducing them clearly and
forcefully to the quantitative subtleties of
epidemiologic processes. In this context, it
is certain that no epidemiologic model has
enjoyed such widespread and lasting suc-
cess in the teaching milieu as has that
originally developed at the Johns Hopkins
University by Wade Hampton Frost and
Lowell Reed, and which has come to be
known familiarly as the Reed-Frost model.

HisTORY OF THE REED-FROST MODEL

The story of the development of the
Reed-Frost model is both well and ill
known. Though mentioned by Frost in a
Cutter lecture at Harvard in 1928, the
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model was never discussed in publications
by its authors (7, 8). It is indeed ironic that
one of the more fertile ideas in twentieth
century epidemiology should have been
considered by its authors as “too slight a
contribution” for publication (9). But other
workers (beginning with Zinsser and Wil-
son, in 1932) were impressed with the
model’s potential usefulness for the inves-
tigation of a variety of epidemiologic prob-
lems. And it has since served as the basis
of several important contributions, nota-
bly by Elveback, Fox, and their colleagues
10, 11).

The beauty and strength of the Reed-
Frost model lie in the simplicity and versa-
tility of its algebraic formulation. The ease
with which it is converted from determin-
istic to stochastic form makes it ideal in
the context of teaching biomedical stu-
dents, for whom stochastic theory may ap-
pear somewhat threatening. Indeed, it is
with reference to this quality of their
model that Reed and Frost showed a spe-
cial streak of their genii, in the develop-
ment of a mechanical analogue to illus-
trate the model’s stochastic properties.

This mechanical model —based upon the
probabilists’ traditional container full of
colored balls—was developed at Johns
Hopkins about 1930, and has since been
used in teaching laboratories in many in-
stitutions both in the United States and
abroad. Invented before the age of com-
puters, this apparatus probably provided
the first technique for the stochastic simu-
lation of epidemiologic phenomena with
non-biological material (we recall that
there was considerable interest in animal-
model “experimental epidemiology” at
that time in history). The mechanical
model has undoubtedly undergone trans-
formations in its passage from one institu-
tion to another; but none of these transfor-
mations —let alone the basic model itself—
has ever been fully described in publica-
tion. This is surprising, as the relationship
between the algebraic formulation and the
mechanical analogue of the Reed-Frost

model is both interesting and subtle. Some
aspects of this relationship may be over-
looked in the epidemiology classroom; but
others frequently arise in discussion of the
model’s properties. It then becomes of in-
terest to explore different methods of treat-
ing the relationship between the algebraic
and mechanical models.

It is in recognition of the historical im-
portance, the intrinsic subtlety and the
continued value of the Reed-Frost model in
epidemiology teaching, that several var-
iants of its mechanical analogue are dis-
cussed here.

THE MODEL
The basic deterministic formulation

The Reed-Frost model was originally de-
signed to describe the epidemic pattern of
an acute, contagious infection after its in-
troduction into a closed population. The
model’s assumptions were outlined by Ab-
bey (12), in the following way:

The infection is spread directly from infected in-
dividuals to others by a certain kind of contact (ade-
quate contact) and in no other way.

Any non-immune individual in the group, after
such contact with an infectious person in a given
period, will develop the infection and will be infec-
tious to others only within the following time period,
after which he is wholly immune.

Each individual has a fixed probability of coming
into adequate contact with any other specified indi-
vidual in the group within one time nterval, and
this probability is the same for every member of the
group.

The individuals are wholly segregated from oth-
ers outside the group.

These conditions remain constant during the epi-
demic.

