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1 Introduction

“The statistical sciences are concerned with the collection, analy-
sis and interpretation of data that involve uncertainty.”

Mathematical Sciences: Some Research Trends. National Academy of Sci-

ences Press 1998.

Most statistics courses focus on the analysis and interpretation of data.
In particular statistical inference focuses on the interpretation of data in the

context of a probability model.

Why should one study the foundations of statistics? Royall has put it
best “Statistics is a mess”. In mathematics one counterexample is enough to

demonstrate that a stated result or methodology is incorrect or inappropriate.

Not so in statistics.
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Not only that, there are a variety of definitions of statistical inference e.g.

◦ “ the purpose of inductive reasoning, based on empirical observations,

is to improve our understanding of the systems from which these obser-
vations are drawn”

Statistical Methods and Scientific Inference (R.A. Fisher)

◦ “Inference is usually defined as the process of drawing conclusions from

facts, available evidence, and premises. Statistical inference is the term

associated with the process of making conclusions on the basis of data
that are governed by probability laws”.

Encyclopedia of Biostatistics (L. Fisher)

◦ “ A statistical inference will be defined for the purposes of the present

paper to be a statement about statistical populations made from given

observations with measured uncertainty.”

Some Problems Connected with Statistical Inference (D.R. Cox)

◦ “ statistics is concerned with decision making under uncertainty”

Decision Theory (Chernoff and Moses)

◦ “ the problem of inference, or how degrees of belief are altered by data”
Probability and Statistics from a Bayesian Viewpoint (Lindley)

◦ “By statistical inference I mean how we find things out - whether with
a view to using the new knowledge as a basis for explicit action or not

- and how it comes to pass that we often acquire practically identical

opinions in the light of evidence”

The Foundations of Statistical Inference (L.J. Savage)

2 2003



Consider the simplest problem, that of determining on the basis of an
observation x which of two models is true. Assume that the two models are

f0 and f1. Classical statistics tells us to form the likelihood ratio

f1(x)

f0(x)

and conclude that f1 is the correct model if this ratio is large. Large being

determined by finding the smallest k such that

P0

f1(X)

f0(X)
≥ k

 ≤ α

The Neyman-Pearson Lemma tells us that this procedure is optimal in the
sense that

◦ The probability of falsely concluding that f1 is true when f0 is true is
fixed at α

◦ The probability of falsely concluding that f0 is true when f1 is true is
minimized. i.e. this procedure maximizes the power for fixed size.

This result has been extended ad nauseum and has dominated much of

statistical practice since its introduction in the early 1930’s.
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example 1.1 If the most powerful test of H0 vs H1 calls for rejection of H0

it does not mean that the data provide evidence against H0 in favor of H1.

Consider a simple situation where Y has one of two pdf’s f0 or f1 as follows:

Observed Value of Y

pdf y = 1 y = 2 y = 3

f0
19
20

1
20 0

f1 0 1
200

199
200

f1(y)
f0(y) 0 1

10 ∞

The most powerful test of size α = .05 rejects H0 when y = 2 or 3 and

has power 1. If, however, y = 2 is observed even though we reject H0 the

observed data are 10 times more likely under H0 than under H1.

Conclusion: Size and power cannot be interpreted as measures of strength

of evidence.
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example 1.2 Use of hypothesis tests can lead to foolish conclusions.

Suppose that we have Y with one of two pdf’s as follows:

Observed Value of Y

pdf Y = 1 Y = 2 Y = 3 Y = 4

f0 9/10 1/20 1/20 0

f1 0 99/100 0 1/100

Consider the following two tests

Test 1 rejects if y = 2 and has size .05 with power 99/100

Test 2 rejects if y = 3 or y = 4 and has size .05 with power 1/100

It is clear that before the data are collected Test 1 is better. After the
data are collected and we observe y = 4 then Test 1 does not reject even

though there is perfect evidence against H0 whereas Test 2 rejects.

Conclusion: Blind evaluation of tests in terms of size and power is silly.
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example 1.3 Hypothesis tests are not symmetric.

Suppose that we have Y with one of two pdf’s as follows:

Observed Value of Y

pdf Y = 1 Y = 2 Y = 3 Y = 4

f0 98/100 1/100 1/100 0

f1 0 1/100 1/100 98/100
f1(y)
f0(y) 0 1 1 ∞
f0(y)
f1(y) ∞ 1 1 0

◦ The most powerful test of size α = .02 of f0 vs f1 rejects if y equals 2,3
or 4 and has power 1.

◦ The most powerful test of size α = .02 of f1 vs f0 rejects if y equals 1,2
or 3 and also has power 1.

Thus if y is observed to be 2 or 3 you would reject either f0 or f1 depending

on which you called the null hypothesis. However, the observed data in this
case provide no evidence for or against either of the hypotheses.
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2 Statistical Evidence

Let’s modify the National Academy of Sciences definition and adopt as a
working definition of statistics the following:

Statistics is the discipline concerned with statistical evidence:

• producing it

• interpreting it

• using it

For the moment “ Statisical evidence consists of observations in the context

of a probability model”.

