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ABSTRACT
Motivation: The defining feature of oligonucleotide ex-
pression arrays is the use of several probes to assay each
targeted transcript. This is a bonanza for the statistical
geneticist, who can create probeset summaries with
specific characteristics. There are now several methods
available for summarizing probe level data from the
popular Affymetrix GeneChips, but it is difficult to identify
the best method for a given inquiry.
Results: We have developed a graphical tool to evaluate
summaries of Affymetrix probe level data. Plots and sum-
mary statistics offer a picture of how an expression mea-
sure performs in several important areas. This picture facil-
itates the comparison of competing expression measures
and the selection of methods suitable for a specific inves-
tigation. The key is a benchmark dataset consisting of a
dilution study and a spike-in study. Because the truth is
known for these data, we identify statistical features of the
data for which the expected outcome is known in advance.
Those features highlighted in our suite of graphs are jus-
tified by questions of biological interest and motivated by
the presence of appropriate data.
Availability: In conjunction with the release of a graphics
toolbox as part of the Bioconductor project (http://www.
bioconductor.org), a webtool is available at http://affycomp.
biostat.jhsph.edu. Supplemental material is available at http:
//www.biostat.jhsph.edu/∼ririzarr/papers/suppaffycomp.pdf.
Contact: rafa@jhu.edu

INTRODUCTION
High density oligonucleotide array technology is widely
used in many areas of biomedical research for quantitative
and highly parallel measurements of gene expression. The
defining feature of oligonucleotide expression arrays is the
use of several probes to assay each targeted transcript.
In order to obtain expression measures it is necessary
to summarize the probe level data. This is a bonanza
for the statistical geneticist, offering great opportunity to

create probeset summaries with specific characteristics.
On the other hand, the researcher with data in hand and
a particular question in mind is not necessarily able to
identify best method. Using a spike-in study prepared
by Affymetrix and a dilution study by Gene Logic as
benchmark data, we have developed a graphical tool for
the evaluation and comparison of expression measures
on the Affymetrix GeneChip platform [Lockhart et al.
(1996)].

Plots and summary statistics offer a picture of how an
expression measure performs in several important areas
and facilitate the comparison of competing methods. The
assessments evaluate performance in terms of bias (lack
of accuracy) and variance (precision). The R package
affycomp, available from the Bioconductor Project
(www.bioconductor.org), can be used to automatically
generate an Image Report showing all plots and summary
statistics for one or several expression measures. A web-
tool that automatically generates Image Reports for single
expression measures is also available at http://affycomp.
biostat.jhsph.edu.

The benchmark data is crucial here. It is this data that
turns a collection of plots and statistics into a genuine
evaluative tool. The control of input in spike-in and
dilution experiments makes it possible to identify features
of the data for which the expected outcome is known in
advance [Hill et al. (2001, 2000); Baugh et al. (2001)]. An
expression measure can then be evaluated in terms of these
features.

The individual plots and summary statistics included are
not new. Similar or even identical descriptive methods
have been used by a variety of researchers to evaluate
measures of expression [Holder et al. (2001); Workman
et al. (2002); Irizarry et al. (2003); Naef et al. (2001); Li
and Wong (2001)]. Nor is the report comprehensive; we
do not claim to have exhausted the possibilities contained
even within this data and other benchmark data sets are
available as well. Lemon et al. (2002), for example, use
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data from mixture experiments prepared in their own
lab to systematically evaluate specific characteristics of
an expression measure. What is new is the proposal to
standardize a subset of the commonly used evaluative
tools in order to make results easier to produce and
interpret. Each plot or statistic here focuses attention on
a very specific problem in the analysis of expression data
(e.g. measuring absolute abundance of RNA, or reducing
error in replicate measurements of a single sample). The
plots are intended to offer a fairly complete view of how
a measure performs on these problems while summary
statistics extract particular features of the plots to provide
a convenient bottom-line.