Though stringent, these assumptions may
provide a reasonable description of the
processes underlying outbreaks of acute
infections within institutions (e.g., mea-
sles within schools). In this case, the
model’s “time period” is taken to corre-
spond to the latent period of the infection,
the time between acquisition of the infec-
tion and maximum infectiousness of the
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case. The traditional notation for the ful to introduce another
Reed-Frost model is as follows: parameter here, ln order
S, C, = The numbers of suscepti- to clarify the definition of

bles, and cases, in the this probability of effec-

. ! . tive contact. If there are
population during time M individuals in the en-
tire population, then
pM - 1) = K = the ex-
pected number of con-

S¢+ 1 Ct+ 1 = The numbel's of Suscepti-
bles, and cases, in the
population during the

i i i by each
next time period, ¢ + 1. tacts experienced by
p=(0-q) = The probability that any ‘?‘d“”d“'?lod during one
two individuals (selected time period.)

at random from the popu-

lation) come into “effec- We argue that, during time period ¢, the
tive contact” (i.e., contact probability that a susceptible individual
sufficient for the transfer comes in contact with none of the cases is
of the infectious agent) ¢¢. The complement of this term describes
during one time period. the probability that a susceptible individ-
(Some teachers of the ual contacts at least one case, and hence
model have found it help- contracts the infection.

|oor....-..._.1
.\.
Q ) N ~
Z .
27 \
TZ
n B \
25 '
O g wT ",‘st
£3 "
42 |
- \
x = 1 \
W1 moex case L
8 201 |NTRO0LK:ED fan TSP
104 l /.// \ c'
D
0 I 2 3 4 5 6 7 8 9 101
TIME PERIOD (1)

Ficure 1. Epidemic course predicted by the basic Reed-Frost model, assuming S, = 100,C, = 1 andp =
0.02. The successive numbers of cases (solid line) and numbers of remaining susceptibles (dotted line) were
obtained by 1teration of equations 2 and 3 in the text. The expected numbers of cases were rounded off to
their nearest integer values. Given these conditions, a total epidemic size of 79 cases is predicted by, the
deterministic Reed-Frost model, and 22 susceptibles remain still unaffected at its conclusion.
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Probability a susceptible contacts at
least one case during time period ¢
= (1 - q%). o))
The e number of cases in the next
time interval is thus defined deterministi-
cally as:

Ct+1=St(1—qC')- (2)
And, of course:
S841=8-Ci4, 3)

These two equations comprise the basic
Reed-Frost model. Iteration of these equa-
tions for successive time periods allows the
prediction of an entire epidemic, as illus-
trated in figure 1.

The implications of this formulation
have been investigated by a number of
authors. Notable are Wilson and Burke’s
(9) comparison of the model with the ear-
lier "mass action” formulations of Hamer
(13) and Soper (14), Costa Maia’s (15) in-
vestigation of the implications of adding
new susceptibles, and Zinsser and Wilson’s
(4) examination of the effect of variations
in virulence upon the apparent case fatal-
ity rates in such theoretical epidemics.

The stochastic formulation

The conversion from deterministic to
stochastic formulation is easily illustrated
by comparing a Reed-Frost epidemic proc-
ess to a series of binomial trials. In each
time period, each of the S, susceptible indi-
viduals “has” a probability of becoming
infected equal to (1 — ¢%). We can thus
imagine the events of one time period to be
analogous to the tossing of S, “coins,” each
of which has a probability of (1 — ¢%) of
falling “cases up.” And the probability
that exactly r of the susceptibles (“coins”)
become infected (fall “cases up”) is thus
given by the standard binomial expres-
sion:

Prob (C,+, = 1)
S

= AG. - 1 = g%)(g°)Si-r (4)

This is the basic stochastic formulation of
the Reed-Frost epidemic process. The
equation defines the probability of a speci-
fied prevalence (C;,, =r) in the subse-
quent time period, given some set of initial
conditions (S,, C,and p). By multiplication
of probabilities defined by this equation, it
is possible to calculate the probability that
any specified series of prevalences would
occur (e.g.,Cr41, Crv g, Civ's, - - ), given
some initial conditions. Abbey (12) dis-
cussed this formulation, and from it de-
rived a maximum likelihood method for
estimating the p value for any given epi-
demic sequence.