• A model is a collection of probability distributions often indexed by a

parameter.

• Observations are conceptualized as having been generated according to

one of the distributions in the model.

• Statistics is concerned with using the observations to determine evidence

concerning the distribution which generated the observations.
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example: Consider a diagnostic test in which a subject has a positive test
result. The test has the following probabilistic characteristics:

Disease Test Result

Status + −
D .95 .05

D .02 .98

If the observation X represents the test result then we have the following

model:

HA : disease present =⇒ X ∼ PD ; HB : disease absent =⇒ X ∼ PD

On the basis of a positive test result a physician might conclude:

(1) The subject probably does not have the disease.

(2) The subject should be treated for the disease.

(3) The test result is evidence that the subject has the disease.

All of these statements fall within the scope of statistics.

• Which are correct?

• How do we determine which are correct?
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To answer (1) we ask when is P (D|X = 1) < 1
2? By Bayes Theorem

P (D|X = 1) =
P (X = 1|D)P (D)

P (X = 1|D)P (D) + P (X = 1)|D)P (D)

=
.95 P (D)

.95 P (D) + .02[1 − P (D)]

=
.95P (D)

.93P (D) + .02

It follows that P (D|X = 1) increases from 0 to 1 as P (D) increases. Also

note that

P (D|X = 1) <
1

2
if and only if P (D) < .0206

Hence conclusion (1) is correct if P (D) is small. It follows that conclusion

(1) depends on the probability of the disease before the test and not just on

the data provided by the test.
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For conclusion (2) assume that we have a table of losses

Model Treament

Status T T

D, �(T,D) �(T,D)

D �(T,D) �(T,D)

where it is natural to assume that

�(T,D) < �(T,D) , �(T ,D) < �(T,D)

If the patient is treated the expected loss is

RT = �(T,D)P (D|X = 1) + �(T,D)P (D|X = 1)

while if the pateint is not treated the expected loss is

RT = �(T ,D)P (D|X = 1) + �(T,D)P (D|X = 1)

It is thus better to treat if the expected loss if treated is less than the
expected loss if not treated (RT < RT) i.e. if

�(T, D)P (D|X = 1) + �(T, D)P (D|X = 1) < �(T , D)P (D|X = 1) + �(T , D)P (D|X = 1)
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This is equivalent to

P (D|X = 1)

P (D|X = 1)
�(T,D) + �(T,D) <

P (D|X = 1)

P (D|X = 1)
�(T,D) + �(T,D)

or

[�(T,D) − �(T,D)] <
P (D|X = 1)

P (D|X = 1)
[�(T ,D) − �(T,D)]

Hence the second conclusion is correct if

P (D|X = 1)

P (D|X = 1)
>

�(T,D) − �(T ,D)

�(T ,D)− �(T,D)

Note that the correctness of the second conclusion depends on the prob-

ability of the disease before the test and the loss structure, not just on the

data from the test since

P (D|X = 1)

P (D|X = 1)
=

P (X = 1|D)P (D)

P (X = 1|D)P (D)
=

P (X = 1|D)

P (X = 1|D)

 P (D)

P (D)
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For the third conclusion we note that it is correct because interpret-
ing a positive test as evidence that the subject does not have the disease is

just wrong regardless of prior probabilities, possible actions and their con-

sequences.

The three conclusions in the example are anwers to different generic ques-
tions:

(1) What should the physician believe?

(2) What should the physician do?

(3) How should the physician interpret the test result as evidence (for D

vis-a-vis D)?

Note that the first two questions are context dependent whereas the third

is universal. The first question is Bayesian, the second is decision theoretic
and the third we call the evidential interpretation.

The third question is the one we will concentrate on in this course. Saying

that a positive test result is evidence that the subject has the disease requires

us to determine and investigate “What fundamental principles of statistical
reasoning are at work here?”
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3 Law of Likelihood

Axiom 3.1 Law of Likelihood: Let hypothesis A imply that a random
variable is distributed as pA and hypothesis B imply that it is distributed as

pB.

• The observation X = x is evidence supporting A over B if and only if

pA(x)

pB(x)
> 1

• Moreover the magnitude of the likelihood ratio

pA(x)

pB(x)

measures the strength of the evidence.

Suppose we take the Law of Likelihood as an axiom. For this axiom to be

useful and acceptable in statistics we need to answer several questions:

(1) Does it make intuitive sense?

(2) Is it consistent with probability theory and logic?

(3) Does it work?
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4 Intuition

Consider two hypotheses A and B which state that

A : under conditions C, X will happen

B : under conditions C, X will not happen

To investigate these hypotheses we create the conditions (perform an exper-

iment or observational study) and see what happens. An observation of X

supports or provides evidence for A vis-a-vis B.

The Law of Likelihood generalizes this statement to

A : under conditions C, X will happen with high probability

B : under conditions C, X will happen with low probability

where high and low refer to relative probability not absolute probabil-

ity.