First we describe the data sets and software used to
create the Image Report. Then we describe the Image
Report in detail. Two examples illustrate how these
tools can be used: 1) We compare to MAS 5.0, the
default measure available from Affymetrix and described
in their manual, an expression measure developed by
Li and Wong (2001) (dChip), and the robust multi-
array analysis (RMA) expression measure developed by
Irizarry et al. (2003). 2) We compare four versions
of RMA to understand how normalization, robustness,
multi-array analysis, and use of mismatch (MM) probes
affect performance. We conclude with a discussion and a
description of the webtool.

SYSTEMS AND METHODS
The benchmark data used is freely available to the research
community. The assessment tools have been coded in the
R statistical language [Ihaka and Gentleman (1996)], and
are included in the affycomp package as part of the
Bioconductor Project. The package is also the basis of
a webtool that will automatically assess an expression
measure and compare it to MAS 5.0.

MAS 5.0 results were obtained using Affymetrix soft-
ware, and results for dChip were obtained using the offi-
cial software release [Li and Wong (2001)]. All other anal-
ysis was performed in R using functions available in the
Bioconductor Project.

For the dilution study by GeneLogic (http://qolotus02.
genelogic.com/datasets.nsf/), two sources of cRNA,
human liver tissue and central nervous system cell line
(CNS), were hybridized to human arrays (HG-U95Av2)
in a range of dilutions and proportions [Irizarry et al.
(2003)]. We studied data from six groups of arrays that
had hybridized liver and CNS cRNA at concentrations
of 1.25, 2.5, 5.0, 7.5, 10.0, and 20.0 µg total cRNA.
Five replicate arrays were available for each generated
cRNA (n=60 total). Oligos from genes specific to foreign
species were synthesized and added to each hybridization
mixture at nominal amounts of 0.5, 1, 1.5, 2, 3, 5, 12.5,
25, 50, 75, and 100 picoMolar. These oligos correspond

to probe-sets: BioB-5, BioB-M, BioB-3, BioC-5, BioC-3,
BioDn-5 (all E. coli), CreX-5, CreX-3 (phage P1), and
DapX-5, DapX-M, DapX-3 (a B. subtilis gene). Oligos
corresponding to the 3’, middle and 5’ end of each
gene were synthesized and added separately. The same
concentrations were used across all 60 arrays.

The spike-in study by Affymetrix (http://www.
affymetrix.com/analysis/download center2.affx) is a
subset of the data used to develop and validate the MAS
5.0 algorithm. Human cRNA fragments matching 16
probe-sets on the HGU95A GeneChip were added to
the hybridization mixture of the arrays at concentrations
ranging from 0 to 1024 picoMolar. The same hybridiza-
tion mixture, obtained from a common tissue source,
was used for all arrays. The cRNAs were spiked-in
at a different concentration on each array (apart from
replicates) arranged in a cyclic Latin square design with
each concentration appearing once in each row and
column. The design is described in detail by Irizarry et al.
(2003). A table describing the design is included in the
supplemental material. A detailed tabular description is
contained in the R package and in the webtool .

We are reporting 16 spiked-in probesets as opposed to
the 14 originally described by Affymetrix. These extra
spike-ins have been reported by various researchers, for
example Wolfinger and Chu (2002). We claim that the
probeset with ID 33818 at should be included as the
transcript in the 12th column of Latin square design.
In the excel file describing the Latin square, provided
by Affymetrix, probeset 407 at, which is in the 12th
column, actually has the same concentration pattern as the
transcript in column 1, 37777 at. No spike-in gene given
by Affymetrix has the pattern consistent with the 12th
column of the Latin square design. However, expression
measures obtained with MAS 5.0, dChip and RMA for
probeset 33818 at follow the missing pattern. We also
claim probeset 546 at should be considered with same
concentration as 36202 at, because it is designed against
the same target: Unigene ID Hs. 75209. The data is
consistent with this as 546 at shows the same pattern as
36202 at. Wolfinger and Chu (2002) identified these two
probes as well. Wolfinger and Chu (2002) claim 1598 g at
and 37658 at have the same pattern as 1597 at and that
1032 at has the same pattern as 684 at. However, for these
three probesets there is no supporting evidence apart from
data. Furthermore, these patterns are seen with dChip but
not with RMA and MAS 5.0. We therefore do not include
the these as spike-in probesets.

