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The next three lectures will cover basic methods for regression and classification.
We’ll see linear methods and tree-based for both in some detail, and will see
nearest-neighbor methods without details for comparison. Regardless of lecture
title, they are pretty much one long sequence on basics seen through linear
methods and treee-based methods.

Terminology and notation

We will be mixing the terminology of statistics and computer science. For
example, we will sometimes call Y and X the outcome/predictors, sometimes
observed/covariates, and even input/output.

We will denote predictors with X and outcomes with Y (quantitative) and G
(qualitative). Notice G are not numbers, so we cannot add or multiply them.

Height and weight are quantitative measurements. These are sometimes called
continuous measurements.

Gender is a qualitative measurement. They are also called categorical or discrete.
This is a particularly simple example because there are only two values. With
two values we sometimes call it binary. We will use G to denote the set of
possible values. For gender it would be G = {Male, Female}. A special case
of qualitative variables are ordered qualitative where one can impose an order.
With men/women this can’t be done, but with, say, G = {low,medium, high}
it can.

For both types of variables, it makes sense to use the inputs to predict the
output. Statisticians call the prediction task regression when the outcome is
quantitative and classification when we predict qualitative outcomes. We will
see that these have a lot in common and that they can be viewed as a task of
function approximation (as with scatter plots).

Notice that inputs also vary in measurement type.
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Technical notation

We will follow the notation of Hastie, Tibshirani and Friedman. Observed values
will be denoted in lower case. So xi means the ith observation of the random
variable X. Matrices are represented with bold face upper case. For example
X will represent all observed predictors. N will usually mean the number of
observations, or length of Y . i will be used to denote which observation and j
to denote which covariate or predictor. Vectors will not be bold, for example
xi may mean all predictors for subject i, unles it is the vector of a particular
predictor xj . All vectors are assumed to be column vectors, so the i-th row of
X will be x′i, i.e., the transpose of xi.

A regression problem

Recall the example data from AIDS research mentioned previously. Here we
are plotting the data along with a curve from which data could have plausibly
been generated. In fact, this curve was estimated from the data by a regression
technique called loess, which we will discuss in a future lecture.

For now, let’s consider this curve as truth and simulate CD4 counts from it. We
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will use this simulated data to compare two simple but commonly used methods
to predict Y (CD4 counts) from X (Time), and discuss some of the issues that
will arise throughout this course. In particular, what is overfitting, and what is
the bias-variance tradeoff.

Linear regression

Probably the most used method in statistics. In this case, we predict the output
Y via the model

Y = β0 + β1X.

However, we do not know what β0 or β1 are.

We use the training data to estimate them. We can also say we train the model
on the data to get numeric coefficients. We will use the hat to denote the
estimates: β̂0 and β̂1.

We will start using β to denote the vector (β0, β1)′. A statistician would call
these the parameters of the model.
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The most common way to estimates βs is by least squares. In this case, we
choose the β that minimizes

RSS(β) =
N∑
i=1

{yi − (β0 + β1Xi)}2.

If you know linear algebra and calculus you can show that β̂ = (X′X)−1X ′y.

Notice we can predict Y for any X:

Ŷ = β̂0 + β̂1X

The next Figure shows the prediction graphically. However, the data seems to
suggest we could do better by considering more flexible models.

K-nearest neighbor

Nearest neighbor methods use the points closest in predictor space to x to obtain
an estimate of Y . For the K-nearest neighbor method (KNN) we define
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Ŷ =
1
k

∑
xk∈Nk(x)

yk.

Here Nk(x) contains the k-nearest points to x. Notice, as for linear regression,
we can predict Y for any X.

In the next Figure we see the results of KNN using the 15 nearest neighbors.
This estimate looks better than the linear model.

We do better with KNN than with linear regression. However, we have to be
careful about overfitting.

Roughly speaking, overfitting is when you mold an algorithm to work very well
(sometimes perfect) on a particular data set forgetting that it is the outcome
of a random process and our trained algorithm may not do as well in other
instances.

Next, we see what happens when we use KNN with k=1. In this case we make
no mistakes in prediction, but do we really believe we can do well in general
with this estimate?
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It turns out we have been hiding a test data set. Now we can see which of these
trained algorithms performs best on an independent test set generated by the
same stochastic process.

We can see how good our predictions are using RSS again.

Method Train set Test set
Linear 99.70 93.58
K=15 67.41 75.32
K=1 0.00 149.10

Notice RSS is worse in test set than in the training set for the KNN methods.
Especially for KNN=1. The spikes we had in the estimate to predict the training
data perfectly no longer helps.

So, how do we choose k? We will study various ways. First, let’s talk about the
bias/variance trade-off.

Smaller k give more flexible estimates, but too much flexibility can result in
over-fitting and thus estimates with more variance. Larger k will give more
stable estimates but may not be flexible enough. Not being flexible is related
to being biased.
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The next figure shows the RSS in the test and training sets for KNN with
varying k. Notice that for small k we are clearly overfitting.

An illustration of the bias-variance tradeoff

The next figure illustrates the bias/variance tradeoff. Here we plot histograms
of f(1) − f̂(1), where f̂(1) is the estimate for each method trained on 1000
simulations.

We can see that the prediction from the linear model is consistently inaccurate.
That is, it is biased, but stable (little variance). For k = 1 we get the opposite,
there is a lot of variability, but once in a while it is very accurate (unbiased).
For k = 15 we get a decent tradeoff of the two.

