
Lecture 6: Methods for high-dimensional

problems

Hector Corrada Bravo and Rafael A. Irizarry

March, 2010

In this Section we will discuss methods where data lies on high-dimensional
spaces. In particular, we will be interested in problems where there are relatively
few data points with which to estimate predictive functions. This is referred to
as N << p settings.

The curse of dimensionality

We have discussed the bias-variance tradeoff, and how flexible classifiers can,
when model selection is properly applied, give us much better predictive perfor-
mence. However, why would we ever consider a high-bias method such as linear
regression? Is properly tuned KNN always better?

Consider the case where we have many covariates. We want to use kernel
smoother. These methods can be generalized to cases where we have more than
one or two predictors. Basically, we need to define distance and look for small
multi-dimensional “balls” around the target points. With many covariate this
becomes difficult. To understand why we need some mathematical intuition.
Let’s try our best to see why.

Imagine we have equally spaced data and that each covariate is in [0, 1]. We
want to something like kNN with a local focus that uses 10% of the data in the
local fitting. If we have p covariates and we are forming p-dimensional cubes,
then each side of the cube must have size l determined by l×l×· · ·×l = lp = .10.
If the number of covariates is p=10, then l = .11/10 = .8. So it really isn’t local!
If we reduce the percent of data we consider to 1%, l = 0.63. Still not very local.
If we keep reducing the size of the neighborhoods we will end up with very small
number of data points in each average and thus with very large variance. This
is known as the curse of dimensionality.

Because of this so-called curse, it is not always possible to use KNN and kernel
smoothers. But other methods, like CART, thrive on multidimensional data.

1

SVD, PCA and ridge regression

First, let’s revisit the geometry of linear regression as this will help us understand
some of the issues in high-dimensional problems.

Consider data matrix X. A useful tool to visualize and predict is to look at the
principal components of the variables in X.

Assume the X are centered, i.e. X1
¯

= 0
¯
, the sample covariance matrix is given

by X′X/N and X′X can be written as

X′X = VD2V.

Technical note: this is the eigen decomposition of X′X.

The vjs are called the eigen-vectors of the sample covariance matrix and also
the principal component directions of X. Figure 1 shows a scatterplot of X and
the directions as red (solid) and blue (dashed) lines.

The first principal component z1 = Xv1 has the property that it has the largest
sample covariance among all normalized (coefficients squared add up to 1) linear
combinations of X. The sample variance is d2

1/N .

The derived variable z1 = Xv1 = u1d1 is called the first principal component.
Similarly zj = Xv1 is called the jth principal component. XV = UD is a
matrix with principal components in the columns. Figure 2 shows these.

A related decomposition is the singular value decomposition (SVD) of the cen-
tered input matrix X. This decomposition is extremely useful in many statistical
analysis methods. We will see it again later.

The SVD of an N × p matrix X is

X = UDV′

with U and V N × p and p × p orthogonal matrices and D a p × p diagonal
matrix with entries d1 ≥ d2 ≥ . . . dp ≥ 0 called the singular values of X.

Technical Note: U is an orthogonal basis for the space defined by the columns
of X and V is an orthogonal basis for the space defined by the rows of X.

We can show that the least squares predictor for linear regression is

ŷ = Xβ̂ ls = X(X′X)−1X′y

= UU′y

Technical Note: U′y are the coordinates of y with respect to the orthogonal
basis U

Recall the ridge regression problem, written in Lagrangian form:

2

Figure 1: Plot of two predictors, X2 versus X1, and the principal component
directions

3

Figure 2: Plot of two principal components of X.

4

min
β

N∑
i=1

(yi − β0 − β′xi) + λ

p∑
j=1

β2
j

.

The ridge solution can be expressed as

Xβ̂ridge = X(X′X + λI)−1X′y

= UD(D2 + λI)−1DU′y

=
p∑
j=1

uj
dj

dj + λ
u′jy

Notice that because λ > 0, dj

dj+λ
≤ 1. Like linear regression, ridge regression

computes the coordinates of y with respect to the orthogonal basis U. It then
shrinks these coordinates by the factors dj

dj+λ
. This means that a greater amount

of shrinkage occurs when λ is big and for smaller djs.

We now see that ridge regression shrinks coefficients related to principal compo-
nents with small variance. This makes sense because we have less information
about them.

