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Quantifying sleep fragmentation is central in assessment of 
sleep quality. Traditionally, measures such as the arousal 

frequency and sleep-stage percentages have been used to ap-
praise sleep quality in research and clinical practice. Although 
conventional metrics of sleep structure have provided useful 
insight into the biology of sleep, these parameters explain only 
part of the variance in outcomes such as daytime sleepiness as-
sociated with conditions that fragment sleep such as sleep-dis-
ordered breathing (SDB).1-3 Furthermore, many of the conven-
tional measures provide only an overall summary of the entire 
night and unable to capture the temporal evolution of overnight 
events, the frequency of sleep-stage transitions, and the time 
between these transitions. Given the remarkable progress in our 
understanding of the neurobiology of the sleep-wake switch4 

and the underlying neural circuitry responsible for transitioning 
between rapid eye movement (REM) and non-REM (NREM) 
sleep,5 adequately characterizing sleep-stage transitions is a 
priority to better define the influence of specific factors (e.g., 
age and sex) on normal sleep structure and organization. In ad-
dition, a careful portrayal of sleep-stage transitions is essential 
in clarifying the putative mechanisms through which conditions 
such as SDB mediate adverse health outcomes.

Several techniques have been used to derive measures of 
sleep quality that complement the repertoire of traditional 
metrics. Power spectral analysis of the sleep electroencepha-
logram (EEG),6 sleep spectrograms based on cardiopulmonary 
coupling,7 and visual identification of cyclical alternating pat-
terns8 in the sleep EEG have revealed clinically meaningful 
changes in the sleep structure in health and disease. Although 
these techniques provide unique insight into sleep continuity, 
their use requires specialized expertise along with an apprecia-
tion of the associated limitations. With improvements in digital 
technology, many of aforementioned techniques are automated 
and being increasingly incorporated in commercially avail-
able sleep-scoring software.9 A relatively underutilized, but 
universally available, method for assessing sleep continuity is 
the hypnogram. The graphic representation of sleep-stage se-
quence across the night provides a visual depiction of the nor-
mal ultradian cycling of sleep. While the hypnogram provides a 
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qualitatively description of sleep structure, quantitative metrics 
based on the hypnogram are not as commonly used in research 
or clinical practice as are other measures such as the frequency 
of arousals. Visual scoring of arousals is labor intensive, time 
consuming, and fraught with low to modest interscorer and in-
trascorer reliability. Even when coupled with the distribution 
of sleep-stage amounts, the frequency of arousals is unable to 
characterize the full extent of information embedded within the 
hypnogram. It is certainly plausible that a clinical disorder in-
creases the frequency of sleep-stage transitions but has no ma-
terial impact on the total amount of time spent in each stage or 
perhaps even the number of arousals. Tabulating the number of 
sleep-stage shifts can be helpful10,11 but is insufficient because 
it describes only one dimension of the hypnogram (i.e., num-
ber of shifts) while neglecting another (i.e., the time spent in a 
sleep stage before transitioning). Methods to describe temporal 
histories as depicted in the hypnogram are common in epide-
miologic studies but have had limited application in sleep medi-
cine. Although event-history models have been previously used 
in the context of examining determinants of sleep latency, such 
methods have not been employed in assessing the sleep-stage 
transitions and quantifying the impact of SDB on the nocturnal 
sleep structure.12-16 Thus, the primary objective of the current 
investigation was to determine whether event-history models 
are able to quantify sleep fragmentation using the overnight 
hypnogram. Specifically, log-linear models and multistate sur-
vival analysis methods were used to model the number and rate 
of sleep-stage transitions, respectively, in a community sample 
of middle-aged and older adults with and without SDB.