THE IMAGE REPORT
Three guiding principles determined what we included
in the image report. 1) Each plot or statistic must be
motivated by the benchmark data (i.e. must evaluate
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performance on a task for which the expected outcome is
known), 2) each must be justified by biological interest or
statistical principle, and 3) each must facilitate comparison
of competing expression measures or offer insight into
appropriate analysis of data from a single given measure.

The basic Image Report includes 6 Figures, described
below, and a table of summary statistics for a single
measure of expression. These plots and statistics address
five main issues in the analysis of expression array data
1) variability of expression across replicate arrays 2)
response of expression measure to changes in abundance
of RNA 3) sensitivity of fold-change measures to amount
of actual RNA sample 4) accuracy of fold-change as a
measure of relative expression 5) usefulness of raw fold
change score for the detection of differential expression

When multiple expression measures are to be compared
directly, a comparative Image Report can be generated.
Small differences between the basic and comparative plots
are mentioned in the descriptions below. The webtool and
the R package alike can readily generate either report.
Examples of these reports can be found on the webtool
webpage. In the next section, we describe two applications
where the image report is useful. All examples of figures
included here are from those applications.

All data is plotted on the log
2

scale. The log transforma-
tion is made at the beginning and all intermediate transfor-
mations are made to the logged data. Fold changes are cal-
culated for single chip comparisons, even where replicates
are available. This standardizes the procedure for those
cases in which replicates are not available, and gives re-
sults that depend as little as possible on the the specific
design of the benchmark datasets.

Notation
The spike-in data set encompasses more than one set of
experimental conditions. Within each experiment, only
the spike-in concentrations are varied; background is the
same for all arrays. Fold change calculations are always
made within experiment to ensure that only spiked-in
genes will be differentially expressed. We refer to spike-
in concentrations as nominal concentration and their ratios
as nominal fold change as a reminder that small errors in
the actual quantity of RNA in the sample prevent us from
knowing the true concentrations. We will use M to denote
log observed fold change and FC as an abbreviation of fold
change. Notation for formulas is as follows:

Dilution study: Let ytdrg represent log
2

expression for
tissue t = 1, 2, dilution d = 1, . . . , 6, replicate r =
1, . . . , 5 and gene g = 1, . . . , n.

Spike-in study: A different variable is used to avoid
confusion. Let xecg represent log

2
expression for exper-

iment e = 1, 2, 3, array type c = 1, 2, . . . , 20 and gene
g = 1, . . . , n. For the spike-in genes only, χcg represents
the log

2
of the nominal concentration.

The Plots and Statistics
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Fig. 1. The MA plot shows log fold change as a function of mean
log expression level. A set of 14 arrays representing a single
experiment from the Affymetrix spike-in data are used for this plot.
A total of 13 sets of fold changes are generated by comparing the
first array in the set to each of the others. Genes are symbolized by
numbers representing the nominal log

2
fold change for the gene.

Non-differentially expressed genes with observed fold changes
larger than 2 are plotted in red. All other probesets are represented
with black dots.

1) MA plot: The MA plot shows log fold change as a
function of mean log expression level. This has come
to be a fundamental graphical tool for the analysis of
expression array data. A great deal of information about
the distribution of observed fold changes can be read
from such a plot. A set of 14 arrays representing a single
experiment from the Affymetrix spike-in data are used for
this plot. We choose 14 so that all possible combinations
of pairs of concentrations appear once. A total of 13 sets of
fold changes are generated by comparing the first array in
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the set to each of the others, so that M1cg = x11g − x1cg

for c = 2, . . . 14. These are plotted together against the
mean values A1cg = (x11g + x1cg)/2. To make the
plot more informative, spiked-in genes are symbolized by
numbers representing the nominal log

2
fold change for the

gene. Non-differentially expressed genes with observed
fold changes larger than 2 are plotted in red. All other
probesets are represented with black dots.