In the case of Figure 1, we can think of it as weight and height, we are saying
predict with the sum and ignore the difference. In this case, the sum give much
more info than the difference.

Ridge and Lasso comparison

Suppose data matrix X is orthonormal, i.e. the predictors are not correlated
and in, loosely, in the same scale. Then from the above we can see what best
subset regression, ridge regression and the lasso do to the least-squares estimate
β̂j (recall that in this case the least squares estimate are “decoupled” and are
simple projections of the outcome onto each predictor).

Ridge regression shrinks the estimate as we saw above: β̂ridge
j = β̂j

1+λ . The
best subset (of size M) includes predictor j if it’s least squares estimate β̂j is
one of the M largest in absolute value. That is, the best subset estimate is
β̂j · I{rank(|β̂j |) ≤M}.

Recall the lasso in Lagrangian form:

min
β

N∑
i=1

(yi − β0 − x′iβ)2 + λ

p∑
j=1

|βj |

The lasso does a soft version of best subset: β̂lasso = sign(β̂j)(β̂j − λ)+, where
(x)+ is the positive part of x. Whereas best subset does hard thresholding, the

5

lasso does soft thresholding. Figure 3 illustrates these transformations on the
least square estimate.

Figure 3: Transformations of the least squares estimate

LDA

Let’s recall the computations required for LDA and QDA. Suppose we compute
the eigen-decomposition of each Σ̂k = UkD2

kU
′
k, where Uk is a p × p matrix

with orthonormal columns and D2
k is a diagonal matrix of positive eigenvalues

dkl. The ingredients for δk(x) are:

• (x− µ̂k)′Σ−1
k (x− µ̂k) = [U′k(x− µ̂k)′]D−2

k [(x− µ̂k)Uk]

• log |Σk|−1 =
∑
l log dkl

Notice this is much easier to compute since D2
k is a diagonal matrix!

Given this, we can now compute and interpret the LDA classifier as follows:

• Sphere the data with respect to the common covariance estimate Σ̂ to get
X∗ = DU′X. The common covariance estimate of X∗ is now the identity
matrix!

• Classify to the closest class centroid (µks) in the transformed space, cor-
recting for the effect of the class prior probabilities πk.

Section 4.3.3 of Hastie, Tibshirani and Friedman, has a nice discussion of how
LDA is related to the solution of the problem: find the linear combination
Z = a′X such that the between-class variance is maximized relative to the within-
class variance. How is this related to the first principal component?

6

Diagonal LDA and shrunken centroids

In high-dimensional problems, we might not have enough data to compute all
parameters of the covariance matrix needed for LDA. A nice, but powerful, form
of regularization is to estimate the covariance matrix assuming that predictors
are independent, i.e., the covariance matrix is diagonal. How can we interpret
this in terms of principal components?

The diagonal-covariance LDA discriminant score function for class k is

δk(x∗) = −
p∑
j=1

(x∗j − x̄kj)2

s2j
+ 2 log πk.

Here x∗ = (x∗1, x
∗
2, . . . , x

∗
p)
′ is a vector corresponding to a new observation, sj is

the pooled within-class estimate of the standard-deviation of predictor j, and
x̄kj =

∑
gi=k

xij/Nk is the mean of the Nk values for predictor j in class k.
We call x̄k = (x̄k1, x̄k2, . . . , x̄kp)′ the centroid of class k. The discriminant score
is then the standardized distance between observation x∗ and class centroid x̄k
adjusted by the class prior probability πk.

The classification rule is then

Ĝ(x∗) = arg max
k=1,...,K

δk(x∗).

The diagonal LDA classifier is equivalent to nearest centroid classifier after
appropriate standarization (and shift from the class priors).

To help with interpretation, we want to reduce the number of predictors used in
the classifier. For instance, diagonal LDA uses all predictors when computing
the standarized distance to each centroid. Preferrably, we want to remove pre-
dictors that do not contribute to the class predictions. Intuitively, these would
be predictors for which the class means (or centroids) are close to each other,
so that points are equi-distant to each of the class centroids.

One way of filtering predictors in this case is to use the two-sample t-statistic
for each predictor:

tj =
x̄2j − x̄1j

sj

The tj-statistic gives a measure of how significant is the difference in the class
means for predictor j. If the tj values were normally distributed, then one may
consider values with |tj | > 2 significant. Figure4 shows predictors for a gene
expression dataset comparing lung cancer vs. normal lung tissues. They are
ordered by the t-statistic from left to right.