Though the derivation of the stochastic
expression 4 is straightforward, and acces-
sible to anyone familiar with the binomial
distribution, its implications may not be so0
immediately clear. This reflects a common
difficulty suffered by non-mathematicians
when dealing with stochastic equations.
Although stochastic epidemics may easily
be generated on a computer, in accordance
with this equation, the conceptual leap
from expression 4 to print-out is sometimes
underestimated by biostatisticians who
present such material to non-mathemati-
cal audiences. It is here that the mechani-
cal ahalogue to the Reed-Frost model dem-
onstrates its usefulness as a teaching tool.

The mechanical model

The goal is (or was) to design a simple
mechanical apparatus which would illus-
trate the behavior of the stochastic Reed-
Frost epidemic. Indeed, the absence of
electronic computers when the model was
first developed made some such apparatus
necessary for the empirical exploration—
let alone teaching — of the model. The tech-
nique developed at the Johns Hopkins
University (Sartwell (8) attributes the
idea to Reed) involved the use of colored
balls to represent the individuals in the
population, and their randomized linear
arrangement in a trough to illustrate the
outcome of each successive time period
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TOP VIEW

SIDE VIEW

LB, Y

Figure 2. Two different types of mechanical Reed-Frost models. 2a is the classic trough, holding a linear
arrangement of “susceptible,” “case,” “immune” and “contact neutralizer” balls. Converuent teaching
models may include one fixed and one removable endpiece, to facilitate pouring balls back into a container
for randomizing. Sloping the trough makes it easier to achieve a linear arrangement 2b is a roulette-wheel
type model, this one containing 50 equal-sized pockets 1n its circumference. A phonograph turntable may be
used to rotate such a wheel. Balls are spun into the wheel independently, and all those which land 1n the

same pocket are said to have “effective contact”

(figure 2A). The simplest convention was
described by Elveback and Varma (16) as
follows.

Balls of four different colors are re-
quired: “susceptibles” (e.g., S = green);
“cases” (e.g., C = red); “immune” (e.g.,I =
blue) and “blocks,” or “contact neutraliz-
ers” (e.g., N = white). Numbers of balls
representing the individuals of each sta-
tus, during one time period, are placed in a
container along with a number of blocks
(the determination of their number is dis-
cussed below). These are randomized, and
poured into a trough in single file. It is
then considered that all individuals (col-
ored balls) which are not separated by a
block have contact during that period —
thus any “susceptible ball” which is not
separated by at least one block from a
“case ball” is considered to experience in-
fectious contact. The sequence is consid-
ered to be closed-ended, in that no contact
occurs between balls at opposite ends of
the file. After the result (i.e., the incidence
of new cases) has been recorded, the popu-
lation of balls is then altered accordingly:
“case balls” being substituted for suscepti-
bles which experienced infectious contact;

TaBLE 1
Interpretation of a linear sequence of balls in the
standard Reed-Frost trough model. The conuvention
assumes that a case remains infectious for one time
period and then becomes permanently immune.
Substitutions are made prior to randomizaton of
balls for ssmulation of the subsequent time period

Substitutions required
Random sequence for sumulation of
for time period ¢ subsequent time penod
t+1)

Block

Susceptible ————————» Case

Immune

Case > Immune

Block

Case ~» Immune

Susceptible —————————» Case
Susceptible ————— > Case
Block

Susceptible

Block

and “immune balls” being substituted for
cases (see table 1). The entire procedure is
then repeated . . . , until the epidemic ex-
pires due to absence of cases or exhaustion
of susceptibles. The results of three such
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Ficure 3. Results of three separate epidemic simulations with a Reed-Frost trough model. Each
simulation began with 100 initial susceptibles and a single index case. 98 “block” balls were maintained
throughout the process. The total numbers of cases to evolve in the three epidemics were 1 (—--),

73 (---) and 84 (—).

epidemic simulations are presented in fig-
ure 3.