MA plots for competing methods are presented side by
side on separate axes. Figure 1 shows a comparative plot
for two expression measures.
2) Variance across replicates plot: The variance of an
expression measure across replicate arrays should be low.
The GeneLogic dilution data set includes 5 replicate arrays
under each experimental condition. For each gene, and
each experimental condition, we calculate the mean log
expression ytd·g and plot this against the observed standard
deviation stdg =

√
∑

r
(ytdrg − ytd·g)2/4 of the replicate

arrays. The resulting scatterplot is smoothed to generate
a single curve representing mean standard deviation as
a function of mean log expression. Standard deviation
should be low and independent of expression level.

Curves from competing methods are plotted on the
same set of axes as seen in Figure 2. A summary of
the information in this plot includes the median standard
deviation and the average R2 between replicates, which
are the first two entries in Table 1.
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Fig. 2. For each gene, and each experimental condition, we
calculate the mean log expression and the observed standard
deviation across 5 replicates. The resulting scatterplot is smoothed
to generate a single curve representing mean standard deviation as
a function of mean log expression.

3) Sensitivity of expression ratios to total quantity of
RNA plot: The total quantity of RNA in the hybridization
solution will vary somewhat from experiment to experi-
ment. Expression ratio estimates (fold changes) are rela-
tive and should not co-vary with RNA quantity. To simu-

late extreme variation in total quantity of RNA, the lowest
concentration at 1.25µg and the highest at 20µg are used.
Observed expression is first averaged across replicates to
obtain a single mean value ytd·g for each tissue and dilu-
tion. The log expression ratio between liver and CNS sam-
ples Mdg = y1d·g−y2d·g is calculated within each dilution
level and for every gene on the array. Finally M1g is plot-
ted against M6g to produce a scatterplot with one point for
each gene. Orange and red color is used to denote genes
with M6g −M1g bigger than log

2
(2) and log

2
(3) respec-

tively. The rest are denoted with black (default foreground
color) points. (This plot is not shown in this paper)

The comparative plot is different. The difference be-
tween the two log expression ratios is calculated for each
gene on the array and these quantities are represented in
side by side boxplots, as seen in Figure 3.

Summary statistics include the correlation between fold
change measurements and the total number of genes
showing greater than 2 fold and 3 fold difference in log
expression ratio. These are entries three to five in Table 1.

RMA not multi−array not robust MM as PM
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Fig. 3. This plot, using the GeneLogic dilution data, shows the
sensitivity of fold change calculations to total RNA abundance.
Average log fold-changes between liver and CNS for the lowest
concentration and the highest in the dilution data set are computed.
The boxplots show the distribution of the differences between these
log fold-changes.

4) Observed expression v. nominal expression plots:
The fundamental biological interpretation of expression
values is that they are measures of RNA abundance.
In addition to evaluating expression measures in this
regard, these plots are valuable partners to the variance
of replicates plot. Reduction in variance should not be
obtained at the cost of a reduction in signal detection.
Attenuation of signal is recognizable here.
a) Spike-in data Plot: The entire Affymetrix spike-in
dataset is used for the first of these plots. Observed con-
centration xecg is plotted against nominal concentration =
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χecg for each spiked-in gene. The log
2

scale is especially
useful here. A difference of 1 on this scale represents a
doubling of RNA concentration. Ideally, if the nominal
concentration doubles, so should the observed concen-
tration. On the log

2
scale then, observed concentration

should be linear in true concentrations with a slope of 1.
When competing methods are to be compared, the ob-

served intensities are averaged at each nominal concentra-
tion value, resulting in a single mean curve. The curves for
competing methods are plotted on a single set of axes as
seen in Figure 4a.

