1 Introduction

The quantitative combination of information from a variety of studies or sources is an important
problem in many areas of scientific research. The main difficulty in integrating the results from
various studies stems from the sometimes diverse nature of the studies, both in terms of design
and methods employed. A common issue in combining evidence is that one may need to use
studies reporting different sets of variables to answer the same question.

In this paper we focus on the combination of studies reporting categorical variables when
different sets of variables are recorded. There are a number of ways in which data relevant to
the association between categorical variables might be arrayed in several contingency tables with
different dimensions. For example, this scenario occurs when we want to combine I x J x K x L
tables in which the joint distribution of the four categorical variables — X, X5, X5 and X, say —
is not reported for all studies, while the marginal distributions of either X, X5, X5 or X1, X5, X}
or every other subset of the four dimensions is always available.

We introduce a multinomial-logistic normal hierarchical model to combine contingency tables
with different dimensions. We suppose that at least one of the studies to be combined records
all the categorical variables. We model jointly the full set of categorical variables, and we treat
the variables that are not reported as missing dimensions of a common underlying contingency
table.

We apply our modeling strategy to a data base of air pollution, mortality and weather from
1987 to 1994 for six U.S. cities (Pittsburgh, Chicago, New-York, Miami, Philadelphia, Minneapo-
lis). In Pittsburgh and Chicago, days are cross-classified according to low, medium, and high
levels of non-accidental deaths (D), particulate matter (P M), ozone (Os,) and carbon monox-
ide (CO). For the remaining four cities, not all variables were recorded. More specifically, because
in New York, Philadelphia and Miami more than 80% of days are missing PM;, measurements,

we consider days cross-classified according to D, O3 and C'O only. In Minneapolis, there are no



monitors that record O3 levels and therefore days are cross-classified according to D, PM, and
CO only.

Despite the large literature on the health effects of air pollution, the joint effects of the
pollutants on health is currently inadequately understood. Epidemiological studies have shown
that current levels of air pollution causes excesses in mortality (American Thoracic Society, 1996a;
American Thoracic Society, 1996b; Kelsall et al., 1997; Samet et al., 1997). The associations have
been found using Poisson regressions and other statistical methods for time-series data (Liang
and Zeger, 1986). Pooled analyses for combining evidence about particulate matter-mortality
relationships across the 20 largest US cities have recently been developed by Dominici et al.
(1999). Modeling approaches are controversial in regard to model specification; which pollution
variables include in the analysis; which lags of pollutant values to use; and to how handle missing
air pollution variables. See Vedal (1997) for a critical review on ambient particles and health.

We aim at developing a novel statistical strategy to: 1) investigate the association between
air pollution and mortality in a flexible way that take into account the correlation structure among
the pollutants; 2) reconstruct the tables for the cities with a missing pollution variable; 3) make
prediction on the association between air pollution and mortality for a city other than the six
sampled; and 4) estimate for each city, which pollutant combination is the most harmful.

The outline of the paper is as follows. In section 2, we introduce a multinomial-logistic
normal hierarchical model. We show that the conditional distribution of the missing counts,
given the observed counts and the study-specific parameters, is available in closed form for any
missing variables pattern. We also propose a Bayesian approach to reconstruct the “incomplete”
contingency tables. In section 3, we give all the distributional theory necessary to implement
a Gibbs sampler to approximate the posterior distributions of the parameters of interests. We
illustrate how to obtain an accurate approximations of the Aitchison family that works well in

large dimensional spaces. In section 4, we apply our method to the air pollution and mortality



data set described earlier, and we address sensitivity to the choice of the prior distribution.

2 Methods

2.1 Multinomial-Logistic Normal hierarchical model

Consider S studies each reporting observations arranged in a contingency table with at most
Icells. Letn® = {n;i=1,...,1}, and ®#° = {n}; i =1,...,1} denote the vectors of the
counts and of the probabilities in the study s. We focus on studies where the sample size
N?® = Zf n; is fixed by design, and assume that the n° can be modeled by a multinomial
distribution with cell probabilities 7°, i.e. n® | w° ~ M (7® N*).