Note that if probabilities are assigned to A and B then

P (A|X)

P (B|X)
=

P (X |A)P (A)

P (X |B)P (B)
=

PA(X)

PB(X)

P (A)

P (B)
=

PA(X)

PB(X)

 P (A)

P (B)



Thus the likelihood ratio is the factor by which the “statistical evidence”

changes the probability ratio. In particular a likelihood ratio of say, 5, implies
that X = x causes a 5-fold increase in P (A)/P (B) from prior to posterior.
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One way to think about the likelihood ratio is that it is similar to a measure
of thermal energy: 1 BTU is the energy required to raise the temperature

of 1 pound of water at 39.2 degrees F by one degree. This is an attempt to

give a meaning to the likelihood ratio in a way such that it always means the

same thing, regardless of context. Thus one speaks of the BTUs of one air
conditioner relative to another.

Returning to our example

(1) Should this observation lead me to believe that D is present?

(2) Does this observation justify acting as if D were present?

(3) Is this observation evidence that D is present?

Question 3 is the only one that can be answered independently of prior prob-

abilities and consequences. This implies that

“what do the data say?” is independent of beliefs and actions

which in turn implies that the Law of Likelihood provides a numerical mea-
sure of the strength of statistical evidence.
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In the example a positive test is evidence that the subject has the disease
since

LR =
pD(x)

pD(x)
=

.95

.02
= 47.5

If in fact D is true this evidence is misleading. In this particular example

we can get misleading evidence of this magnitude with probability at most

.021 i.e. if
A =⇒ X ∼ fA and B =⇒ X ∼ fb

then if A is true the probability of misleading evidence satisfies

PA

fB(X)

fA(X)
≥ 47.5

 ≤ 1

47.5
= .021

In a later section we will show that

PA

 fB(X)

fA(X)
≥ k

 ≤ 1

k

for any positive k.
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5 Strength of evidence

Is a LR of 2 “strong evidence? is 10? is 100? We need benchmarks to relate
a numerical scale to verbal descriptions. Consider two urns:

Urn 1: all white balls ; Urn 2: half white balls, half red balls

If we draw balls at random from one of the urns without knowing which

urn we are selecting from we have

one white ball =⇒ LR = 1
1/2 = 2

two white balls =⇒ LR = 1
1/22 = 4

three white balls =⇒ LR = 1
1/23 = 8

four white balls =⇒ LR = 1
1/24 = 16

five white balls =⇒ LR = 1
1/25 = 32

We call a LR of 8, moderately strong evidence and a LR of 32 strong
evidence. Another way of looking at this calibration is to note that

2b = k = LR =⇒ b =
ln(k)

ln(2)

where b is the number of white balls drawn. This leads to the following table

LR 2 4 8 10 16 20 32 50 64 100 128 256 512 1000 1028

b 1 2 3 3.3 4 4.3 5 5.6 6 6.6 7 8 9 9.97 10
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6 Operational Aspects

Does the Law of Likelihood work? Note that evidence, properly interpreted,
can be misleading, but strong misleading evidence cannot occur very often.

Theorem 6.1 Universal Bound on the Probability of Misleading Ev-

idence

PA

fB(X)

fA(X)
≥ k

 ≤ 1

k

Proof: Let

S =

x :
fB(x)

fA(x)
≥ k


Then

1 =
∫

fB(x)µ(dx)

=
∫
S

fB(x)dµ(x) +
∫
Sc

fB(x)µ(dx)

≥
∫
S

kfA(x)µ(dx) +
∫
Sc

fB(x)µ(dx)

It follows that

1 −
∫
Sc

fB(x)µ(dx) ≥ k
∫
S

fA(x)µ(dx)

or ∫
S
fB(x)µ(dx) ≥ k

∫
S

fA(x)µ(dx)

i.e. ∫
S

fA(x)µ(dx) ≤ 1

k
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In fact a much stronger result is true. Consider a sequence of observations
Xn = (X1, X2, . . . , Xn) such that if A is true then Xn ∼ fn and when B is

true Xn ∼ gn. The likelihood ratio

gn(xn)

fn(xn)
= zn

is the LR in favor of B after n observations. Then we have the following

theorem.

Theorem 6.2 If A is true then

PA(Zn ≥ k for some n = 1, 2, . . .) ≤ 1

k

Proof: Let N be the first n greater than or equal to 1 such that

gn(Xn) ≥ kfn(Xn)

and define N = ∞ if no such n occurs. Let

Sn = {zn : N = n}
=

xn : zj =
gj(xj)

fj(xj)
< k ; j = 1, 2, . . . , n − 1 and

gn(xn)

fn(xn)
≥ k
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Then we have

PrA(Zn ≥ k for some n ≥ 1) = PA(N < ∞)

=
∞∑

n=1
PA(N = n)

=
∞∑

n=1

∫
Sn

fn(xn)µ(dxn)

≤ 1

k

∞∑
n=1

∫
Sn

gn(xn)µ(dxn)

=
1

k
PB(N < ∞)