We fit a simple linear model to the scatterplot data and
report the estimated slope and R2 coefficient in the table of
statistics. These are the sixth and seventh entries in Table
1.
b) Dilution Data Plot: The second plot uses the
Gene Logic dilution data. Unlike the spike-in experiment
the absolute abundance of no gene is known in this study.
However the relative abundance of each gene changes pre-
dictably with the dilution. If the dilution is halved then the
relative abundance of each gene should double. On a log

2

scale, for expressed genes, observed abundance should
be a linear function of the inverse of the dilution with a
slope of 1. For this plot, replicates are first averaged to
obtain a mean expression value ytd·g for each gene in each
dilution and tissue. These values are regressed against the
inverse of dilution amount to obtain an estimate of slope
Sg for each gene. The values Sg are normalized-corrected
using the probesets that were spiked-in these samples
(see R code for details) and plotted against the mean log
expression for each gene y

···g.
For comparative plots, the scatterplots are smoothed to

obtain a single curve for each expression method. These
are plotted together on a single set of axes. Figure 4b
shows an example.

The overall median of slope values is reported in the
eighth entry of Table 1.
5) ROC curves: One of the chief uses of expression arrays
is the identification of genes that express differently under
various experimental conditions. A typical identification
rule filters genes with fold change exceeding a given
threshold. Receiver Operator Characteristic (ROC) curves
offer a graphical representation of both specificity and
sensitivity for such a rule. ROC curves are created by
plotting the true positive (TP ) rate (sensitivity) against
false positive (FP ) rate (1-specificity) obtained at each
possible threshold value. We present two ROC plots,
both using log fold change as a filter. In each case the
Affymetrix spike-in dataset is used. In this paper we
use absolute TP and FP instead of rates because it is
easier to interpret. Since only spike-in genes are actually
differentially expressed in these experiments, it is easy to
determine TP and FP .
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Fig. 4. a) Average observed log
2

intensity plotted against nominal
log

2
concentration for each spiked-in gene for all arrays in

Affymetrix spike-In experiment. b) For the GeneLogic dilution
data, log expression values are regressed against their log nominal
concentration. The resulting slope estimates are plotted against
average log intensity across all concentrations. Smooth curves are
fitted and shown.

a) ROC curve, general FC: For the first plot, log fold
changes Meijg = xeig − xejg are calculated for every
gene and for arrays i and j where i < j. For every pair
of arrays we order the probesets by the observed absolute
value of their log ratio. We can then go through this list and
count the number of TP we get for every possible value
of FP = 0, 1, 2, . . . , 12609 (12609 is the total number of
non-spiked in probesets). Notice that with this information
we can create a separate ROC curve for each pair of arrays.
To form an average ROC curve we compute the average
TP across comparisons for each FP value. This creates a
single average ROC curve. Average TP is plotted against
FP up to a maximum of 100 false positives.
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b) ROC curve: FC=2 In this plot attention is restricted
to arrays in which all nominal fold changes are equal to
2. This is the lowest nominal fold change in the dataset.
Otherwise, procedures are the same as above.

m ROC curves for competing methods are plotted
together on a single set of axes. Figure 5 is an example
showing both general FC and FC=2 plots.

The area under the curve (AUC) is probably the most
common summary statistic for a ROC curve. However,
because in practice we rarely validate more the 100 genes
we report as a summary statistic the AUC up to 100
FP . We standardize so that the largest possible value is
1. Filtering on a fold change of 2.0 has become almost
standard in expression array analysis. As a service to the
analyst, we report the average number of true and false
positives obtained using this particular filter. In Table 1,
these are entries 9, 10, and 11 respectively for general FC
and 12, 13 and 14 for FC=2.
6) Observed fold change v. nominal fold change plots:
Exploratory studies often leave an investigator with a large
list of potentially interesting genes. Validation is expensive
and time consuming and appropriate prioritization can
reduce waste significantly. It is hoped that the largest
observed fold changes indeed correspond to the largest
actual fold changes.
a) FC plot, general: In the first plot, log fold changes
Meijg = xeig−xejg are calculated for each spiked-in gene
and for arrays i and j where i < j. Likewise the nominal
log fold changes χig−χjg, are calculated and these values
are plotted against one another. The resulting scatterplots
should be generally linear, with low variability and a slope
of 1. A unique color and symbol is used for each gene in
the plot. Horizontal dashed lines show quantiles of the fold
changes observed for non-differentially expressed genes.
b) FC plot, close-up of low concentration: The second
plot is identical except that here we use a subset of the
data in which nominal concentration is no higher than 2
picoMolar.