Such an exercise provides a vivid dem-
onstration of the role of chance in a simple
epidemic process. Of course, the conven-
tions may be changed in numerous ways—
for example: new susceptibles may be in-
troduced into the population at any rate;
some susceptibles can be converted di-
rectly to immune status, to mimic an im-
munization program; and the duration of
infectiousness or immunity may be varied
at will.,

This is apparently the sort of model orig-
inally developed at Johns Hopkins about
1930, and is the one which has been widely
used in teaching since that time. It may be
noted that any technique for obtaining a
random linear ordering of S, C, I and N
units may be substituted for the tradi-
tional ball and trough apparatus. An ob-
vious alternative would be to use cards in

place of the balls, which can then be ran-
domized by shuffling. This may have been
the technique used by Horiuchi and Sugi-
yama (17, 18), who described their tech-
nique as “using similar chips and many
shufflings.” It remains for us to discuss the
relationship between such mechanical
models and the algebraic formulation 4.

Relationship between the mechanical and
mathematical models

The initial problem is to relate the con-
tact probabilities as defined in the mathe-
matical formulation (expressions 1 and 4)
to the probabilities of contact between sim-
ulated individuals in the mechanical Reed-
Frost model.

The probability of contact p was defined
as the probability that any two individuals
chosen at random from the population
would have contact during one time pe-
riod. This can easily be expressed in terms
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of the linear mechanical model, by investi-
gating the probability that two specified
colored-ball individuals, X and Y, will not
be separated by a block. Assuming that
there are n blocks, then, no matter where
X should fall, there will be two positions
out of a total of (n + 2) for Y to have
“effective contact” with X. This is illus-
trated in figure 4. Therefore, 2/(n +2) de-
fines p, the probability that any two indi-
viduals come in contact in a random se-
quence, and [1 — 2/(n + 2)] = n/(n + 2)
gives the probability that two individuals
will not be in contact in a sequence, orgq.

It would be convenient if this simple
relationship were sufficient to equate the
mechanical and the mathematical forms of
the Reed-Frost model. But it is not. A diffi-
culty arises in that the crucial term in the
stochastic expression 4 is not the proba-
bility that a susceptible individual con-
tacts a single case, but the probability that
a susceptible individual will contact at
least one case during the time period.
(This is a crucial difference, as it distin-
guishes the Reed-Frost model from the
earlier mass-action models of Hamer (13)
and Soper (14)). In the algebraic formula-
tion this probability could be expressed as
(1 = ¢©); but it turns out that it cannot be
expressed in terms of blanks merely by
substituting n/(n + 2) for q. This is so

because of a peculiar linear dependence in
such a random sequence of balls.

The difficulty does not arise if there is
only a single infectious case in the trough
“population”; as under this circumstance
the probability of contact with one case is
equivalent to the probability of contact
with at least one case, and equals p, or 2/
(n + 2). But, let us assume that there were
more than a single case, say C, = 2. If we
also assume that there were two block
balls, thenn = 2, and p = 2/(2 + 2) = 0.5.
On the basis of this value of p, the proba-
bility that a susceptible contacts at least
one of the cases should be, according to
expression 1, equal to 1 — (1 — 0.5)* = 0.75.
But this does not apply to a linear arrange-
ment of balls, say two blocks, two cases,
and one susceptible. A few moments with
pencil and paper, exploring the possible
permutations and combinations of five
such objects, will suffice to convince the
reader that the probability the “suscepti-
ble ball” contacts at least one “case ball,”
under the linear arrangement convention,
is not 0.75, but 0.7. This is illustrated in
table 2.