≤ 1

k

Robbins, H. Statistical Methods Related to the Law of the Iterated Log-
arithm. Annals of Mathematical Statistics 1970 Vol. 41, No. 5, 1397-1409.
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Theorem 6.3 If A is true then

EA

fA(X)

fB(X)

 > EA

fB(X)

fA(X)

 = 1

Proof:

EA

fA(X)

fB(X)

 =
∫ fA(x)

fB(x)

 fA(x)µ(dx)

=
∫ fA(x)

fB(x)

2

fB(x)µ(dx)

≥

∫ fA(x)

fB(x)

 fB(x)µ(dx)


2

= 1

by Jensen’s inequality. Note that the inequality is strict if fA �= fB.
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example 6.1 Suppose we select a card at random from a deck containing
the customary 52 cards. We observe that it is the four of clubs. Consider the

two hypotheses:

HN : normal deck of cards =⇒ P (4 ♣) = 1/52

HA : all cards are 4 ♣ =⇒ P (4 ♣) = 1

Thus the observation supports A over N by a factor of 52 which is very strong
evidence.

Is this strength of evidence reasonable? Suppose that the deck has a prior

probability π of being normal and, if it is not normal, all of the 52 hypotheses
defined by

all 4 ♣, all 2 ♦, . . .

are equally likely i.e.

P (H1) = P (H2) = · · · = P (H52) =
1 − π

52

Then we have, by Bayes Theorem

P (N |4 ♣) =
1
52π

1
52π+1−π

52 +0 1
52+···+0 1

52

= π

P (H1|4 ♣) =
1−π
52

1−π
52 + 1

52π+0 1
52+···+0 1

52

= 1 − π

It follows that the likelihood ratio is given by

P (H1|4 ♣)

P (N |4 ♣)
=

1 − π

π
= 52

1−π
52
π

= 52 × prior odds
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Consider now HN and H1 and suppose that we observe the two of diamonds
in our draw from the deck. Is the two of diamonds evidence against HN . i.e.

does low probability under HN make an observation evidence against HN .

The answer to this question is NO.

To see this we note that it is equivalent to asking whether low probability
under HN relative to some alternative makes an observation evidence against

HN .

◦ It is evidence against HN vis-a-vis H2.

◦ It is evidence for HN vis-a-vis H1

◦ But it is not evidence against HN .
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Theorem 6.4 Further Properties of Likelihood Ratios Suppose A =⇒
X ∼ pA and B =⇒ X ∼ pB. Assume we observe x1, x2, . . . , xn which are iid.

The likelihood ratio is

LR =
LA

LB
=

∏n
i=1 pA(xi)∏n
i=1 pB(xi)

=
n∏

i=1

pA(xi)

pB(xi)

and we have

• If A is true then LR
a.s.−→ ∞

• If B is true then LR
a.s.−→ 0

• Finally if B is true then for ε > 0

PB

(
LA

LB
> ε

)
−→ 0

PB

(
LA

LB
< ε

)
−→ 1

PB

(
LB

LA
> 1

ε

)
−→ 1
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7 Testing Statistical Hypotheses

Recall that in the Neyman Pearson theory the best test (in terms of size and
power) calls for rejecting H1 in favor of H2 if the likelihood ratio is large.

Does this mean that observations are evidence supporting H2 over H1?

Consider the following situation:

n = 30 iid Bernoulli trials with parameter θ

and

H1 : θ =
1

4
, H2 : θ =

3

4

The uniformly most powerful test of size α = .05 rejects H1 in favor of H2

if

L2

L1
=

(
3
4

)∑30
i=1 xi

(
1
4

)30−∑30
i=1 xi

(
1
4

)∑30
i=1 xi

(
3
4

)30−∑30
i=1 xi

= 3
∑30

i=1 xi

(
1

3

)30−∑30
i=1 xi

= 32s30−30 ≥ k

where s30 =
∑30

i=1 xi and k is chosen so that

PH1
(S30 ≥ k) = .05

Note that if k = 12 we have

PH1
(S30 ≥ 12) = 0.05
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Hence we reject H1 in favor of H2 if S30 = 12, 13, 14, 15, . . . , 30. However,
if S30 = 12 then the likelihood ratio is

LR = 32(12)−30 = 3−6 =
1

729

so that we have very strong evidence in favor of H1 over H2. Note also that
we have the following:

if S30 = 13 =⇒ LR = 1
81

if S30 = 14 =⇒ LR = 1
9

if S30 = 15 =⇒ LR = 1

Thus 15 leads to equal support for H1 vis-a-vis H2 even though the Neyman
Pearson theory says to reject H1 in favor of H2. The P-value for S30 = 15

is PH1
(S30 ≥ 15) = .003 which would lead, under conventional theory, to the

conclusion that H1 is not tenable.
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As another example consider

H1 : θ =
1

4
, H2 : θ =

1

2
, H3 : θ =

3

4

where X is binomial with n = 5 and we observe X = 0. Then we have

L1

L2
=

(
3
4

)5
(

1
2

)5 =

(
3

2

)5
= 7.6

which is pretty strong evidence supporting H1 over H2. We also note that

L2

L3
=

(
1
2

)5
(

1
4

)5 = 25 = 32

which is very strong evidence supporting H2 over H3.