Plots for competing methods are presented side by side
on separate axes as seen in Figure 6.

We report the interquartile range of the log fold changes
observed for non-differentially expressed genes. We also
fit a simple linear model to the data in each scatterplot
and report the estimated slope. The IQR can be seen in
entry 15 of Table 1. The slope are in entries 16 and 17
for the general assessment and low concentration close-up
respectively.

An additional plot is included in the package, but not in
the webtool.
7) Predicted variability plot: Probeset summary methods
sometimes include an estimate of standard error for each
expression value. Using the replicates from the dilution
data, we calculate the mean predicted variance for each
gene, tissue and dilution by squaring the estimated stan-
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Fig. 5. A typical identification rule for differential expression filters
genes with fold change exceeding a given threshold. This figure
shows average ROC curves which offer a graphical representation
of both specificity and sensitivity for such a detection rule. a)
Average ROC curves based on comparisons with nominal fold
changes ranging from 2 to 4096. b) As a) but with nominal fold
changes equal to 2.

dard error. The usual sample variance s2

tdg =
∑

r
(ytdrg −

ytd·g)
2/4 are calculated as well. A boxplots of the log

ratios of the predicted and observed variance is used as
an assessment and can be seen in the supplemental mate-
rial. The correlation between these two is computed in the
affycomp package assessment.

IMPLEMENTATION
The main purpose of the assessment tools is the direct
comparison of expression measures. Using the R package
as well as the webtool, one can readily compare two
or more expression measures. These comparisons can
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Fig. 6. a) For RMA, observed log fold changes plotted against
nominal log fold changes. The dashed lines represent highest, 25th
highest, 100th highest, 25th percentile, 75th percentile, smallest
100th, smallest 25th, and smallest log fold change for the genes
that were not differentially expressed. b) Like a) but the observed
fold changes were calculated for spiked in genes with nominal
concentrations no higher than 2 picoMolar.

be used to decide which expression measure is most
appropriate for a particular task. In illustration, Table 1
shows the summary statistics obtained from comparing
the Affymetrix default, an expression measure developed
by Li and Wong (2001) (dChip), and the robust multi-
array analysis (RMA) expression measure developed by
Irizarry et al. (2003). The intention in introducing these
methods here is to illustrate the assessment tools and to
demonstrate their uses. For a detailed comparison of these
three measures see Irizarry et al. (2003).

The table shows that both RMA and dChip add bias
to signal estimates compared to MAS. However, the
reduction in variance obtained by either of these methods

is large enough to offset the small increase in bias. Notice
in particular that although the bias in log fold change
estimates is about 10% greater for RMA than for MAS
(statistic 16), variability of the same estimates (measured
using IQR in statistic 15) is about 9 times larger for
MAS than for RMA. The area under the ROC curve are
much larger for dChip and RMA than MAS 5.0 showing
these expression measures are superior for detection of
differential expression using raw fold change. A detailed
comparison of these three measures is given in Irizarry
et al. (2003). MAS 5.0 does not provide a standard error to
go along with their expression measure. However, dChip
does. Using a simple analysis of variance approach one
can also obtain standard errors for RMA. The supplemtnal
material shows a comparison of dChip and RMA standard
errors using the Predicted variability plot.

We now demonstrate another application of the assess-
ment tools. Among RMA’s features are multi-array nor-
malization of probe level data, and a robust multi-array
procedure for summarizing the probe level data. We are in-
terested in determining the impact that these features have
on expression values. We therefore designed two varia-
tions on RMA, in which each of these features is left out
in turn. We consider a third expression measure, identical
to RMA but that it treats the MM probes as if they were
additional PM probes. The three measures are: 1) The not
multi-array measure ignores the multi-array normalization
and simply computes the median of the background cor-
rected PM values on each array. Scalar normalization, like
that used by MAS 5.0, is performed so that all arrays have
the same median value. 2) The not robust measure per-
forms the multi-array normalization and then summarizes
the probe level data by simply taking the average of the
log

2
intensities. 3) The MM as PM measure background

corrects and normalizes the MMs in the same way as the
PMs and then includes them as if they were PMs in the
robust summary step.

