
Lecture 3: Linear methods for classification

Rafael A. Irizarry and Hector Corrada Bravo

February, 2010

Today we describe four specific algorithms useful for classification problems:
linear regression, linear discriminant analysis, logistic regression and separating
hyperplanes.

Introduction

We now revisit the classification problem and concentrate on linear methods.

Recall that our setting is that we observe for subject i predictors (covariates) xi,
and qualitative outcomes (or classes) gi, which can takes values from a discrete
set G.

Since our prediction Ĝ(x) will always take values in the discrete set G, we
can always divide the input space into a collection of regions taking the same
predicted values.

The question is: what is the best sub-division of this space?

We saw previously that the boundaries can be smooth or rough depending on
the prediction function.

For an important class of procedures, these decision boundaries are linear. This
is what we will refer to as linear methods for classification. We will see that
these can be quite flexible (much more than linear regression).

Suppose we have K classes labeled 1, . . . ,K and a single predictior X. We can
define a 0−1 indicator for each class k, and perform regression for each of these.
We would end up with a regression function fk(x) = β̂0k + β̂1kx for each class
k.

The decision boundary between class k and l is simply the set for which f̂k(x) =
f̂l(x), i.e., {x : β̂0k + β̂1kx = β̂0l + β̂1lx} which is a hyperplane.

Since the same holds for any pair of classes, the division of the input space is
piecewise linear.

1

2

This regression approach is one of a number of methods that model a discrimi-
nant function δk(x) for each class, and classifies X to the class with the largest
value of the discriminant function.

Methods that model the posterior probability Pr(G = k|X = x) are also in this
class. If this is a linear function of x then we say it is linear. Furthermore, if
it is a monotone transform of a linear function of x, we will sometimes say it is
linear. An example is logistic regression. More on that later.

Both decision boundaries shown in the next Figure are linear: one obtained
with linear regression, the other using quadratic terms.

Linear regression of an indicator matrix

Each response is coded as a vector of 0–1 entries. If G has K classes, then Yk
for k = 1, . . . ,K is such that Yk = 1, if G = k and 0 otherwise.

These are collected in a vector Y = (Y1, . . . , Yk) and the N training vectors are
collected in an N ×K matrix, we denote by Y.

For example, if we have K = 5 classes

1 0 0 0 0 1
2 0 0 0 1 0
3 → 0 0 1 0 0
4 0 1 0 0 0
5 1 0 0 0 0

On the left is the original data, and on the right, the coded data.

To fit with regression to each class simulatneously, we can simply use the same
matrix multiplication trick

Ŷ = X(X′X)−1X′Y

3

Notice the matrix

B̂ = (X′X)−1X′Y

has the coefficients for each regression in the columns. So, for any point x we
can get the prediction by

• compute the fitted output f̂(x) = [(1, x)B̂], a K vector

• identify the largest component, and classify accordingly

Ĝ(x) = arg max
k∈G

f̂k(x)

What is the rationale for this approach?

Recall the expected prediction error we discussed last time. What do we do for
qualitative data? Because the elements of G are not numbers, taking expecta-
tions doesn’t mean anything. However, we can define a loss function. Say we
have three elements G = {A,B,C}, we can define the loss function like this:

L(Ĝ,G) =

{
0 if Ĝ = G

1 if Ĝ 6= G

This can be thought of as a distance matrix with 0s in the diagonals and 1s
everywhere else.

Notice that in some applications this loss function may not be appropriate. For
instance, saying someone has cancer when they don’t is not as bad as saying
they don’t have cancer when they actually do. For now, let’s stick to 1 and 0.

We can now write

EPE = EX

K∑
k=1

L(Gk, Ĝ(X))Pr(G = k|X)

The minimizer of EPE is known as the Bayes classifier, or Bayes decision rule.

Ĝ(X) = max
g∈G

Pr(g|X = x)

So, why don’t we use it? Typically we don’t know Pr(g|X = x), just like in the
regression setting we don’t know f(x) = E[Y |X = x].

Note: If we simulate data like we do below, then we can compute the Bayes
decision rule since we know Pr(g|X = x).

4

Note: If we use the encoding 0/1 encoding above for the two-class case, then
we see the relationship between the Bayes classifier and the regression function
since Pr(G = g|X = x) = E(Y |X = x) in this case.