MethoDS

Study Sample and covariate Data

The current investigation used data from the Sleep Heart 
Health Study (SHHS), a multicenter study on SDB, hyperten-
sion, and cardiovascular disease.17 Subjects for the SHHS were 
recruited from ongoing cohort studies on cardiovascular and 
respiratory disease. Details regarding the design and methodol-
ogy for recruiting and characterizing study subjects have been 
previously described.18 Approval for the study protocol was 
acquired from the institutional review board of each partici-
pating institution and informed consent was obtained from all 
subjects. The baseline visit included interviewer-administered 
questionnaires to assess prevalent medical comorbidities (e.g., 
hypertension and cardiovascular disease), smoking history, caf-
feine and alcohol consumption, race, sex, and age. Systolic and 
diastolic blood pressure, height, weight, and neck circumfer-
ence were also obtained on the night of the polysomnogram.

To assess the independent effects of SDB on sleep structure, 
a matched subset of the SHHS cohort with and without SDB 
was selected for the current study. Subjects with moderate to 
severe SDB were identified as those with a respiratory distur-
bance index that exceeded the 90th percentile of the entire cohort 
(RDI ≥ 22.3 events/h). Subjects without SDB were identified as 
those with an RDI below the 25th percentile of the entire cohort 
(RDI < 1.33 events/h). Extremes of SDB severity were used to 
increase the likelihood of finding differences in conventional 
measures of sleep structure Confounding due to demographic 

factors was minimized by matching subjects with and without 
SDB on age, sex, race, and body mass index (BMI). The limits 
imposed on age and BMI were such that no matching pair dif-
fered by more than 10 years (1 standard deviation of SHHS 
cohort) of age and 5 kg/m 

2 (1 standard deviation) in BMI. Other 
exclusion criteria included prevalent cardiovascular disease, 
hypertension, chronic obstructive pulmonary disease, asthma, 
coronary heart disease, history of stroke, and current smoking. 
Despite having a baseline cohort of 6441 subjects, only 60 sub-
ject pairs with and without SDB (n =120) met the strict inclu-
sion criteria outlined above and could be individually matched 
to each other.

Polysomnography

An overnight sleep study in the subject’s home was conduct-
ed for each subject using the Compumedics P-series recording 
system (Compumedics, Australia). The recording montage in-
cluded the following physiologic recordings: EEG (C3-A2 and 
C4-A1), right and left electroocculograms, single-lead electro-
cardiogram, chin electromyogram, measurement of abdominal 
and thoracic effort by impedance plethysmography, oxyhemo-
globin saturation by pulse oximetry, airflow (oral-nasal therm-
istor), body position (by mercury gauge), and ambient light. All 
sleep recordings were sent to a centralized reading center for 
visual analysis. Details of polysomnographic equipment, hook-
up procedures, failure rates, scoring, and quality assurance have 
been previously described.18

Sleep-stage scoring was performed by trained technicians 
according to the published guidelines.19 Apneas were identified 
if airflow was absent or nearly absent for at least 10 seconds. 
Hypopneas were identified if discernible reductions in airflow 
or thoracoabdominal movement (at least 30% below baseline 
values) occurred for at least 10 seconds. The RDI was defined 
as the number of apneas or hypopneas, each associated with a 
4% decrease in oxygen saturation, per hour of sleep. Arous-
als were identified as abrupt shifts in the EEG frequency for at 
least 3-seconds. In REM sleep, scoring of arousals also required 
a concurrent increase inactivity of the chin electromyogram.20 
The arousal index was defined as the average number of arous-
als per hour of sleep. Conventional parameters of sleep struc-
ture included sleep latency, total sleep time, sleep efficiency 
(total sleep time/time in bed), and percentages of NREM and 
REM sleep. Subjects with visually identified poor-quality EEG 
were not eligible for the current analysis. Other exclusionary 
criteria included poor-quality oximetry or respiratory signals 
and inability to visually score sleep.