Consider now the composite hypothesis

Hc : θ =
1

4
or θ =

3

4

Do we have evidence for θ = 1
2 vis-a-vis Hc? No.

The Law of Likelihood does not answer this question because Hc does not

imply that X has a particular probability model i.e. it makes no prediction

of the observations.
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example 7.1 Suppose that

H1 : θ = 0.2 , H2 : θ = 0.8

and we observe 17 subjects with 9 successes. What do these observations tell
us about θ?

The answer is provided by the likelihood function given by

L̃(θ) =
L(θ)

max[L(θ)]
=

θ9(1 − θ)8(
9
17

)9 ( 8
17

)8
in the sense that

L̃(θ1)

L̃(θ2)

measures the strength of evidence for θ1 vs θ2.
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The following graph shows the likelihood function for this situation. For
convenience the interval of parameter values where L̃(θ) is greater than or

equal to 8 and 32 are shown.

Figure 1:
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The graph shows the strength of evidence in the observations. Do we have

◦ Evidence that θ > 0.20?

◦ Evidence that H2 : θ > 0.20 vs H1 : θ ≤ 0.20?

The answer is provided by looking at the likelihood function. Can answer

yes in the sense that

• Values near θ = 0.5 are much better supported than 0.20 or any smaller

value.

• Note however, that θ = 0.20 is better supported than θ = 0.9 or any

larger value.
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Now look at some different evidence: we observe 20,500 successes in
100,000 trials. In this case the likelihood is given by

Figure 2:
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In this case we have

• Strong evidence that θ is greater than 0.2 but it is also strong evidence

that θ is not much larger than 0.2

• Looking at the likelihood function tells the complete story

• The likelihood function shows the evidence in the observations about

the parameter.
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8 Irrelevance of the Sample Space

Consider the following three models and hypotheses

(1) A =⇒ X ∼ fA , B =⇒ X ∼ fB where

Sample Space

Model 1 0

fA .95 .05
fB .02 .98

(2) A =⇒ X ∼ fA , B =⇒ X ∼ fB where

Sample Space

Model 1 2 3

fA .95 .02 .03
fB .02 .22 .76

(3) A =⇒ X ∼ fA , B =⇒ X ∼ fB where

Sample Space

Model 1 6 7 2000

fA .95 .02 .01 .02
fB .02 .95 .00 .03

Is the evidence in the observation X = 1 different in the three situations?

• It doesn’t matter (for interpreting the observation X = 1 as evidence

for A vs B) what values X might have taken if it had not been 1

• or how the probability that X �= 1 is spread out over the other values.
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example 8.1 Suppose that we perform 20 independent Bernoulli trials in
Afghanistan to learn something about a parameter θ.

◦ You know the language so that you will observe

X ∼ binomial(20, θ)

◦ I know only the word for six and nothing else so I will observe

Y = 6I(X = 6) =⇒ Y

6
∼ Bernoulli

1,

20

6

θ6(1 − θ)14


Suppose that an assistant reports 6 successes. For you the LR for com-

paring θ1 to θ2 is (20
6

)
θ6
1(1 − θ1)

14(20
6

)
θ6
2(1 − θ2)14

=
P(X = 6, θ1)

P(X = 6, θ2)

For me, the same likelihood is obtained so that

P(X = 6, θ1)

P(X = 6, θ2)
=

P(Y = 6, θ1)

P(Y = 6, θ2)

Thus, according to the Law of Likelihood, we have the same evidence for
comparing θ1 to θ2
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Your sample space is {0, 1, 2, . . . , 20} mine is {6,not 6}. However, if we
test H1 : θ = .5 vs H2 : θ = .2 your P-value is

P (X ≤ 6; θ = .5) = 0.06

while mine is

P (Y = 6; θ = .5) = 0.04

Thus we have the following conclusions:

◦ P-values violate “irrelevance of the sample space” for determining evi-

dence.

◦ The P-value (as a measure of the strength of evidence) is wrong because

it says that the evidence is stronger for me than you but it is not.

◦ Evidence is independent of the sample space, it depends only on the

observed point and its probability under various hypotheses.
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Still a third possibility in the above scenario is that we observe the number
of trials Z until we obtain 6 successes. In this case

P (Z = z) = P (5 successes in z − 1 trails)P (next trial a success)

=

z − 1

5

θ5(1 − θ)z−1−5θ

=

z − 1

5

θ6(1 − θ)z−6

If Z = 20 we obtain

P (Z = 20) =

19

5

θ6(1 − θ)14

which leads to a LR for comparing θ1 to θ2 of

θ6
1(1 − θ1)

14

θ6
2(1 − θ2)14

which implies the “irrelevance of the stopping rule”.