The real issue here is, how good is the linear approximation here? Alternatively,
are the f̂k(x) good estimates of Pr(G = k|X = x).

We know they are not great since we know f̂(x) can be greater than 1 or less
than 0. However, as we have discussed, this may not matter if we get good
predictions.

A more conventional way of fitting this model is by defining target tk as the
vector with a 1 in the kth entry and 0 otherwise, such that yi = tk if gi = k.
Then the above approach is equivalent to minimizing

min
B

N∑
i=1

‖yi − {(1, xi)B}′‖2.

A new observation is classified by computing f̂(x) and choosing the closes target

arg min
k
‖f̂(x)− tk‖2

Because of the rigid nature of linear regression, a problem arises for linear
regression with K >= 3. The next figure shows an extreme situation. Notice
that decision boundaries can be formed by eye to perfectly discriminate the
three classes. However, the decision boundaries from linear regression do not
do well.

Why does linear regression miss the classification in this case? Notice that the
best direction to separate these data is a line going through the centroids of the
data. Notice there is no information in the projection orthogonal to this one.

5

If we then regress Y on the transformed X, then there is barely any information
about the second class. This is seen clearly in the left panel of the next Figure.

However, by making the regression function a bit more flexible, we can do a
bit better. One way to do this is to use quadratic terms (there are 3, what are
they?) In the last two Figures, this linear regression version including quadratic
terms does much better.

However, if we increase the number of classes to K = 4 we would then need to
start adding the cubic terms and now are dealing with lots of variables.

A data set we may be working on later will be vowel sound data. The next
Figure contains a plot of the first 2 coordinates and the classes.

Linear Discriminant Analysis

Decision theory tells us that we should know the class posteriors Pr(G|X = x)
for optimal classification.

Suppose fk(x) is the class conditional density of X in class G = k, and let πk
be the prior probability of class k, with

∑K
k=1 πk = 1. A simple application of

Bayes’ theorem gives us

Pr(G = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

Notice that havign quantities fk(x) is almost equivalent to having the Pr(G =
k|X = x) provided by Bayes’ rule.

Suppose we model each class conditional density as multivariate Gaussian:

fk(x) =
1

(2π)p/2|Σk
−1‖1/2

exp{−1
2

(x− µk)′Σk
−1(x− µk).

6

7

The next Figure shows regions that contain 95% of the data for three bivariate
distributions with different means, but the same covariance structure. The
covariance structure make these ellipses rather than circles.

The lines are the Bayes decision rules.

Linear Discriminant Analysis (LDA) arises when we assume that the covariance
is the same for all classes. In this case, we see that discriminant functions are
simply

δk(x) = x′Σ−1µk −
1
2
µkΣ−1µk + log πk

Notice: if we assume πk = 1/K then the last term is not needed. In any case,
notice this is a linear function of x!.

In practice, we do not have the means µk or the covariance structure Σ. The
strategy is to use training data to estimate these.

In the next figure we see some outcomes in a three class simulation. The dis-
tributions used to create them are those shown on the left panel. The Bayes
decision rules are shown dashed and the estimated LDA discrimant functions
are shown as solid lines.

To estimate the parameters we simply:

• π̂k = Nk

N , where Nk is the observed number of subjects in class k

• µ̂k = 1
Nk

∑
gi=k

xi

• Σ̂ = 1
N−K

∑K
k=1

∑
gi=k

(xi − µ̂k)(xi − µ̂k)′

Technical note: for two classes LDA is almost the same as regression, the coeffi-
cients of each are proportional, but unless N1 = N2 the intercepts are different.

8

If we assume that each class has its own correlation structure, the discriminant
functions are no longer linear. Instead, we get

δk(x) = −1
2

log |Σk|−1 − 1
2

(x− µk)′Σ−1
k (x− µk)

The decision boundary is now described with a quadratic function. This is
therefore called quadratic discriminant analysis (QDA). Next we plot LDA and
QDA decision boundaries for the same data.

Note: when the number of covariates grow, the number of things to estimate in
the covariance matrix gets very large. One needs to be careful.