In Bayesian analyses of contingency tables, it is common to model the cell probabilities using
a conjugate Dirichlet distribution. Although a Dirichlet prior for the cell probabilities is the most
tractable choice for the multinomial data, it implies a negative correlation among any two cell
probabilities, thereby making it inappropriate to fit data for which some correlations might be
positive.

An alternative and richer class of distribution is the logistic normal family (LN), (Leonard,
1975; Aitchison and Shen, 1980; Nazaret, 1987; Knuiman and Speed, 1988; Goutis, 1993).
The LN distribution can model dependence more flexibly than the Dirichlet distribution. This
is because the LN distribution allows varying degrees of uncertainty in the prior cell means, and
can incorporate prior knowledge about the correlation structure between the log-ratios of the cell

probabilities. Its density function, denoted here by LN; 1(u,Y) is proportional to:

p(m | p,X) (H m) exp [—% 0-p)'=7 (0~ p) (1)

where 0 is the multivariate logit defined by log(7_;/7), 7 is defined on the (I —1) - dimensional

simplex, and w_; = (my,... ,mr_1). The parameters g and ¥ can be interpreted as the mean



vector and the covariance matrix for the multivariate logit 8. For p we specify a multivariate
normal distribution, and for 3 we specify an inverse Wishart distribution which is conjugate to
the likelihood LNy 1(u,Y). Several strategies for non-conjugate Bayesian estimation of the
covariance matrix in hierarchical models are addressed by Daniels (1997) .

In summary, our assumptions define the following hierarchical model:

n'|m ~ Min*N°) s=1,...,8
| w,X ~ LN (p,2) s=1,...,8
~ N[,I(m,M)

E ~ IW]_l(b, B)

where m, M ,b, B are fixed hyperparameters.
Under this model, we estimate study-specific parameters 7 for a particular table, as well as

population parameters p and Y which characterize the underlying table.

2.2 Missing dimensions

Consider now the situation in which some studies do not report or record the full set of cate-
gorical variables. We assume here that the data collection mechanism is ignorable, i.e. that 1)
the missingness mechanism does not depend on the missing values and that 2) the parameters
governing the distribution of the missing data mechanism and the parameters of the statistical
model are a priori independent. Under these assumptions, the posterior distribution of the model
parameters and of the missing data are determined by the specification of the statistical model
and the observed data (Rubin, 1976).

Within each study, we rearrange the full set of the variables recorded in at least one of the
data sources in the form of a contingency table, and we treat the categorical variables that are
not reported as missing dimensions of the table.

Bayesian computation in a missing-data problem is based on the joint posterior distribution



of parameters and missing data, given modeling assumptions and observed data. This data-
augmentation strategy permits us to create a common scale to synthesize this incomplete in-
formation without understating uncertainty. Simulation-based methods for handling uncertainty

about missing data in Bayesian analysis are discussed by Tanner (1991), and Gelman et al. (1995).

2.3 Conditional distribution of the missing counts

Suppose that study s reports the vector of “aggregated counts” ¢ = {t{,...,t;,... ;¢ } with
I° <1, andlet {A7,..., A3,..., A%} be the partition of the set of cell indexes {1,... ,4,... I}
induced from ¢°. Under this notation we can rewrite the “aggregated counts” as functions of
the “original counts”, i.e., t; = ZieA; ns for all 7 =1,...,I°. For any j such that i falls into
A2, let £ =77/ ZieA; 7§ be the normalized probability of the cell i, and let £°(j) = {& i €
Az}, m?(j) = {nj : i € Aj}. Using this formulation, ¢; and n°(j) represent the observed and the
missing part of the data for the study s. Because of the multinomial assumption at the first stage,
the conditional distribution of the missing counts, given the observed counts and the study-specific
parameters for study s, is n*(j) | t},€°(j) ~ Mas(§°(j), ), independently s=1,...,S.
(Bishop et al., 1975), where | A| denotes the number of elements in the set A. By this distribution,
we take into account the uncertainty arising from the missing variables. We treat the missing

counts n*(j) as the unknown parameters, and we simulate them conditionally on the parameters

and on the observed data.