Statistical Analysis

To characterize nocturnal event histories in the sleep hypno-
gram, two distinct methods were employed: multistate survival 
analysis and log-linear models. Multistate survival models de-
scribe a finite number of states together with all possible transi-
tions that can occur between those states.21,22 The movement of 
subjects between states is governed by a set of transition rates 
(or hazard rates) that can be modeled using proportional haz-
ards regression.23 In the context of modeling overnight stage 
transitions, sleep was represented using three states: wake, 
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NREM sleep, and REM sleep (Figure 1). The multistate vari-
ant24 of the proportional hazards regression model that depicts 
the dynamics of sleep-stage transitions for subject i can be writ-
ten as follows:

log λs(t|xi) = log λo(s)(t) + βs * xi + covariates
Here, the strata index s indicates the type of sleep-stage 

transition (e.g. NREM-to-REM, Figure 1), λo(s)(t) is the dis-
tinct baseline hazard rate for each type of sleep-stage transi-
tion, xi is an indicator variable for disease status (SDB versus 
no-SDB), and βs is the regression coefficient for strata specific 
log(transition rate) comparing those with SDB compared to 
those without SDB..25 Due to the fact that a subject can cycle 
through all three sleep states several times during the night, 
six different types of transitions are distinguished, and each of 
these transitions can occur more than once. To estimate rates 
of transitioning in the multistate model, the data must be struc-
tured in a person-period format taking into account all possible 
competing transitions.26 For example, a NREM sleep duration 
that transitions into REM sleep would be expanded to two 
data records: NREM-to-REM transition (observed record) and 
NREM-to-wake transition (censored record). The designation 
of the former as “observed” and the latter as “censored” indi-
cates the occurrence of the NREM-to-REM transition during a 
period of risk for either transition. A stratified extension of pro-
portional hazard models was fitted with the PHREG procedure 
in SAS (SAS Institute, Inc., Cary, NC). The robust sandwich 
variance estimator was used to account for intrasubject correla-
tion, and ties were handled as proposed by Efron.27 The strati-
fied proportional hazards model was used because it can incor-
porate several states (e.g., wake, NREM, and REM) between 
which transitions may take place at distinct hazard rates. The 
STRATA specification of the PHREG procedure allows model 
fitting when the hazard functions across groups can be assumed 
to be parallel for a particular transition type but not across the 
different types of transitions. Thus, the stratified proportional 
hazards model accommodates the requirement that the baseline 
hazard rates for the six different transitions shown in Figure 1 
are not necessarily similar.

To model the frequency of transitions as a function of group 
status, Poisson log-linear models were employed.28 Poisson log-
linear models, a specialized case of generalized linear models, 
are commonly used to model contingency tables. In the con-
text of modeling the frequency of sleep-stage transitions, there 

are two distinct groups that can each repeatedly experience six 
possible transition types. The basic concept of the log-linear 
modeling involves fitting a model to the observed frequencies 
contained within the 2 × 6 contingency table. The model is pa-
rameterized for row and column effects as follows:

log (Fab) = µ + φa
G + φb

S + φab
GS + covariates

In the above equation, log(Fab) is the log of the expected cell 
frequency for cell ab in the contingency table; µ is an intercept 
(the referent cell’s mean natural log of expected frequency); φa

G 
and φb

S represent the main effects of group status and transition-
type, respectively; and φab

GS estimates the interaction between 
group and transition-type effects. Generalized estimating equa-
tions were used to account for the interdependence among the 
cells.29,30 As opposed to the multistate approach, which models 
events over time and accounts for censoring, the structure of 
the data for log-linear analysis is only concerned with the num-
ber of the transitions observed. The coefficients produced by 
this model and linear combinations thereof were appropriately 
transformed to render estimates of relative frequencies of par-
ticular sleep-stage transition types as a function of group status 
(SDB versus no SDB). The log-linear analysis was conducted 
using the GENMOD procedure in SAS. Both the multistate and 
log-linear models included the matching variables age, sex, 
race, and BMI. All p values are for 2-sided tests.