Table 1 demonstrates the differences between these
measures. Robust and non-robust methods perform quite
similarly. This is not surprising, given the large number of
chips in these experiments. The robust method was devel-
oped specifically to handle much smaller experiments, and
has been demonstrated to show greater advantage under
those circumstances. The single array method results in
the least biased measurements of RNA abundance and of
log fold change. However, the variance of both observed
intensity and observed fold change are higher than by
any other method. The reduction in bias in not enough to
offset the increase in variance and the overall performance
of the method suffers. When MM probes are treated as
additional PM probes, variance notably improves. There
is a significant increase in bias in the estimation of RNA
abundance, and results on bias in the estimation of fold
change are mixed.
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DISCUSSION
The techniques reviewed in this paper seek only to assess
measurements of gene expression in terms of accuracy
(low bias) and precision (low variance). It is straightfor-
ward to estimate the variance of a measurement process:
we simply need replicate measurements on the same sam-
ples. On the other hand, to estimate bias in measurements,
we need the truth, in an absolute or relative form, or at least
a different, more accurate measurement of the same sam-
ples. We are fortunate to have spike-in and dilution data
sets, where the truth is known to the extent that dilution
errors can be ignored. In addition there are other experi-
ments, such as the GeneLogic’s mixture experiment, and
Wright and Lemon’s mixture experiment [Lemon et al.
(2002)], which provide further opportunities to assess the
bias and variance of measurement procedures.

Two important issues we don’t address in this paper are
the detection of gene expression, i.e. determining whether
a particular mRNA transcript is present or absent in a
sample of transcripts, and the detection of differential
expression, i.e., determining whether or not a given
transcript, or which of a given class of transcripts, is
present at different concentrations in two mRNA samples.
Both these issues require different types of assessments,
and discussing them here would take us too far afield. We
do assess the accuracy and precision of relative expression
of specific genes. There is no contradiction here, as the
problem of estimating relative expression is not the same
as deciding whether differential expression is taking place.

Let us note that all assessments of bias include measure-
ment variability, so that while variance can be assessed
without reference to bias, we cannot assess bias without
reference to variance. Furthermore, we provide different
assessments of bias and variance as they relate to differ-
ent applications so that users of the technology can decide
which measure better suits their specific purpose.

Figure 1 is an MA plot comparing observed and
predicted relative expression values, and so gives a
snapshot of the combined consequences of bias and
variance in estimates. The diamond shape of the points
is a straightforward consequence of the fact that the
measurements on each chip have lower and upper bounds,
and when these are differenced and averaged, these
bounds translate into the linear constraints seen. Although
the points here include both bias and variance components,
one can see the bias quite clearly.

By contrast, Figure 2 refers only to variances, making
use of replicate data on each of many thousands of genes.
Figure 3 is another look at variance, this time comparing
expression measurements when there is quite a lot more
or less than the recommended amount of mRNA in the
experiment. Both Figures 2 and 3 are straightforward to
interpret.

By making use of known mRNA concentrations of the
spiked-in transcripts, Figure 4 allows us to assess bias
in our measurements, although necessarily with variance
present.

In Figure 5 we focus on the question of identifying
differential expression. However, we only use a log
fold-change rule to compare expression summaries, and
do not consider more sophisticated approaches such
as using t or moderated t-statistics. This is because
our aim is the comparison of bias and variance of
measurement processes, not algorithms for the specific
task of identifying differential expression. Thus we offer
two ROC curves, one comprehensive, and one focused on
genes whose nominal change is 2-fold.

Finally, Figure 6 compares observed log fold change to
the known values for the spiked-in genes, and is again an
assessment of bias, with variance inevitably present.

The displays we offer permit both absolute and compar-
ative analyses, although in this context the term absolute
must be qualified. A hybridization-based quantification of
transcript abundance can only be up to an undetermined
constant. This shows up as an undetermined intercept in
plots such as Figure 6.