Rather than depend only upon pencil
and paper permuting, a general equation
for the contact probabilities in the me-
chanical model can easily be derived (Ap-
pendix A). We find that the probability a

SAMPLE

BALL SEQUENCE:

SPACE NUMBERS

SUCCESSFUL
CONTACT POSITIONS:

DO ®6.. ©

T
V2 3

Fioure 4. Contact probabilities between two colored balls, balls X and Y, in a linear arrangement of n
“block” balls: balls 1,2, - - -n. Given n “blocks” and ball X, in any linear sequence, there are (n + 2) possible
(and equally probable) positions for ball Y. Only two of these (e.g., positions 4 and 5 in the illustrated
sequence) Involve contact with ball X. The probabulity of contact between the two colored balls, in the linear

model, is therefore 2/(n + 2).
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TABLE 2
Possible linear permutations of 5§ colored balls: two
cases (C), two blocks (N), and one susceptible (S). As
the two case balls are identical, and the two blocks
are identical, there are 5//(2! x 2!) = 30 possible
permutations. These are given below

No Sequence No. Sequence No  Sequence
1* NNCCS 11* NNCSC 21* NNSCC
2* NCNCS 12* NCNSC 22 NSNCC
3 NCCNS 13* NCSNC 23* NSCNC
4* NCCSN 14* NCSCN 24* NSCCN
6* CNNCS 15 CNNSC 25 SNNCC
6 CNCNS 16 CNSNC 26 SNCNC
7* CNCSN 17* CNSCN 27 SNCCN
8 CCNNS 18* CSNNC 28* SCNNC
9 CCNSN 19* CSNCN 29* SCNCN

10* CCSNN 20* CSCNN 30* SCCNN

* In only 21 of the permutations, marked with an
asterisk, does the susceptible contact at least one
case. As each of the sequences 18 equally probable,
the probability that the susceptible contacts at least
one case, under these conditions, is then 21/30 = 0.7

“susceptible ball” contacts at least one
“case ball,” and hence contracts the infec-
tion, is:
Probability a “susceptible ball

contacts at least one infected ball”

_ ClC+2n+1]
"+ C+ 1l + C] ®

where: n = the number of blocks; C = the
number of “case balls.”

Substitution of n = two blocks and C =
two cases into this expression gives 0.7 as
the probability that a “susceptible ball”
would contact at least one “case ball.”

This identifies the problem: given a con-
stant number of blocks n, the linear me-
chanical model underestimates the proba-
bility that a susceptible individual con-
tacts at least one of several cases. In so0
doing, the mechanical model in effect un-
derestimates the probability of contact be-
tween individuals (i.e., p), if C > 1. The
generality of this relationship is proven in
Appendix A. And the challenge is clear:
how does one reconcile the elegant alge-
braic formulation 4 with the traditional
teaching model?

Reconciliation between the mathematical
and mechanical models

The imperfect relationship between the
algebraic and the mathematical expres-
sions of the Reed-Frost model has been
noted by many workers. Though not ex-
plicitly discussed in publications, it has
been mentioned to the author by several
persons familiar with the model. We will
discuss here three methods for resolving
this discrepancy.

1) Maintain a constant number of
blocks, but alter the assumptions. The
simplest approach is to retain a constant
number of blocks throughout the course of
an epidemic simulation with the trough
model. As noted above, this entails a de-
parture from the simple algebraic formu-
lation, in that the implicit contact proba-
bility will not remain constant during the
full course of the epidemic, but will de-
crease with an increase in prevalence (C).
This may then be explained away, by mak-
ing the not-unreasonable assumption that
some public health measures would be en-
forced during periods of high prevalence
(such as a restriction of movement of indi-
viduals), the effect of which would be to
lower the basic contact probability within
the population.

2) Adjust the number of blocks at each
time period of the simulated epidemic. The
mathematical formulation of the model as-
sumes a constant contact rate “p” through-
out the entire course of an epidemic. Inso-
far as the implied contact probability in
the mechanical analogue is dependent
upon both C, and n, it should be possible to
adjust the number of blocks (i.e., n) at
each time period, so as to ensure a reason-
ably constant implicit contact rate in the
trough model. A method for doing this is
presented in the nomogram of figure 5.
This chart allows one to select the proper
number of blanks (n) necessary to main-
tain a (nearly) constant implied contact
probability, given any number of “case
balls” present in that time period. In order
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to run an epidemic, one need only decide in
advance upon a fixed contact probability, p
(nomograms for any desired probability of
contact can be easily prepared, using the
expression derived in Appendix B). Then,
at each period of the epidemic, the number
of blocks required is read off the nomo-
gram, based upon the prevalence (C,) at
that time.