It follows that X = 6, Y = 6 and Z = 6 are equivalent as evidence about θ

because the strength of evidence for θ1 vs θ2 as given by the Law of Likelihood
is the same. That is these three instances of statistical evidence all generate

the same likelihood function given by

L(θ) ∝ θ6(1 − θ)14
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In general: If X ∼ fX(x; θ) for x ∈ X and θ ∈ Θ the observation X = x0

implies that the LF satisfies

LX(θ, x0) = c(x0)fX(x0; θ) ∝ fX(x0; θ)

◦ Before the observation is recorded fX(x; θ) represents uncertainty about
what value of X will be observed.

◦ After the observation of X = x0

fX(x0; θ) ∝ LX(θ;x0)

represents the evidence about θ in x0.

The Law of Likelihood gives the likelihood function its meaning in the

sense that
L(θ1;x0)

L(θ2;x0)

is the strength of the evidence in x0 for comparing θ1 to θ2.
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9 Likelihood Principle

Suppose that
Y ∼ fY (y; θ) ; y ∈ Y θ ∈ Θ

If Y = y0 is observed then the likelihood function satisfies

L(θ; y0) ∝ fY (y0; θ)

If it happens that

fY (y0; θ) ∝ fX(x0; θ)

then X = x0 and Y = y0 determine the same likelihood function. Thus for

any pair of values θ1 and θ2 the evidence in X = x0 and Y = y0 is the same.

This fact is called the Likelihood Principle.

Likelihood Principle: If X = x0 and Y = y0 determine the same likelihood
function then X = x0 and Y = y0 are equivalent as evidence about θ.

Key concepts:

◦ Two instances of statistical evidence are equivalent if and only if they

generate the same likelihood function (LF).

◦ This implies that the likelihood function is the mathematical represen-

tation of the concept of statistical evidence.
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In the example of the previous section frequentist statistics says that 6/20
is an unbiased estimate if it is X/20 but not if it is 6/Z because

E

(
X

20

)
= θ but E

(
6

Z

)
≥ 6

E(Z)
=

6

6 + 61−θ
θ

= θ

Actually the inequality is strict since 1
X is strictly convex unless Z is degen-

erate (which it isn’t in this case).

Similarly we have that

◦ s.e.
(

X
20

) �= s.e.
(

6
Z

)
◦ Pθ(X ≤ 6) �= Pθ(Z ≥ 20)

◦ The best 95% confidence interval for θ is different in both cases.

The only sensible conclusion is that standard inference methods are all

defective (for the purpose of representing or interpreting the data as evidence
about θ). The reasons are that

◦ Standard methods assert that the evidence about θ in X = 6 is different
from that in Z = 20

◦ Standard methods thus violate the likelihood principle.
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10 Misconceptions and Misinterpretations

(1) “The likelihood principle says that conclusions based on X = 6 should

be the same as those based on Z = 20. i.e. everyone faced with the

same likelihood should give the same point estimate, (P-value, etc.).”

Conclusions and decisions are not likelihood concepts i.e. they

are not evidence.

(2) “The likelihood principle is a rule for data reduction.”

Consider the following quote from Casella and Berger:

“The Likelihood Principle specifies how the likelihood func-

tion should be used as a data reduction device.
LIKELIHOOD PRINCIPLE: If x and y are two sample points

such that L(θ|x) is propotional to L(θ|y), that is, there exists a

constant C(x, y) such that

L(θ|x) = C(x, y)L(θ|y) for all θ

then the conclusions drawn from x and y should be identical.”

Again this is incorrect since the likelihood principle appies to

evidence not conclusions.

(3) “The likelihood principle applies only when you have a parametric model

that you know to be true.”

This is incorrect. No model is true, the best we can do is state

the evidence based on the model assumptions and investigate

the consequences of model inadequacy.
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11 Relation to Bayes and Decision Theory

Consider the model

X ∼ fX(x; θ) ; X ∈ X ; θ ∈ Θ

and the effect of statistical evidence on the state of uncertainty about θ.
We assume that before the evidence is obtained our uncertainty about θ is

expressed as a pdf g(θ).

After the evidence X = x is obtained Bayes theorem implies that our state

of uncertainty is given by

g(θ|x) =
f(x; θ)g(θ)∫

Θ f(x; θ)g(θ)µ(dθ)

=
cL(θ;x)g(θ)∫

θ cL(θ;x)g(θ)µ(dθ)

=
L(θ;x)g(θ)∫

θ L(θ;x)g(θ)µ(dθ)

Thus evidence effects the state of uncertainty only through the likelihood
function.

It follows that two instances of statistical evidence that generate the same

likelihood function have the same effect on the state of uncertainty about θ.

It also follows that the likelihood principle applies to areas of statistics

answering the question - What do I (or should I) believe?
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With regard to decision theory (What should I do?), suppose we have
a model and a prior which generates g(θ|x), an action space A and a loss

function defined by

L(a, θ) = loss if we take action a and θ is the true value of the parameter

The expected loss (risk) if we take action a after observing X = x is

R(a|x) =
∫
Θ

L(a, θ)g(θ|x)µ(dθ)

Decision theory chooses a to minimize R(a|x).