3 Computational Methods

In this section, we describe how we sample from the posterior distribution of the parameters and
unreported observations using a combination of the Gibbs sampler (Gelfand and Smith, 1990)

and Metropolis-Hastings algorithm (Hastings, 1970). We partition the unknown parameters and



missing data into groups, and sample each group in turn, given all the others. The associated

full conditional distributions are given below:

n' () [15,8°()  ~ Mg (€°(),85), ind. j=1,...,I*, s=1,...,8
7 | né u,X ~An¥Y)s=1,...,8
plwl,. w58 ~ N ((2—1 9 08_1+M_1m) V,V)

-1
|, wu ~IW <b+Sa [B +ZSS:1 (N_eil) (“_BSJ)’] )

where V' = (SE’1 +M_1)_1. All the full conditionals density functions belong to known
classes of probability distributions. The density A;(n,Y), known as the Aitchison distribution
is a broad class of distributions which includes the Dirichlet and logistic normal distributions
as special cases. It was first introduced by Aitchison (1985a) in the analysis of compositional
data, and then it was proposed as a class of prior distribution for multinomial models (Aitchison,
1985b). Unfortunately, this family doesn’t have a closed-form expression for the normalizing
constant. Using a result of Aitchison (Aitchison, 1986) on approximating the A family, it is
possible to derive an efficient proposal distribution to be used in a Metropolis step. By definition,
the Aitchison density A;(m, ) is equal to the Dirichlet density D(n) times the logistic normal
density LN (p,). Aitchison (1986) shows that the closest logistic normal approximation to
D(n) in the sense of the Kullback-Liebler distance between the two densities is the one with
parameters p,, and 3, where [u,]; = ¥(n;) — ¥ (ng), [Snla = ¢ (n) +4¢' (ng), i=1,... ,1—1
and [X);; = ¥'(n1), i #j =1,...,1 — 1. Here ¢ and 1 are the digamma and trigamma
functions. Using this approach, the Aitchison distribution can be approximated by a LN density
with parameters * = (' + X D tand p* =3 x (' p + 21 w,).

In our experience, a Metropolis Algorithm with independent proposal equal to LN (u*,3*)
provides an efficient strategy for sampling all cell probabilities in contingency tables of relatively
high dimensions. The performance of this strategy in the context of the air pollution data analysis

is discussed in section 4. Alternative MCMC strategies for generating samples from the Aitchison



distribution are discussed by Forster and Skene (1994) .

Within each study, we can use sampled values from the MCMC to estimate the marginal densi-
ties of the missing counts, by averaging the final conditional densities from each sequence. We es-
timate p(n®(j) | data) by 1/M "M p(n*(j) | €™ (5), ) where € (j), ... , &

obtained by a variable transformation of the sequence of the sampled values 7> (5), ... , @™ ().

500 (7) can be

4 Mortality-Air pollution association in six U.S. cities

In this section, we apply our modeling strategy to a data base of air pollution, mortality and
weather for six US locations from 1987 to 1994. We investigate the association between pollution
and mortality by looking at the cross-classifications of days according to L=low, M=medium, and
H=high levels of number of deaths for respiratory diseases among elderly D, of particulate matter
PMi,, of ozone O3, and of carbon monoxide C'O. The scientific focus is the dependence of
mortality on the three pollutants, that is [D | P Mg, O3, CO|.

Several epidemiological studies (Lipfert and Wyzga, 1993; Dockery et al., 1993; Lipfert, 1994;
Li and Roth, 1995) have made the point that to investigate the mortality-pollutants association,
it is appropriate to adjust for confounding factors such as weather, long term trends, and other
variables. To do so, in our analysis we first calculate the predicted mortality counts by fitting a
generalized additive model (Hastie and Tibshirani, 1990) with log link and Poisson error within
each city, we adjust for smooth functions of temperature, dew point, time, and day of week. We
then classify days according to low, medium, and high levels of the standardized residual number
of deaths respect to such predictive values. Dominici et al. (1999) give details about the choices
of functions used here for the adjustment.