Similarily, consider the following statistic:

7

Figure 4: Top ranking predictors by t-statistic in a gene expression dataset

dkj =
x̄kj − x̄j
mksj

,

with mk = 1/Nk − 1/N . Notice that with constant within-class variance σ2,
the variance of the contrast x̄kj − x̄j is m2

kσ
2. This gives a measure of how

significant is the difference between the class k mean for predictor j, and the
overall mean for predictor j. In the two-class setting, how are the two statistics
related?

The nearest shrunken centroid method uses a version of this statistic to regu-
larize the nearest centroid predictor by shrinking the class means towards the
overall mean for each predictor. Let

dkj =
x̄kj − x̄j

mk(sj + s0)
,

with s0 a small positive constant, typically the median of the sj values, used to
guard against dkj values resulting from predictors with values near zero (this is
common in gene expression data). Suppose you threshold these values:

d′kj = dkj · I{|dkj | ≥ ∆}.

Then d′kj = dkj if the standarized class mean is “significantly” different from the
overall mean, and zero otherwise. Now let’s shrink the class means x̄kj towards
the overall mean as

x̄kj = x̄j +mk(sj + s0)d′kj .

8

What happens to class centroids with no significant difference with the overall
centroid? Thus, unless a predictor has a significant difference to the overall
mean for at least one class, it is useless for classification. How is this related to
filtering predictors using the t-statistic?

Now, the thresholding we used is called hard thresholding, and it has some prob-
lems. Besides, selection, we want to use shrinkage to pool data when estimating
p-dimensional centroids. Therefore, shrinking towards the overall mean (is es-
timated with all N points) is a good idea. So to do both selection and to pool
data to get estimates we can use soft thresholding.

d′kj = sign(dkj)(|dkj −∆|)+,

The class centroids are shrunken towards the overall centroid as before. ∆ is a
parameter to be chosen (cross-validatated prediction error can be used). Recall
how the lasso does soft thresholding of the least squares estimate in regression.

Quadratic regularization for linear classifiers

Regularized Discriminant Analysis

Suppose we want to use LDA but not require that the variance is diagonal. If
p >> N then the non-diagonal p-byp estimate Σ̂ is of rank K and therefore
Σ̂
−1

is undefined. That means we can’t compute the discriminant direction
Σ̂
−1

(µ̂2 − µ̂1). The regularization approach in this case is to shrink Σ̂ towards
its diagonal:

Σ̂(γ) = γΣ̂ + (1− γ)diag(Σ̂),

with γ a regularization parameter to be chosen. This form of regularization is
similar to what ridge regression does, can you see why? This can be combined
with shrunken centroids, but distances are now “warped”.

Regularized logistic regression

Consider the multinomial logistic regression model

Pr(G = k|X = x) =
exp{β0k + x′βk}∑K
l=1 exp{β0l + x′βl}

which has K coefficient vectors of log-odds parameters. We regularize by max-
imizing the penalized log-likelihood

9

max
{β0k,βk}K

1

 N∑
i=1

logPr(gi|xi)− λ
K∑
k=1

p∑
j=1

β2
kj

 .
Like ridge regression, the intercepts are not penalized.

Computational considerations for quadratic penalties

Recall the SVD of data matrix X:

X = UDV′ (1)
= RV′ (2)

Remember what R is? Recall the ridge estimate:

β̂ridge = (X′X + λI)−1X′y (3)

= V(R′R + λI)−1R′y (4)

Thus β̂ridge = Vθ̂, where θ̂ is the ridge estimate of the N observations (ri, yi),
with ri the ith row of matrix R. Therefore, we can get the ridge estimate by
reduce the data matrix from X to R and work with this smaller matrix. This
is particularly handy when using cross-validation since you can use R for all
values of regularization parameter λ.

L1 regularization for linear classifiers

Similarly to the above, we can penalize the multinomial logistic regression model
with a lasso penalty:

max
{β0k,βk}K

1

 N∑
i=1

logPr(gi|xi)− λ
K∑
k=1

p∑
j=1

|βkj |

 .
The glmnet package provides very fast code to fit these types of models.

10