Again the data enter the analysis only through the likelihood function.

Thus two instances of statistical evidence that produce the same likelihood
function should produce the same action in a given problem.
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12 Evidence and Uncertainty

The Law of Likelihood implies that evidence has a different mathematical
form (likelihood) than uncertainty (defined by a probability distribution).

12.1 Example 1

To illustrate suppose we are interested in the probability of success θ (heads)

when I toss a pnickel (a coin formed by joining a penny and a nickle). To
learn about θ we toss a nickel 20 times and it is a success 9 times.

Model : Y ∼ Bernoulli(θ), X ∼ binomial(20, 9, 1/2) for 0 ≤ θ ≤ 1

Observation : X = 9

To represent the evidence about θ we look at the likelihood function which

is

L(θ) = PX,Y (X = 9; θ) =

20

9

(1

2

)20

which is a constant as a function of θ. Normalizing by the maximum the

likelihood function is

L(θ) =

 1 if 0 ≤ θ ≤ 1

0 elsewhere

This likelihood function represents the absence of evidence about θ.
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This same function can also be a probability density function defined by

fΘ(θ) =

 1 if 0 ≤ θ ≤ 1
0 elsewhere

As a pdf, fΘ(θ) represents a particular state of knowledge about θ i.e.

P

(
Θ >

1

2

)
=

1

2
, P

(
Θ <

1

8

)
=

1

8

and so on.

Two Questions:

(i) Does this pdf represent ignorance (the absence of knowledge about θ?

(ii) Does it represent what X = 9 tells us about θ?
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Suppose we look at another parameter φ = θ2, the probability of heads on
two tosses of the pnickel. Note that φ is equivalent to θ since it is a one to

one function on this parameter space.

What is the evidence about φ in the observation X = 9? The evidence

about θ =
√

φ is given by
L1(θ) = c

and the evidence about φ is given by

L2(φ) = L1(
√

φ) = L1(θ) = c

Thus there is no evidence (or neutral evidence) about φ. The observation

X = 9 tells us nothing about θ and it tells us nothing about θ2 = φ (or any
other function of θ).
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What is the uncertainty about φ? Since φ = θ2 we have that the pdf for
φ is given by

fΦ(φ) = fΘ(θ(φ))
dθ

dφ
=


1

2
√

φ
if 0 ≤ φ ≤ 1

0 elsewhere

We now note that

P

(
Φ <

1

2

)
=
∫ 1

2

0

1

2
√

φ
dφ = φ

1
2

∣∣∣∣∣
1
2

0
=

1√
2

which is equal to the probability that θ is less than 1√
2
.

If ignorance about a probability θ is represented by the uniform (0,1) pdf

then we are not ignorant of the probability Φ = θ2 because its distribution is

not uniform.

◦ If the uniform (or any other) probability distribution represents igno-

rance, then we can be ignorant of only one function of θ.

◦ But ignorance (the absence of knowledge) about θ is equivalent to the

ignorance about φ = θ2 (or any other function of θ.

◦ It follows that a probability distribution represents a particular, specific

state of knowledge. It cannot and does not represent ignorance.
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A likelihood function, on the other hand, represents evidence. It does not
represent uncertainty.

To make this explicit L(θ) looks like a pdf. Since the scale is arbitrary

why not scale so that the area under the likelihood function is one, and treat

it as a pdf? (This is the integrated likelihood approach) Why not measure
the “evidence” for H0 : θ ≤ 1

2 by

∫ 1
2

o
L∗

1(θ)dθ =
1

2

where L∗
1(θ) is the rescaled version of L?

This approach would lead to inconsistencies i.e.

θ ≤ 1

2
⇐⇒ φ ≤ 1

4

But the rescaled likelihood for φ would have evidence for the hypothesis
H0 : φ ≤ 1

4 given by ∫ 1
4

o
L∗

2(θ)dθ =
1

4
and we have two equivalent hypotheses, the same data and yet we assign
different evidence to them.
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It follows that a likelihood function cannot be integrated. When you
change variables (reparametrize) in a likelihood function the new likelihood

function is obtained by simple substitution i.e.

L2(φ) = L(θ(φ))

There is no Jacobian as there is when dealing with pdfs. This is essential

to maintain consistency with the Law of Likelihood.

Note that the support (in X = 9) for θ = 1
2 vs θ = 1

4 is given by

L1
(

1
2

)
L1
(

1
4

) = 1

The support for the equivalent hypotheses φ1 = θ2
1 = 1

4 vs φ2 = θ2
2 = 1

16 is
given by

L2
(

1
4

)
L2
(

1
16

) = 1

which would be destroyed if

L2(φ) = L1(θ(φ))
dθ

dφ
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In this example we have seen that

no evidence for θ1 vs θ2 is equivalent to no evidence for φ1 vs φ2

but

equal pdfs at θ1 and θ2 is not equivalent to equal pdfs at φ1 and φ2

i.e.

fΘ(θ1) = fΘ(θ2)

and yet

fΦ(φ1) = fΘ(θ(φ1))

dθ(φ)

dφ

∣∣∣∣∣∣
φ=φ1

�= fΦ(φ2) = fΘ(θ(φ2))

dθ(φ)

dφ

∣∣∣∣∣∣
φ=φ2

Thus we have the following implications:

◦ The likelihood function represents evidence. It does represent uncer-

tainty.