In this case we have simulated data as follows: for a given x

Y = f(x) + ε

where f(x) is the “true” curve we are using and ε is normal with mean zero and
some variance σ2.
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We have been measuring how good our predictions are by using RSS. Recall
from the last lecture that we sometimes refer to this as a loss function. Recall
also that for this loss function, if we want to minimize the expected prediction
error for a given x:

EY |X=x[{Y − f(X)}2|X = x],

we get the conditional expectation f(x) = E[Y |X = x]. With some algebra we
see that the RSS for this optimal selection is σ2 in our setting. That is, we can’t
do better than this, on average, with any other predictor.

Notice that KNN is an intuitive estimator of this optimal predictor. We do not
know the function E[Y |X = x] looks like so we estimate it with the y’s of nearby
x’s. The larger k is, the less precise my estimate might be since the radius of
x’s I use for is larger.

Predictions are not always perfect.

Linear methods for regression

Linear predictors

Before computers became fast, linear regression was almost the only way of
attacking certain prediction problems. To see why, consider a model such as
this

Y = β0 + β1e
β2X + ε

finding the βs that minimize, for example, least squares is not straight forward.
A grid search would require many computations because we are minimizing over
a 3-dimensional space.

Technical note: For minimizing least squares in this case the Newton-Raphson
algorithm would work rather well. But we still don’t get an answer in closed
form.

As mentioned, the least squares solution to the linear regression model:

Y = β0 +
p∑
j=1

βjXj + ε

has a closed form linear solution. In Linear Algebra notation we write: β̂ =
(X′X)−1X′y, with β = (β0, β1, . . . , βj)′. The important point here is that for
any set of predictors x the prediction can be written as a linear combination
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of the observed data Ŷ =
∑N
i=1 wi(x)yi. The wi(x) are determined by the Xjs

and do not depend on y.

What is the prediction Ŷ for x.

When we say linear regression we do not necessarily mean that we model the
Y as an actual line. All we mean is that the expected value of Y is a linear
combination of predictors. For example, this is a linear model:

Y = β0 + β1X + β2X
2 + β3X

3 + ε

To see this, simply define X1 = X, X2 = X2 and X3 = X3.

For the model we saw above, we cannot do the same becauseX1 = eβ2X contains
a parameter.

If the linear regression model holds, then the least squares solution has various
nice properties. For example, if the εs are normally distributed, then β̂ is the
maximum likelihood estimate and is normally distributed as well. Estimating
the variance components is simple: (X′X)−1σ2 with σ2 the error variance var(ε).
σ2 is usually well estimated using the residual sum of squares.

If the εs are independent and identically distributed (IID), then β̂ is the linear
unbiased estimate with the smallest variance. This is called the Gauss-Markov
theorem.

Technical note: Linear regression also has a nice geometrical interpretation.
The prediction is the orthogonal projection of the vector defined by the data
to the hyper-plane defined by the regression model. We also see that the least
squares estimates can be obtained by using the Gram-Schmidt algorithm, which
orthogonalizes the covariates and then uses simple projections. This algorithm
also helps us understand the QR decomposition. For more details see Hastie,
Tibshirani and Friedman.

Testing hypotheses

The fact that we can get variance estimates from regression, permits us to test
simple hypotheses. For example,

β̂j

se(β̂j)
∼ tN−p−1

under the assumption of normality for ε. When ε is not normal but IID, then
the above is asymptotically normal.

If we want to test significance of various coefficients, we can generalize to the
F-test:

(RSS0 −RSS1)/(p1 − p0)
RSS1/(N − p1 − 1)
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RSS1 is for the least squares fit of the bigger model with p1 +1 parameters, and
RSS0 is the same for the smaller model with p0 + 1 parameters, having p1 − p0

parameters constrained to be 0.

Under normality assumptions this statistic (the F-statistic) follows a Fp1−p0,N−p0−p1
distribution.

Similarly, we can form confidence intervals (or balls). For the case of multiple
coefficients, we can use the fact that

(β̂ − β)′X′X(β̂ − β)
σ̂2

follows a χ2
p+1 distribution.

Gram-Schmidt

One can show that the regression coefficient for the j-th predictor is the simple
regression coefficient of y on this predictor adjusted for all others (obtained
using Gram-Schmidt).

For the simple regression problem (with no intercept)

Y = Xβ + ε

the least square estimate is

β̂ =
∑N
i=1 xiyi∑N
i=1 x

2
i

Can you see for the constant model?

Mathematicians write the above solution as

β̂ =
〈x, y〉
〈x, x〉

We will call this operation regressing y on x (it’s the projection of y onto the
space spanned by x).

The residual can the be written as

r = y − βx

What was the solution for β1 to Y = β0 + β1X + ε?

We can write the result as
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β̂1 =
〈x− x̄1,y〉

〈x− x̄1,x− x̄1〉

Regression by Successive Orthogonalization

1. Initialize z0 = x0 = 1

2. For j = 1, 2, . . . , p

Regress xj on z0, z1, . . . , zj−1 to produce coefficients γlj = 〈zl,xj〉
〈zl,zl〉 , l = 0, . . . , j−

1 and residual vector zj = xj −
∑j−1
k=0 γkjzk

3. Regress y on the residual zp to give estimate β̂p

Notice that the Gram-Schmidt algorithm permits us to estimate the βj in a
multivariate regression problem by successively regressing (orthogonalizing) xj
to produce residual vectors that form an orthogonal basis for the column space
of X. The least squares estimate is found by regressing y on the final residuals,
i.e. projecting on this orthogonal basis.

Notice that if all the x’s are correlated then each predictor affects the coefficients
of the others.

The interpretation is that the coefficient of a predictor β̂j is the regression of y
on xj after xj has been adjusted for all other predictors.
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