This adjustment is not perfect —the step
function nature of the nomogram disguises
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Ficure 5. Nomogram chart designed for use with
the trough analogue of the Reed-Frost model. Given
any number of cases (C), and a chosen contact prob-
ability of either 0.1, 0.05, 0.03, or 0.02, the proper
number of “blocks” (n) may be read off the vertical
axis. This adjustment ensures that the implicit
probability of contact between “individuals” in the
population is as close as possible to the desired
value. The derivation of the nomogram values is
described in Appendix B.

the continuous relationship between n and
C,-but the approximation nevertheless
turns out to be very good indeed.

3) Development of alternative mechani-
cal models. The nomogram adjustment
discussed above provides a compromise
method for approximating the mathemati-
cal formulation of the Reed-Frost model
with the traditional mechanical trough
analogue. An alternative is to design
another sort of apparatus which will mimic
perfectly the contact probabilities derived in
the algebraic model.

An effective solution may be based upon
a roulette wheel principle (figure 2B). (I
learned of the roulette model from col-
leagues at Berkeley, where this adapta-
tion was once used in epidemiology teach-
ing.) In this model, colored beads are again
used to represent the individuals in the
population. They are spun independently
into a roulette-type wheel, which contains
a number of equal-sized pockets on its cir-
cumference. Balls which land together in
the same pocket are considered to have
effective contact—thus any “susceptible
balls” which land in a pocket with at least
one “case ball” are considered to experi-
ence infectious contact.

In this roulette model, the probability of
contact is determined only by the number
of pockets on the wheel. The contact rate
between individuals, defined as p, is
equivalent to 1/H, where H is the number
of pockets. The standard casino roulette
wheel is thus appropriate for the simula-
tion of Reed-Frost epidemics with p = 1/38
~ (.0263. In this apparatus there is no
aberration due to increases in prevalence,
as long as the pockets are large enough so
as never to overflow with balls. If properly
designed, such a model should provide a
perfect representation of the Reed-Frost
assumptions.

Comparison of results using alternative
mechanical models

It is of interest to compare the results of
Reed-Frost epidemic simulation by each of
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these three mechanical model analogues.
Ironically enough, such a comparison is
most easily made using electronic com-
puter simulation; as this avoids any biases
which might be introduced by the con-
struction and operation of the several me-
chanical models. Appropriate contact
probabilities for each of the three mechani-
cal models can be defined in mathematical
terms, and used as the basis for computer
" simulations.

The results presented here were derived
by the simulation of Reed-Frost epidemics
with §; = 100, C, = 1, and p = 0.02. The
appropriate probability of infection for a
susceptible (i.e., the probability a suscep-
tible contacts at least one case) was calcu-
lated at each generation, based upon the
number of cases present. For model 1, the
probability of infection was adjusted ac-
cording to expression 5, maintaining a
constant n = number of blocks = 98. For
model 2, the probability of infection was
determined by a two-step process. First the
number of blocks (n) was adjusted accord-
ing to the nomogram (i.e., as the nearest
integer solution to expression 14 in Appen-
dix B, with p = 0.02). The probability of
infection was then calculated by inserting
this n into expression 5. For model 3, the
probability of infection was obtained on
the basis of equation 1, withg = 0.98 (=1
- p).

The experience of each susceptible indi-
vidual was then determined by compari-
son with a separate random number (uni-
formly distributed between 0 and 1); and
the entire process was then repeated for
each time period, until termination of the
epidemic. The results are illustrated in
figure 6, in terms of the frequency distri-
bution of total epidemic size, based upon
500 separate epidemics generated by each
of the three methods.