Some specific conclusions using our graphics toolbox
now follow. One is that using MM intensities as we do
PM intensities in RMA leads to expression measures and
fold change estimates with less variance. Also bias in
fold change estimates decreases slightly , as assessed by
the ROC curve and the AUC. We cannot say that MM
values are of no use, although we have not yet seen a
demonstration of their effectiveness in carrying out the
original task of adjusting PM values. It does seem clear
that RMA estimates have considerably less variance than
those from MAS 5.0. We also see that robust and multi-
array aspects of RMA provide important improvements in
various aspects. Using quantile normalization instead of
scaling normalization also proves to be important.

Where do we go next? There is clearly a need for more
data sets of the kind used on this paper. An ever-present
issue in this kind of algorithm development and tuning is
the need to avoid over-dependence on particular data sets,
a phenomenon called “over-training”. We need a wide
range of suitable data sets, so that training (perhaps better
called calibrating in this context) and testing can be done
on widely differing data. Only then can we comfortably
extrapolate the conclusions from benchmark data sets to
general use.

It is easy to identify places at which the assessment tools
fall short of ideal.

A related need is for a framework such as ours for com-
paring different platforms used for measuring gene expres-
sion. These include the different short and long oligonu-
cleotide and cDNA microarrays, SAGE, quantitative RT-
PCR, and other techniques. There are already a number of
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publications addressing these issues, see e.g. Yuen et al.
(2002) and Barczak et al. (2002) and references therein,
but we are still far from having comprehensive data (such
as the spike-in data sets described here) or a framework
for comparing platforms.

The Webtool
We invite all interested parties to put their probe summary
methods to the test in a friendly competition. Download
the benchmark data and develop one or more probe
summaries. Return the expression-level data and we’ll
tell you how you did on this set of tasks. The goal
is threefold. In addition to vetting the toolbox and
competing for bragging rights, this will be an opportunity
to systematically examine the strengths and weaknesses
of the various approaches to probeset summary. Existing
expression measures have proven very effective, but a
great deal more improvement is possible.
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Table 1. Assessment summary statistics table. The second column denotes the Figure to which the summary statistic relates. Columns 3,4 and 5 compare

MAS 5.0, dChip, and RMA. The statistics are described in the text. For each row, the best performing expression measure is denoted with a bold number.

Columns 6, 7, and 8 compare RMA to alternatives based on RMA. For each row, if the best performing expression measure is not RMA it is denoted with a

bold number.

Assessment Figure MAS 5.0 dChip RMA not multi-array not robust MM as PM

1) Median SD 2 0.29 0.089 0.088 0.19 0.092 0.074
2) R2 2 0.89 0.99 0.99 0.98 0.99 0.99
3) 1.25v20 corr 3 0.73 0.91 0.94 0.87 0.94 0.93
4) 2-fold discrepancy 3 1200 40 21 99 12 6
5) 3-fold discrepancy 3 330 8 0 12 0 0
6) Signal detect slope 4a 0.71 0.53 0.63 0.65 0.59 0.55
7) Signal detect R2 4a 0.86 0.85 0.8 0.81 0.76 0.72
8) Median slope 4b 0.85 0.77 0.87 0.86 0.79 0.76
9) AUC (FP<100) 5a 0.36 0.67 0.82 0.69 0.82 0.81
10) AFP, call if fc>2 5a 3100 37 16 220 19 15
11) ATP, call if fc>2 5a 13 11 12 12 12 11
12) FC=2, AUC (FP<100) 5b 0.065 0.17 0.54 0.12 0.52 0.55
13) FC=2, AFP, call if fc>2 5b 1400 12 0.5 18 0.5 0.5
14) FC=2, ATP, call if fc>2 5b 3.7 1.3 1.7 2.3 1.4 1.4
15) IQR 6 2.7 0.45 0.31 0.67 0.31 0.25
16) Obs-intended-fc slope 6a 0.69 0.52 0.61 0.64 0.58 0.54
17) Obs-(low)int-fc slope 6b 0.65 0.32 0.36 0.45 0.34 0.21
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