Computations for LDA and QDA

Suppose we compute the eigen-decomposition of each Σ̂k = UkDkU′k, where
Uk is a p× p matrix with orthonormal columns and Dk is a diagonal matrix of
positive eigenvalues dkl. The ingredients for δk(x) are:

• (x− µ̂k)′Σ−1
k (x− µ̂k) = [U′k(x− µ̂k)′]D−1

k [(x− µ̂k)Uk]

9

• log |Σk|−1 =
∑
l log dkl

Notice this is much easier to compute since Dk is a diagonal matrix!

Given this, we can now compute and interpret the LDA classifier as follows:

• Sphere the data with respect to the common covariance estimate Σ̂ to
get X∗ = D1/2U′X. The common covariance estimate of X∗ is now the
identity matrix!

• Classify to the closes class centroid (µks) in the transformed space, cor-
recting for the effect of the class prior probabilities πk.

Section 4.3.3 of Hastie, Tibshirani and Friedman, has a nice discussion of how
LDA is related to the solution of the problem: find the linear combination
Z = a′X such that the between-class variance is maximized relative to the within-
class variance.

Logistic regression

Assume

log
Pr(G = 1|X = x)
Pr(G = K|X = x)

= β10 + β′1x

log
Pr(G = 2|X = x)
Pr(G = K|X = x)

= β20 + β′2x

...

log
Pr(G = K − 1|X = x)
Pr(G = K|X = x)

= β(K−1)0 + β′K−1x.

Notice g(p) = log p
1−p is the logistic link and is g : (0, 1)→ R.

A simple calculation gives

Pr(G = k|X = x) =
exp(βk0 + β′kx)

1 +
∑K−1
l=1 exp(βl0 + β′lx)

, k = 1, . . . ,K − 1,

P r(G = K|X = x) =
1

1 +
∑K−1
l=1 exp(βl0 + β′lx)

When K = 2 this has a very simple form (only one set of covariates) and is a
very popular model used in biostatistical applications.

With this probability model we can now write the log-likelihood

10

l(θ) =
N∑
i=1

log pgi
(xi; θ)

where pgi
(xi; θ) = Pr(G = k|X = x; θ). In the two-class case, use yi = 1 for

gi = 1 and yi = 0 for gi = 2; let p1(xi; θ) = p(xi; θ), so p2(xi; θ) = 1 − p(xi; θ).
The log-likelihood is then

l(β) =
N∑
i=1

{yi log p(xi;β) + (1− yi) log(1− p(xi;β))}

=
N∑
i=1

{
yiβ
′xi − log(1 + eβ

′xi)
}

Our estimate of β will be the maximum likelihood estimate (MLE), obtained
by maximizing the log-likelihood with respect to β.

We do this by setting the partial derivatives of the log-likelihood to zero:

∂l(β)
∂β

=
N∑
i=1

xi(yi − p(xi;β)) = 0

This results in a nonlinear system of p + 1 equations. These are also called
the score equations. Notice that for the intercept (x0 = 1), its score equation
(
∑N
i=1 yi =

∑
i=1 p(xi;β) states that for β to be an MLE solution, the expected

number of observations in class 1, must match the observed number of observa-
tions.

To solve the set of score equations, we can use the Newton-Raphson method,
which starting from an initial guess βold iteratively updates the estimate using:

βnew ← βold −
(
∂2l(β)
∂β∂β′

)−1
∂l(β)
∂β

,

with derivatives evaluated at βold. The matrix of second derivatives (Hessian
matrix) is given by

∂2l(β)
∂β∂β′

= −
N∑
i=1

xix
′
ip(xi;β)(1− p(xi;β)).

By writing the gradient and Hessian in matrix notation, we can see a neat by-
product of using the Newton method in this case. The gradient and Hessian are
given by

11

∂l(β)
∂β

= X′(y − p)

∂2l(β)
∂β∂β′

= −X′WX

where vector y is the vector of yi values, X the N × (p+ 1) matrix of xi values,
p the vector of fitted probabilities and W a N × N diagonal matrix with ith
entry p(xi;β)(1− p(xi;β)).

