Biostatistics 140.623 Laboratory Exercise 5 ## Biostatistics 140.623 Third Term, 2002-2003 ## **Laboratory Exercise 5** Below find times to "drug failure" (as determined by a treating psychiatrist) for 15 patients in a study comparing a new treatment for schizophrenia to a standard treatment (modification of SEP #11). | Trt group | Times (wks) | |-----------|--------------------------------| | Standard | 3, 5+, 6+, 9, 13+, 15+, 16+ | | New | 4, 6, 9, 9, 10+, 11+, 13+, 14+ | 1. Construct the Kaplan-Meier survival curves by treatment. Compare to the Stata log on the next page: | | Standard Treatment | | | | | Nev | Treatm | ent | | |----------------|--------------------|----------------|------------------------------------|----------------|----------------|--------------|----------------|--------------------------------------|----------------| | Event-
Time | Number
at | Events (y_i) | $\frac{\left(n_i-y_i\right)}{n_i}$ | $\hat{S}(t_i)$ | Event-
Time | Number
at | Events (y_i) | $\frac{\left(n_i - y_i\right)}{n_i}$ | $\hat{S}(t_i)$ | | (t_i) | Risk (n_i) | | · | | (t_i) | Risk (n_i) | | · | **Biostatistics 140.623** Laboratory Exercise 5 2 | | weeks | trt | id | failure | |-----|-------|-----|----|---------| | 1. | 3 | 0 | 1 | 1 | | 2. | 5 | 0 | 2 | 0 | | 3. | 6 | 0 | 3 | 0 | | 4. | 9 | 0 | 4 | 1 | | 5. | 13 | 0 | 5 | 0 | | 6. | 15 | 0 | 6 | 0 | | 7. | 16 | 0 | 7 | 0 | | 8. | 4 | 1 | 8 | 1 | | 9. | 6 | 1 | 9 | 1 | | 10. | 9 | 1 | 10 | 1 | | 11. | 9 | 1 | 11 | 1 | | 12. | 10 | 1 | 12 | 0 | | 13. | 11 | 1 | 13 | 0 | | 14. | 13 | 1 | 14 | 0 | | 15. | 14 | 1 | 15 | 0 | . stset weeks, failure(failure==1) id(id) id: id failure event: failure == 1 bbs. time interval: (weeks[_n-1], weeks] exit on or before: failure obs. time interval: 15 total obs. - 0 exclusions - ______ - 15 obs. remaining, representing - 15 subjects - 6 failures in single failure-per-subject data - 143 total analysis time at risk, at risk from t =0 earliest observed entry t = 0 last observed exit t = - . sts list if trt==0 failure _d: failure == 1 analysis time _t: weeks īd: id | Time | Beg.
Total | Fail | Net
Lost | Survivor
Function | Std.
Error | [95% Coi | nf. Int.] | |------------------------------|---------------------------------|----------------------------|----------------------------|--|--|--|--| | 3
5
6
9
13
15 | 7
6
5
4
3
2
1 | 1
0
0
1
0
0 | 0
1
1
0
1
1 | 0.8571
0.8571
0.8571
0.6429
0.6429
0.6429
0.6429 | 0.1323
0.1323
0.1323
0.2104
0.2104
0.2104
0.2104 | 0.3341
0.3341
0.3341
0.1515
0.1515
0.1515 | 0.9786
0.9786
0.9786
0.9017
0.9017
0.9017 | . sts list if trt==1 Biostatistics 140.623 Laboratory Exercise 5 | Time | Beg.
Total | Fail | Net
Lost | Survivor
Function | Std.
Error | [95% Con | ıf. Int.] | |----------|---------------|------|-------------|----------------------|------------------|------------------|------------------| | 4 | 8 | 1 | 0 | 0.8750 | 0.1169 | 0.3870 | 0.9814 | | 6
9 | 6 | 2 | 0
0 | 0.7500
0.5000 | 0.1531
0.1768 | 0.3148
0.1520 | 0.9309
0.7749 | | 10
11 | 4 | 0 | 1
1 | 0.5000
0.5000 | 0.1768
0.1768 | 0.1520
0.1520 | 0.7749 | | 13
14 | 2
1 | 0 | 1 | 0.5000
0.5000 | 0.1768
0.1768 | 0.1520
0.1520 | 0.7749 | 2. Based upon the plot of the Kaplan-Meier curves for each treatment group, which treatment, if any, should be preferred? 3. Calculate the log-rank statistic to test whether overall drug failure differs between the two treatments. Compute by hand the log-rank test statistic from the 2x2 tables based on each event time. $$\chi^{2}_{LR} = \frac{\left[\sum_{j} (a_{j} - E(a_{j}))\right]^{2}}{\sum_{j} V \hat{a} r(a_{j})} \text{ where } E(a_{j}) = \frac{d_{j} n_{ja}}{n_{j}} \text{ and } V \hat{a} r(a_{j}) = \frac{d_{j} (n_{j} - d_{j}) n_{ja} n_{jb}}{n_{j}^{2} (n_{j} - 1)}$$ 3 Biostatistics 140.623 Laboratory Exercise 5 | | Event | No Event | Total | |--------------|----------------|----------|-----------------| | Standard Trt | a_{i} | | n_{ja} | | New Trt | c _i | | n _{ib} | | Total | d _i | | n _i | | | Event | No Event | Total | |--------------|-------|----------|-------| | Standard Trt | | | | | New Trt | | | | | Total | | | | | | Event | No Event | Total | |--------------|-------|----------|-------| | Standard Trt | | | | | New Trt | | | | | Total | | | | | | Event | No Event | Total | |--------------|-------|----------|-------| | Standard Trt | | | | | New Trt | | | | | Total | | | | | | Event | No Event | Total | |--------------|-------|----------|-------| | Standard Trt | | | | | New Trt | | | | | Total | | | | Compare your calculation to that obtained by Stata below. Log-rank test for equality of survivor functions | trt | Events
observed | Events
expected | |-------|---------------------|--------------------| | 0 1 | 2
4 | 2.51
3.49 | | Total | 6 | 6.00 | | | chi2(1) = Pr>chi2 = | 0.20
0.6531 | 4