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Introduction

A common situation in applied sciences is that one has an independent variable
or outcome Y and one or more dependent variables or covariates X1, . . . , Xp.
One usually observes these variables for multiple “subjects”.

Note: We use upper case to denote a random variable. To denote actual numbers
we use lower case. One way to think about it: Y has not happened yet, and
when it does, we see Y = y.

One may be interested in various things: What effects do the covariates have
on the outcome? How well can we describe these effects? Can we predict the
outcome using the covariates?, etc. . .

Linear Regression

Linear regression is the most common approach for describing the relation be-
tween predictors (or covariates) and outcome. Here we will see how regression
relates to prediction.

Let’s start with a simple example. Let’s say we have a random sample of US
males and we record their heights (X) and weights (Y ).

Say we pick a random subject. How would you predict their weight?

What if I told you their height? Would your strategy for predicting change?

We can show mathematically that for a particular definition of “best”, described
below, the average is the best predictor of a value picked from that population.
However, if we have information about a related variable, then the conditional
average is best.

One can think of the conditional average as the average weights for all men of
a particular height.
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In the case of weight and height, the data actually look bivariate normal (football
shaped) and one can show that the best predictor (the conditional average) of
weight given height is

E[Y |X = x] = µY + ρ
σY

σX
(x− µX)

with µX = E[X] (average height), µY = E[Y ] (average weight), and where ρ is
the correlation coefficient of height and weight.

If we obtain a random sample of the data, then each of the above parameters
is substituted by the sample estimates and we get a familiar expression:

Ŷ (x) = Ȳ + r
SDY

SDX
(x− X̄).

Technical note: Because in practice it is useful to describe distributions of pop-
ulations with continuous distributions we will start using the word expectation
or the phrase expected value instead of average. We use the notation E[·]. If
you think of integrals as sums, then you can think of expectations as averages.

Notice that equation (1.1) can be written in this, more familiar, notation:

4



E[Y |X = x] = β0 + β1x.

Because the conditional distribution of Y given X is normal, then we can write
the even more familiar version:

Y = β0 + β1X + ε,

with ε a mean 0, normally distributed random variable that is independent of
X. This notation is popular in many fields because β1 has a nice interpretation
and its typical (least squares) estimate has nice properties.

When more than one predictor exists, it is quite common to extend this linear
regression model to the multiple linear regression model:

Y = β0 + β1X1 + · · ·+ βpXp + ε

with ε as unbiased (0 mean) error independent of the Xj as before.

A drawback of these models is that they are quite restrictive. Linearity and ad-
ditivity are two very strong assumptions. This may have practical consequences.
For example, by assuming linearity one may never notice that a covariate has
an effect that increases and then decreases. We will see various examples of this
in class.

Linear regression is popular mainly because of the interpretability of the pa-
rameters. Howerver, the interpretation only makes sense if the model is an
appropriate approximation of the natural data generating process. It is likely
that the linear regression model from a randomly selected publication will do a
terrible job at predicting results in data where the model was not trained on.
Prediction is not really given much importance in many scientific fields, e.g. Epi-
demiology and Social Sciences. In other fields, e.g. Surveillance, Finance and
web-commerce is everything. Notice that in the fields where prediction is im-
portant, linear regression is not as popular.

Prediction

Methods for prediction can be divided into two general groups: continuous and
discrete outcomes.

When the data is discrete we will refer to it as classification. Other terms are
discriminant analysis, pattern recognition.

When the data is continuous we will refer to it as regression. Other terms are
smoothing and curve estimation.
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These seem very different but they have some in common. In this class, we will
talk about the commonalities, but in general, we will discuss these two cases
separately.

The main common characteristic in both cases is that we observe predictors
X1, . . . , Xp and we want to predict the outcome Y .

Note: I will useX to denote the vector of all predictors. So, Xi are the predictors
for the i-th subject and can include age, gender, ethnicity, etc.

Note: Given a prediction method we will use f(x) to the denote the prediction
we get if the predictors are X = x.

Q: What are examples of prediction problems?

So, what does it mean to predict well? Let’s look at the continuous data case
first.

If I have a prediction f(X) based on predictors X, how do I define a “good pre-
diction” mathematically. A common way of defining closeness is with Euclidean
distance:

L{Y, f(X)} = {Y − f(X)}2.

We sometime call this the loss function.

Notice that because both Y and f(X) are random variables, so is (2.2). Mini-
mizing a random variable is meaningless because it is not a number. A common
thing to do is minimize over the average loss, or the expected prediction
error:

EXEY |X [{Y − f(X)}2|X].

For a given x, the expected loss is minimized by the conditional expectation:

f(x) = E[Y |X = x],

so it all comes down to getting a good estimate of E[Y |X = x]. We usually call
f(x) the regression function.

Note: For discrete problems we usually want a plausible prediction. Note f(x)
is typically a continuous number and not a class. We can take an extra step
and define a prediction rule. For example, for binary outcomes, we can say: if
f(x) > 0.5, I predict a 1, otherwise, predict 0. However, it is useful to change
the loss function. More on this later.

Notice that if the regression model holds, then
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f(X) = E[Y |X1 = x1, . . . , Xp = xp] = β0 +
p∑

j=1

βjxj .

For Gaussian models, the solution is the same for least squares and MLE. How-
ever, many times, it is hard to believe that the linear regresion model holds. A
simple example comes from AIDS research.

Technical note: It should be noted that for some designed experiments it does
not make sense to assume the X are random variables. In this case, we usually
assume we have “design points” x1i, . . . , xpi, i = 1, . . . , n and non-IID observa-
tions Y1, . . . , Yn for each design point. In most cases, the theory for both cases
is very similar if not the same. These are called random design model and fixed
design model respectively.
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Other settings

A major focus of this class is prediction, or supervised learning. However, we
will also see a few other learning settings. For instance, suppose we only observe
vectors of random variables, X1, . . . , Xp but no outcome Y ? In this case we still
want to find some informative structure (e.g. clustering). This setting is called
unsupervised learning. We can include probability density estimation under this
setting.

We will also spend a little time looking at settings where along with outcomes
Y we don’t observe vectors of covariates, but rather other, harder to represent
structures (e.g. strings, graphs). For example, suppose you want to classify
proteins from their amminoacid sequence.

Finally, we might take a look at settings where we do not receive training data
(pairs of covariate vectors X and outcomes Y ) at once, or in a batch. One
such setting is called online learning, where training data is obtained one point
at a time, and we want to minimize expected prediction error over the
entire sequence of training data. Think of google building a model of your
web-searching profile.
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