For mortality, O3, and CO, the cutoff points are chosen differently within each city, based
on exploratory analyses. For P M, we locate the cutoff points at 20 and 50 pug/m?. 50 pg/m?

corresponds to the annual average of PMj, in the review of the national ambient air quality



standard (Environmental Protection Agency (EPA), 1996). In this way, the “high’ level of PMj,
correspond to values exceeding the standard.

If little is known about the third-stage distribution, diffuse but proper priors can be used.
We implemented this by selecting a multivariate normal prior for p and an Inverse Wishart prior
for 32, and by specifying hyperparameters so that the variation of the prior density in a plausible
range of the parameters is small. We choose m having all its elements equal to zero, M having
all the diagonal elements equal to 1, and all the off-diagonal elements equal to .5. This prior
specification leads: 1) to the same marginal prior distributions for the cells probabilities 7;'s; 2)
same joint prior distributions of all the pairs 7;, 7;'s; and 3) invariance with respect to the choice
of the reference cell 7r;. In addition, we choose b and B such that E[X] = 2M, leading to
95 % HPD for the logits u wide enough to let the data drive the posterior results. This prior
specification strategy can also be used in other problems as a sensible default choice for the
multinomial-LN model introduced here, and it doesn’t depend on the number of cells.

We run a chain of length 25,000. The first 1,000 draw were discarded for burn-in. A subchain
made of every 5-th of the sampled values was used for making inferences. The autocorrelation
of the posterior samples of the probabilities are roughly 0.1 at lag 1 and 0.06 at lag 2. The
acceptance probabilities for the Metropolis Algorithm with an independent proposal equal to the
LN(p*,X*) averaged between .4 and .7 depending on the city.

We start by looking at the mortality-P M, association in New-York, conditionally on O3=H
and CO=H. The reconstructed four-way table in New-York is represented in Table 1 (at the
top). Inside each cell, we plot the histogram of the marginal density for the corresponding count.
The solid line is placed at the posterior median (number at the top). The sums by column of
the posterior distributions are equal to the column margins 71,92,87. They correspond to the
right column of table at the bottom; the row margins are found by taking the sums by row of

the posterior medians of the three distributions. Table 1 shows a trend in the mortality-P M,



association. At high mortality levels, the posterior medians of the missing counts increase from
9 to 42 as the P Miy-level increase.

Attractive feature of our model is that it easily allows for making predictions for a city other
than the six sampled. To draw from the posterior predictive distribution of the new counts, say
n*, we first draw the parameters from their joint posterior distribution, including the vector of
the cells probabilities of the “future” city, say @w*, and then we simulate n* from the multinomial
distribution Mg (7*, N*), where N* is fixed by design, and chosen here to be equal to 2800
days.

We now focus on investigating which combination of pollutant levels is more likely to be
associated with a high number of deaths for a “future” city. We rank pollutant level combination
depending on the probability of leading to the highest mortality. We estimate these probabilities
with the empirical frequencies in the MCMC. Table 2 shows the predictive posterior probabilities
that each pollutant mix is the most harmful within each city. Generally, the most harmful com-
binations corresponds to high levels of PMiq. In particular, the two most harmful combinations
for PMyy, O3 and CO are HHL and HLM with probabilities 0.18 and 0.17 in Chicago, HLM
and H LL with probabilities 0.17 and 0,13 in Pittsburgh, and H LM and H H H with probabilities
0.12 and 0.10 in New-York. In the other cities the probabilities smoothly decrease from 0.09 to
0.01 providing no clear indication on which pollutant mix is the most harmful.