ReSultS

A matched sample of 60 subjects with and without SDB was 
identified from the SHHS cohort. As expected, the two groups 
were similar with respect to age, sex, and race (Table 1). How-
ever, a small but statistically significant difference was noted 

Table 1—Characteristics of Subjects With and Without Sleep-
Disordered Breathing (SDB)

Variable SDB No SDB p valuea

Demographic
 Age, y 62.7 ± 10.8 62.3 ± 10.6 0.31
 Male, no. (%) 38 (63.3) 38 (63.3) 1.00
 White, no. (%) 52 (86.7) 52 (86.7) 1.00
 BMI, kg/m2 30.7 ± 5.2 29.2 ± 4.5 < 0.0001
Polysomnographic
 RDI, events/h 34.0 ± 12.1 0.63 ± 0.4 < 0.0001
 Total sleep time, min 353.3 ± 59.5 362.9 ± 56.3 0.38
 Sleep latency, minb 20.5 ± 15.7 22.1 ± 18.5 0.69
 Sleep efficiency, % 81.9 ± 10.3 83.0 ± 9.2 0.98
 Sleep stage, %c

  1 6.5 ± 4.5 5.7 ± 3.5 0.21
  2 58.6 ± 10.5 57.3 ± 11.8 0.52
  SWS 15.6 ± 11.6 16.0 ± 12.5 0.86
  REM 19.2 ± 7.2 21.0 ± 5.6 0.09
 Arousal frequency,
   events/h 28.0 ± 12.0 13.7 ± 5.7 < 0.0001

Data are presented as mean ± SD unless otherwise indicated.
aGroup differences by sleep-disordered breathing (SDB) status 
were determined by the Wilcoxon signed-rank test for categorical 
variables and paired t test for continuous variables.
bDenotes the latency to the first onset of sleep.
cStage 1, stage 2, slow-wave (SWS), and rapid eye movement 
(REM) sleep are expressed in percentage of total sleep time. SWS 
represents the combination of sleep stages 3 and 4.

Figure 1—A schematic of the six possible transitions between 
wake, REM [rapid eye movement], and non-REM [NREM]). λpq 
is the hazard rate of making the transition from stage p to stage q.
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and multistate models were then reconstructed for each seg-
ment of the sleep period (Table 3). Analyses by segment of the 
night showed that those with SDB had higher rates of awaken-
ing from both NREM and REM sleep in both segments. Transi-
tion frequencies for wake-to-NREM sleep and NREM sleep-to-
wake were significantly higher in SDB subjects regardless of 
segment of night, confirming the overall-night results. It was 
also found that subjects with SDB had a higher transition fre-
quency for wake-to-REM sleep and REM sleep-to-wake in the 
first but not in the second half of the sleep period. Finally, mul-
tistate analyses showed that, compared with the first half of the 
sleep period, subjects with SDB also displayed a greater pro-
pensity for sleep fragmentation, with significantly higher rates 
of wake-to-NREM sleep and REM-to-NREM transitions in the 
second half of the sleep period.

DiScuSSion

The primary objective of the current study was to investigate 
whether characterizing sleep through log-linear and multistate 
analyses would demonstrate differences in sleep structure be-
tween those subjects with and without SDB. Using a matched 
sample of middle-aged and older adults recruited from the general 
community, the current investigation showed that, in the absence 
of confounding medical conditions, conventional measures of 
sleep structure were similar between those with and without SDB 
despite being at the extremes of health and disease, respectively. 
In contrast, log-linear and multistate models showed notable dif-
ferences in sleep structure between the two groups. Subjects with 
SDB were noted to have a greater number and higher rates of 
sleep-stage transitions than those without SDB, suggesting that 
the occurrence of apneas and hypopneas during sleep can alter 
the duration spent in distinct sleep stages throughout the night 
without altering the overall summaries of sleep-stage amounts or 
total sleep time. In addition, the present study also showed that 
the propensity to transition from one stage to another is different 
between the first and second half of the sleep period.