Not surprisingly, the mean and median
epidemic sizes using model 1 are slightly
smaller than with either of the other
models. This is to be expected, as its condi-
tions entail a lowering of effective contact
rate during periods when the prevalence

exceeds a single case. On the other hand,
it is interesting to note how closely the
results of models 2 and 3 concur. This indi-
cates the effectiveness of the nomogram
adjustment technique in maintaining the
contact rate at a constant level.

CONCLUSIONS

The mechanical model developed by
Reed and Frost is one of the major land-
marks in the history of theoretical epide-
miology. Its development coincided with
the introduction of stochastic methodology
in the late 1920s; and it probably provided
the first technique for generating empiri-
cal solutions to a probabilistic epidemic
model. But its importance for us today is
far more than merely historical. Though
electronic computers may have replaced
such colored-ball models in empirical re-
search on stochastic processes, the dra- °
matic illustration of the play of chance
which is afforded by such models makes
them as useful today as in the past. In one
sense, the model’s usefulness today is
greater than ever, in that it now may
serve as an effective introduction to the
large body of stochastic epidemic theory
which has accumulated in recent years.

The publication history of the Reed-
Frost model is remarkable for its delays.
Just as there was a lag of many years
before the basic algebraic formulation of
the model was first published, so there has
been an even longer delay in discussion of
the properties of its mechanical analogue.
Many of those who have used the model
have undoubtedly noted the theoretical
problems discussed in this commentary;
and a variety of different solutions may
well have been developed. Though those
who have made such developments may,
like Reed and Frost, have considered them
as "too slight a contribution” for publica-
tion, it is hoped that others will profit from
this discussion of the model’s properties;
and that this may encourage further de-
velopment and use of this highly instruc-
tive and ingenious form of epidemic mod-
elling.
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APPENDIX A

Consider a linear sequence of balls in a
trough. We assume there are C “case
balls” and n “blocks,” and calculate the
probability that there will be at least one
block between the specified susceptible
and any “case ball.”

Examine the sequence with no case
balls, that is, containing only the n blocks
and the specified “susceptible ball.” By the
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argument illustrated in figure 4, we see
that there are n out of (n + 2) chances for a
single “case ball” to miss contact with the
susceptible. If we assume that the first
“case ball” does in fact fail to contact the
susceptible, then, by a similar argument,
the probability that a second case also fails
to contact the susceptible is given by (n +
1)/(n + 3). And the probability that a third
case also misses contact with the suscepti-
ble would be (n + 2)/(n + 4). This argu-
ment is repeated for each of the C “case
balls” present. And the probability that all
of the C “case balls” escape contact with
the susceptible is the product of all these
probabilities, or

n .(_n+1)
n+2 (n+3)
(r+2)  (n+C-1 ®)
(n+4)° n+C+1’°
which reduces to:
n(n + 1)

rR+C+1)(n+C) @
We are more interested in the complement
of this probability, or the probability that
at least one of the “case balls” does contact
the specified susceptible. This is obtained
by subtraction:

1— n(n + 1)
n+C+1n+0C
. C(C+2n+1))
T+ C+Dr+ 0

This is expression 5 in the text. It should
be noted that the presence of immunes, or
of other susceptibles, has no bearing on
this derivation; as their position in the
sequence will have no effect on whether or
not the specified “susceptible ball” con-
tacts at least one “case ball.” This is so
because of the convention that all colored
balls which are not separated by a block
have effective contact. Contact occurs
“through” susceptibles or immunes, but
not through the blocks. For this reason it
makes no difference whether “recovered”

8)
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case balls are removed from the simula-
tion, or are changed to immune balls —the
resultant epidemic curve should not be af-
fected.