We now turn to assessing how robust our posterior inferences are with respect to prior spec-
ifications. We can address this question using a sensitivity analysis. Our strategy is based on
selecting three alternative scenarios and one outcome of primary interest, and evaluating the out-
come for each scenario; here the outcome of interest is the predictive probability that, for O3 = H
and CO = H, the number of days with high mortality and high P M is greater than the number
of days with high mortality and low PM;,. Below is a detailed description of the three scenarios:

1) as in the default, except that the logit means are smaller, with all the elements of m equal to



—0.69; 2) as in the default, except that the logit variances, are larger, with the diagonal elements
of M equal to 3; 3) as in the default, except that the logit correlations are set to zero, by setting
all the off-diagonal elements of M equal to zero. The posterior predictive probabilities defined
below under the default prior, scenario 1, scenario 2, and scenario 3 are respectively 0.8,0.8,0.9,

and 0.9 revealing that they are quite stable under the different prior specifications.

5 Discussion

In this paper we describe a hierarchical multinomial-LN model for combining studies reporting
categorical variables, when not all of the variables are observed in every study. The strategy
considers flexible models for the cell probabilities and allows us to incorporate prior information
on the correlations among the logit of the cells probabilities; it provides for practical implementa-
tion of MCMC algorithm for sampling from the posterior distributions; it maintains a consistent
interpretation of study-specific parameters across studies; and it addresses the uncertainty arising
from the missing dimensions. Our model also provides a novel approach for Bayesian reconstruc-
tion of contingency tables. In addition, as with all MCMC approaches, the posterior inferences
of any measure of association or interaction — within studies, and across studies — are obtained
easily by a transformation on the sampled values.

A strength of our approach is that we are considering a saturated model that includes all
variables and interactions without making any assumption of independence among the categorical
variables. To assure identifiability of high order interactions, and to properly impute the missing
counts for the incomplete tables, the data must provide at least one complete contingency table.

We have proposed an original modeling strategy for investigating the association between air
pollution and mortality for six Eastern U.S. cities. Our approach can accommodate non-linearities
in the exposure-response relationship, can identify change points in pollutant concentrations that

cause a significant adverse health impact, and can lend itself easily to the inclusion of interactions
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of every order between the pollutants. A drawback is the loss of information resulting from the
discretization. In regards to what conclusions can be drawn from this analysis: 1) Tables 1 indicate
that — for high levels of O3 and C'O — there is a trend in the effects of P M, e.g. number of cases
with of high number of deaths increases as the levels of PM;q increases; 3) Table 2, indicates
that the most harmful combinations corresponds to high levels of P Mg, confirming prior findings
that levels of PM;, higher than the NAAQS standard are harmful.

The advantages of borrowing information from other studies is in this application illustrated
how within the incomplete cities the model has provided estimates of all cell probabilities, without
any observations being classified with respect to all the variables.

The approach described here relies crucially on the assumption that the missing dimensions
are missing at random. For example for the Minneapolis data, this assumption implies that the
probability of having a missing ozone level might depends on the other pollutants levels, but
not on the missing ozone measurement itself. Generally this is a plausible assumption. The
assumption of data missing at random would be violated if the measurements were censored, i.e.
they were recorded using monitors that do not report pollutants levels below or above a fixed
limit. Inference for non ignorable designs in the context of our model has not been addressed.
One solution approach is based on the inclusion of additional stages in the hierarchical model,
describing the missingness models.

Finally, in the analysis of the contingency tables, dimensionality increases results in a tremen-
dous increase in the number of possible associations patterns and higher-order interactions. We
provide a general strategy for combining high dimensional contingency tables with missing dimen-
sions, that does not require any assumptions about high order interactions, and can be suitably

implemented independently of the dimensionality of the contingency tables.
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Table 1: At the top, marginal posterior distributions for the missing counts in New-York conditionally
at O3=H and CO=H. The solid line is placed at the rounded posterior median (number at the top).
The sums by column of the posterior distributions are equal to the column margins 71,92,87. They
correspond to the right column of table at the bottom; the row margins are found by taking the sums
by row of the posterior means of the three distributions. For clarity of exposition the ranges of the

histograms are truncated at 100.
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Table 2: Posterior probability that each pollutant combination is the most harmful
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