The finding that SDB disrupts sleep continuity is not unex-
pected. It is well established that partial or complete collapse 
of the upper airway during sleep and the ensuing apneas and 
hypopneas often terminate with a brief EEG arousal. Recur-
rent arousals lead to state instability with recurrent to-and-fro 
transitions between different sleep stages. Event-related arous-
als from sleep are not all equal because there is much interin-

in the BMI between subjects with and without SDB. Restrict-
ing the matching limits in BMI to less than 5 kg/m2 or age to 
less than 10 years to improve the degree of matching led to 
a significant decrease in the overall sample size. Thus, BMI, 
age, and other matching covariates were included in all mul-
tivariable models. Subjects with SDB had a mean RDI of 34.0 
events per hour (median: 30.6, interquartile range: 26.4-39.1), 
whereas those without SDB had a mean RDI of 0.63 events per 
hour (median: 0.67, interquartile range: 0.32-0.91). As expect-
ed, the overall arousal frequency was higher in SDB subjects, 
compared with healthy subjects (no SDB). Surprisingly, despite 
obviously large differences in disease severity (i.e., RDI), con-
ventional measures of sleep structure such as total sleep time, 
percentage of total sleep time in each sleep stage, and sleep ef-
ficiency were similar between the two groups (Table 1).

The transition frequencies of wake-to-NREM sleep and 
NREM sleep-to-wake were significantly higher in subjects with 
SDB (Table 2). Log-linear models revealed that SDB conferred 
a 26% and 32% increase in propensity of wake-to-NREM 
sleep and NREM sleep-to-wake transitions, respectively. The 
higher relative frequency of these two transition types sug-
gests that SDB can disrupt sleep continuity with oscillations 
between NREM sleep and wakefulness. The log-linear model 
also showed that SDB increases the number of transitions from 
wake-to-REM sleep. Multistate models examining the hazards 
of each sleep-stage transition type revealed that there was an 
increase in the rate of wake-to-NREM sleep and NREM sleep-
to-wake transitions (Table 2), confirming the findings of the 
log-linear analysis. The adjusted hazard rate ratios of wake-to-
NREM sleep and NREM sleep-to-wake transitions were 1.10 
(95% confidence interval: 1.02, 1.20) and 1.50 (95% confi-
dence interval: 1.30, 1.74), respectively. In addition, multistate 
models demonstrated an increase in the rate for REM sleep-to-
wake, depicting those with SDB having a 2.26 (95% confidence 
interval: 1.51, 3.40) times greater likelihood of transitioning 
from REM sleep to wakefulness than those without SDB.

Recognizing the overnight heterogeneity in the distribution 
of NREM and REM sleep and in the frequency of sleep-stage 
transitions over the course of the night, analyses were per-
formed dividing each subject’s total sleep period into two seg-
ments. Accounting for differences in total sleep time, the first 
and second segments of sleep were determined as the first half 
and second half, respectively, of each individual’s total sleep 
time, as opposed to using a global arbitrary cutpoint. Log-linear 

Table 2—Results from Log-Linear and Multistate Models for Sleep-Stage Transitions in SDB for the Entire Night

Sleep-stage Log-linear analysis Multistate analysis
transition Frequency of transitionss RRb HRb

 SDB No SDB RR 95% CI p value HR 95% CI p value
Wake → NREM 1725 1368 1.26 1.07, 1.48 0.005 1.10 1.02, 1.20 0.02
NREM → Wake 1579 1200 1.32 1.11, 1.56 0.001 1.50 1.30, 1.74 <0.0001
NREM → REM 346 351 1.02 0.81, 1.29 0.85 1.04 0.68, 1.57 0.87
REM → Wake 358 324 1.17 0.91, 1.50 0.21 2.26 1.51, 3.40 <0.0001
REM → NREM 160 134 1.20 0.90, 1.59 0.20 1.57 0.89, 2.77 0.12
Wake → REM 175 114 1.42 1.02, 1.96 0.04 0.86 0.49, 1.50 0.60