◦ A pdf represents uncertainty. It does not represent evidence.
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It follows that no state of uncertainty (no pdf) represents ignorance (ab-
sence of evidence).

In summary:

• L(θ) represents evidence about θ and evidence about a function of θ,

φ(θ) is represented by

L2(φ) = L(θ(φ))

• f(θ) represents a state of knowledge or uncertainty about θ. The state

of knowledge about a function of θ, φ(θ) is represented by the pdf

g(φ) = f(θ(φ))

∣∣∣∣∣dθ

dφ

∣∣∣∣∣
Thus the curve

1√
2π

exp

{
−1

2
(x − θ)2

}

has a different meaning and different mathematical properties (as a function
of θ) depending on whether it is a pdf f(θ) or a likelihood function L(θ).

In the first case it represents uncertainty. In the second case it represents

evidence.
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12.2 Example 2

Suppose that X and Y are jointly distributed random variables. We are

interested in the value of Y in a realization (x, y). We can only observe the
value of X .

◦ The joint density fX,Y ( · , · ) represents the uncertainty about the pair

(X,Y )

◦ The marginal density

fY ( · ) =
∫

fX,Y (x, · )dµ(x)

represents the uncertainty about Y .

◦ After X is observed the conditional density of Y given X

fY |X( · |x) =
fX,Y (x, · )

fX(x)

represents the uncertainty about Y .

◦ After X = x is observed fX|Y (x|y) is the likelihood function. It repre-

sents the evidence in the observation X = x about y.
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As a specific example suppose that (X,Y ) is bivariate normal i.e. X

Y

 ∼ BVN

 µx

µy

  σ2
x σxy

σxy σ2
Y


where we assume that all parameters are known.

We are interested in the value of y of Y (realized but not observed). Before

making any observation, uncertainty about y is described by a N(µy, σ
2
y)

probability distribution i.e. by

fY (y) =
1√

2πσ2
y

exp

− 1

2σ2
y

(y − µy)
2


If we observe X = x what is our knowledge (or belief) in the state of

uncertainty about y? It is described by the conditional distribution of Y
given X = x i.e. by a normal distribution with mean equal to µy + σxy

σ2
x
(x−µx)

and variance equal to σ2
y(1−ρ2

xy) where ρxy is the correlation between X and

Y .
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The density is thus given by

fY |X(y|x) ==
1√

2πσ2
y(1 − ρ2

xy

exp

− 1

2σ2
y(1 − ρ2

xy)

y − µy − σxy

σ2
x

(x − µx)

2


The observation X = x is evidence about y. How do we represent and

interpret that evidence?

We use the likelihood function given by

L(y) ∝ fX|Y (x|y) = N

µx +
σxy

σ2
y

(y − µy) , σ2
x(1 − ρ2

xy)


Each value of y determines a probability distribution for X so the observation

X = x generates a likelihood function for y.
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This likelihood function is given by

L(y) ∝ exp

− 1

2σ2
x(1 − ρ2

xy)

x − µx − σxy

σ2
y

(y − µy)

2


= exp

− 1

2σ2
x(1 − ρ2

xy)

σxy

σ2
y

2  σ2
y

σxy
(x − µx) − (y − µy)

2


= exp

−
1

2σ2
y

(1−ρ2
xy)

ρ2
xy

σxy

σ2
y

2 y − µy −
σ2

y

σxy
(x − µx)

2


where we have assumed that σxy �= 0.

The ratio L(y1)/L(y2) measures the support or evidence for y1 vs y2 given

that X = x was observed.
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To see the difference between a likelihood function and a pdf in this case
consider the situation where σxy = 0. In this case

L(y) ∝ constant i.e.
L(y1)

L(y2)
= 1 for all y1, y2

so that there is no evidence in X = x about the value of y.

On the other hand, the conditional distribution of Y given X = x is in

this case

fY |X(y|x) =
1√

2πσ2
y

exp

− 1

2σ2
y

(y − µy)
2


and it represents the uncertainty about Y , but not the evidence in X = x

about y.

Evidence acts on uncertainty. Evidence is, literally, that which alters
the state of uncertainty.
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13 Summary

• The Law of Likelihood answers the question; “When do observations

provide evidence for one hypothesis vis a vis another”

• The Law of Likelihood is intuitive, consistent with probability theory and

using the likelihood function defines statistical evidence by the likelihood

ratio.

• Examples show that the customary methods of modern frequentist sta-

tistics do not measure evidence.

• Evidence is measured not by probabilities but by likelihood ratios.
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