With this we can rewrite the Newton update as

βnew = βold + (X′XW)−1X′(y − p)

= (X′XW)−1X′W(Xβold + W−1(y − p))

Introducing notation z = Xβold + W−1(y − p), we can see that the Newton
update is the solution to a weighted least squares problem

βnew ← arg min
β

(z−Xβ)′W(z−Xβ)

This connection to least squares also gives us the following:

• The weighted residual-sum-of-squares is the Pearson chi-square statistic

N∑
i=1

(yi − p̂i)2

p̂i(1− p̂i)

a quadratic approximation to the deviance

• Asymptotic likelihood theory says that if the model is correct then β̂
converges to the true β.

• A CLT then shows that the distribution of β̂ converges toN(β, (X′WX)−1)

Logistic regression versus LDA

Notice logistic regression provides a similar solution to LDA.

Using Bayes’ theory we can show that

log
Pr(G = k|X = x)
Pr(G = K|X = x)

= log
πk
πK
− 1

2
(µk+µK)′Σ−1(µk−µK)+x′Σ−1(µk−µK)

12

which can be re-written as

log
Pr(G = k|X = x)
Pr(G = K|X = x)

= α0k + α′kx.

For logistic regression, we explicitly write

log
Pr(G = k|X = x)
Pr(G = K|X = x)

= β0k + β′kx.

The difference comes from how the parameters are estimated. The estimate of
the αs assumes that the conditional distribution of x is multivariate Gaussian.

Thus, the main difference is that LDA imposes a distributional assumption
on X which, if it holds, yields more efficient estimates. Logistic regression is
conditional methodology. We condition on X and do not specify a distribution
for it. This presents a big advantage in cases where we know X can not be
normal, e.g. categorical variables.

However, many times in practice both methods perform similarly. Even in
extreme cases with categorical variables.

Separating hyperplanes

So far we have seen methods that use a probabilistic argument to estimate
parameters. For example, in LDA we assume the class conditional density is
Gaussian and find maximum likelihood estimates. In this section, we look at
methods that make no probabilistic arguments, but instead rely entirely on
geometric arguments.

In all of the linear classification we have seen, we are looking for discriminant
functions that are linear with respect to the covariates X1, . . . , Xp.

In p-dimensional space Rp these are described by vectors β. The decision bound-
ary is thus

L = {x : β′x = 0}.

Technical note: The literature on separating hyperplanes traditionally uses w
(they call it a weight vector) in place of β.

Notice that this boundary partitions the input space into two sets on each side
of the line. If we restrict estimates to those for which β′β = ‖β‖2 = 1, then the
signed distance of any point x to the decision boundary L is β′x. With this we
can easily describe the two partitions as

13

14

L+ = {x : β′x > 0},
L− = {x : β′x < 0}

Intuitively, the β we want as an estimate is one that separates the training data
as perfectly as possible. If we code our classes as y = −1 if g = 1 and y = +1
if g = 2, we can describe our intuitive requirement for estimate β as:

yi(x′β) > 0, i = 1, . . . , N

Rosenblatt’s algorithm

Rosenblatt’s algorithm is one way of finding a vector β that satisfies the sepa-
ration requirement as much as possible. The goal is to penalize β by how far
into the wrong side misclassified points are:

D(β) = −
∑
i∈M

yix
′β

where M is the set points misclassified (on the wrong side of the line) by β.

Thus, we estimate β by minimizing D. Assuming M is constant, the gradient
of D is

∂D(β)
∂β

= −
∑
i∈M

yixi

Rosenblatt’s algorithm uses stochastic gradient descent :

1. Initialize β

2. Cycle through training points i, if it is misclassified, update β as

β ← β + ρyixi

3. Stop when converged (or get tired of waiting)

Parameter ρ is used to control how much we update β in each step.

There are a few problems with this algorithm:

• When the data are separable, i.e. there exists a β that separates the train-
ing points perfectly, then there are an infinite number of βs that also
separate the data perfectly

15

• Although this algorithm will converge in a finite number of steps if the
training data is separable, the number of finite steps can be very large

• When the training data is not separable, the algorithm will not converge.

In a future lecture we will discuss Support Vector Machines (SVMs) which are
based on addressing these problems.

For example, when the data are separable, SVMs will choose among the infinite
number of βs that separate the data perfectly, a single optimal β that maximizes
the distance between the decision boundary and the closest point in each class.
Why is this a good idea?

16