a Unadjusted ratios comparing subjects with sleep-disordered breathing (SDB) to those without SDB (No SDB).
bResults are adjusted for age, sex, race, and body mass index. RR refers to relative ratio and HR refers to hazard ratio; CI, confidence interval; 
REM, rapid eye movement NREM, non-REM.
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sleep-stage summaries in subjects with and without SDB in our 
sample highlights the importance of characterizing the tempo-
ral evolution of sleep with methods that capitalize on distinct 
dimensions (i.e., frequency and rate) of an event. Availability 
of sleep recordings in the home is an additional strength be-
cause home-based studies limit the potential of the “first-night” 
effect on sleep structure that is common with in-laboratory 
polysomnograms.31-33 Finally, the use of a well-characterized 

dividual and intraindividual variation in whether an apnea or 
hypopnea leads to a shift between sleep stages or a transition 
to wakefulness. The results of the current study illustrate that 
conventional measures of sleep structure tend to collapse a 
temporally evolving process and limit the ability to reach in-
ferences regarding secular trends across groups. Nevertheless, 
composite summary measures provide useful and necessary 
information because knowing if the total time spent in a stage 
is similar across groups assists in distinguishing whether sleep 
is actually more fragmented or the greater frequency of transi-
tions is simply a result of differences in total sleep time. In ad-
dition to characterizing transition frequencies and rates, event 
history methods, as employed herein, also afford modeling of 
directionality of transitions. For example, a state change from 
wake-to-NREM sleep is clearly distinct from the transition of 
NREM sleep-to-wake.Moreover, the methods of multistate sur-
vival analysis allow the dynamic notion of competing risks to 
be applied to the evolution of sleep, in which a transition from 
one to any of the other states is possible. Such distinction of 
state evolution of sleep is not possible with sleep-stage percent-
ages or arousal counts because markedly differing sleep profiles 
can be congruent on these measures. Even counting the number 
of sleep-stage transitions is insufficient because it does not de-
scribe the time or rate of a particular type of sleep-stage transi-
tion. As shown in Figure 2, the percentages of NREM and REM 
sleep across different hypnograms can be similar, whereas overt 
differences can exist in the number and the rate of sleep-stage 
transitions. Log-linear and multistate models quantify these dif-
ferences that are often visually apparent in the hypnogram.

There are several strengths of this study that merit discus-
sion. The exclusion of medical comorbidities and matching on 
race, sex, BMI, and age minimized the concern for confound-
ing and permitted a thorough assessment of the independent ef-
fects of SDB on sleep structure. Given that SDB is commonly 
associated with substantial medical comorbidity, identifying a 
sample of matched subjects free of such conditions is a ma-
jor strength. Furthermore, the finding of similar conventional 

Table 3—Results from log-linear and multistate models for sleep-stage transitions by segments of night

Sleep-stage transition Log-linear analysis Multistate analysis
  Frequency of Transitionsa RRb HRb

  SDB No SDB RR 95% CI p value HR 95% CI p value
First segment of night
 Wake → NREM 764 611 1.26 1.07, 1.48 0.005 1.09 0.99, 1.20 0.08
 NREM → Wake 712 553 1.30 1.10, 1.54 0.002 1.46 1.20, 1.78 0.0002
 NREM → REM 145 149 1.07 0.87, 1.32 0.53 1.16 0.71, 1.90 0.56
 REM → Wake 125 96 1.38 1.05, 1.81 0.02 2.77 1.55, 4.93 0.001
 REM → NREM 69 72 1.05 0.80, 1.37 0.73 1.05 0.56, 1.96 0.88
 Wake → REM 63 32 1.87 1.29, 2.72 0.001 1.05 0.37, 3.00 0.92
Second segment of night
 Wake → NREM 961 757 1.26 1.02, 1.55 0.03 1.12 1.01, 1.24 0.03
 NREM → Wake 867 647 1.33 1.06, 1.67 0.01 1.53 1.27, 1.86 <0.0001
 NREM → REM 201 202 1.01 0.76, 1.33 0.96 0.96 0.58, 1.62 0.89
 REM → Wake 233 228 1.06 0.81, 1.37 0.68 2.08 1.29, 3.35 0.003
 REM → NREM 91 62 1.19 0.85, 1.68 0.31 2.37 1.12, 5.02 0.02
 Wake → REM 112 82 1.15 0.82, 1.6 0.43 0.79 0.41, 1.52 0.48

a Unadjusted ratios comparing subjects with sleep-disordered breathing (SDB) to those without SDB (No SDB).
bResults are adjusted for age, sex, race, and body mass index. RR refers to relative ratio and HR refers to hazard ratio; CI, confidence interval; 
REM, rapid eye movement NREM, non-REM.