Expression 7, which describes the proba-
bility that a “susceptible ball” contacts no

cases, is analogous to the expression ¢ in-

the mathematical formulation of the Reed-
Frost model. By equating the two expres-
sions, we can derive a general description
of the “g” value which is implicit in the
trough analogue. And this must be the
complement of the probability of contact
(“p”) between individuals which is implicit
in the trough model convention:

n(n+1)
n+C+1)(n+0C)

1 -"p) = o

or:

o1 nin +1) uc
p=1 Ln+c+nm+CJ’ (10)

where “p” refers to the implicit probability
of contact between any two individuals in
the population, as apparent in the trough
model.

According to the basic assumptions of
the Reed-Frost model, the value of “p”
should remain constant throughout the
course of an epidemic. On the other hand,
expression 10 suggests that its apparent
value in the trough model will be depend-
ent upon the prevalence, i.e., upon the
number of “case balls” (C). Indeed, we can
demonstrate that if n remains constant as
the number of “case balls” in the trough
increases, the implicit “p” value will in
fact decrease. We compare:

o n(n +1) 1c
Plc=1 Qn+c+nm+cﬁ

with
“Pc+a

. n{n + 1) IHC + 1)
=1 Qn+c+mm+c+n) :
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To show that “p”; > “p "¢+, we need to
prove that:
nn+1) ue
! Qn+c+nm+c) >1
n(n + 1) e+ D
((n +C+2(n+C+ 1)) - Ay
By subtracting one from both sides, multi-
plying through by minus one, and raising
both sides to the power C, we have
nin + 1)
(n+C+Dn+0
< n(n+1) chC + 1
[(n+C+2)(n+C+1)] ’

Since
c 1 - 1
CcC+1 c+1’
the right hand side can then be factorized,

and inverted, and the preceding inequality
may be rewritten

n+C+2
n+C
< (n+C+2)(n+C+1)]ll(C+l)
[ nin + 1) ’
or
n+C+2]C+1
[ n+C
<(n+C+2)(n+C+1) (12)
n(n + 1)

We then prove expression 12 by induction
onC.

Expression 12 is clearly true for C = 1,
by substitution:

[n + 3]1
<

n+1

as this is equivalent to:

nn+3)<(n+ 1n+2),

which is true for all n.
Assuming expression 12, we must show
that it remains valid when C is replaced by

(n+3)(n+2)
nn+1) °
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C + 1, namely
[n+C+3]c+z

n+C+1
n+C+3)(n+C+2)
< n(n + 1) 7 a3
Recognizing that
n+C+3 n+C+2
n+C+1 n+C ’
or
[n+C+3]C+1<[n+C+2]C+1
n+C+1 n+C ’

we use expression 12 to write the inequal-
ity:

n+C+ 3jc+1
[n +C+ 1]

<(n+C+2)(n+C+1)
n(n + 1)

Now multiply both sides by (n + C + 3)/(n
+ C + 1), to get expression 13, which com-
pletes the proof.

APPENDIX B

We wish to adjust the number of blocks
in the mechanical model so that the proba-
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bility a “susceptible ball” contacts at least
one “case ball” is commensurate with a
constant probability of contact between in-
dividuals in the population. We thus wish
to maintain the “implicit p” value, as de-
fined in Appendix A, constant throughout
a simulation exercise. This may be done by
solving equation 9 for n, in terms of p and
C. A quadratic is obtained:

201 - pF
n*+n [———-(1 ) ~ 1 + 1]
[02 + C](]. —_ upn)c _
(1 _ upn)c —1 =0 (14)

For any values of 0 < “p” < 1and C > 0,
the constant term in this equation must be
negative, and thus there can be but a sin-
gle positive root n. These positive roots are
plotted in the nomogram of figure 4. The
roots have been rounded off to their near-
est integer values, in order to facilitate use
of the nomogram with the mechanical
Reed-Frost model.

In order to prepare a nomogram for any
desired contact probability, one need only
substitute that value into expression 14
and solve it repeatedly with successive in-
teger values for C.