Figure 2—Differences in results obtained from survival and log-
linear analysis of sleep-stage transitions illustrated using 3 hypo-
thetical hypnograms. Total time recorded and time in rapid eye 
movement (REM) sleep are equivalent among the three hypno-
grams, demonstrating the limits of information gained by relying 
on composite summary measures alone to capture differences in 
sleep structure. Number of transitions from non-REM (NREM) 
to REM allow for a quantitative distinction to be made between 
profiles A and B and between A and C but not between B and 
C. Time to transition from NREM to REM provides a fuller de-
scription of profiles, enabling a quantifiable distinction among the 
three hypnograms.
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cohort recruited from the general-community cohort minimizes 
potential biases that are often inherent in clinic-based samples.

Despite these strengths, the current study has several limita-
tions. First, a simplified approach for the assessment of transition 
frequency and rate was used that did not include individual stag-
es of NREM sleep. The decision to limit classification to wake, 
NREM sleep, and REM sleep was driven by the need to answer 
the question of whether event-history methods provided any ad-
ditional insight into the macrostructure of sleep. In light of the 
robust findings from modeling the three states, further applica-
tion of these methods to the assessment of sleep structure with 
individual NREM sleep stages represents a logical extension. 
Second, because both of the methods employed in our analyses 
are based on visually scored sleep stages, poor reliability of scor-
ing could impact the derived inferences. As observed by others, 
scoring of stage 1 sleep was least reliable in the SHHS. However, 
if stages are recoded as wake, NREM sleep, and REM sleep, as 
was needed for the log-linear or multistate analyses, interscorer 
comparisons in the SHHS yield kappa statistics in the range of 
0.87 to 0.90.34 Third, stratification by sleep-stage transition type 
and further by segments of the sleep period diminishes the power 
to detect differences, especially if particular transition types oc-
cur infrequently (e.g., wake-to-REM sleep). However, the cur-
rent analyses set the stage for future work with the entire SHHS 
cohort that will provide sufficient power to identify potential de-
terminants of sleep-stage transitions. Fourth, a distinct feature of 
the proportional hazards model is that it leaves the underlying 
hazard for a specific type of transition unspecified. Although this 
is a major strength of the proportional hazards model, knowing 
the hazard rate in the reference group is sometimes desirable. Im-
plementation of parametric models can provide these reference 
hazards and represent yet another extension of the current work.35 
Finally, the methods proposed herein characterize the continu-
ity of sleep using 30-second epochs and thus cannot fully depict 
events (e.g., arousals or period of microsleep) that occur within 
the epoch. Nonetheless, event-history methods can be applied to 
sleep stages that are scored using a shorter epoch period (e.g., 4 
seconds) to better describe sleep microstructure.

The major implication of this study is that the character-
ization of sleep structure in SDB and other sleep disorders is 
better served by encompassing new quantitative characteriza-
tions along with the classic measures, particularly to aptly test 
hypotheses regarding the function and health-related effects 
of normal and abnormal sleep. Within this broader scope, un-
derstanding various dimensions of sleep continuity may carry 
significance with regard to predicting the relationship between 
sleep and general health. In light of findings of the current study, 
the newly suggested approaches of examining sleep structure 
could provide a more thorough understanding of how comor-
bidities affect sleep, as well as how normal sleep function, in 
turn, fulfills a crucial role in health and disease.
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id Transition type Duration of  id Transition type Duration of Observed (1) or
  state, min    state, min Censored (0)
i NREM → REM 24.3 → i NREM → REM 24.3 1
    i NREM → Wake 24.3 0
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