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Preamble

Before we begin this section, we introduce subset selection for linear regression
models.

Subset Selection

Although the least squares estimate is the linear unbiased estimate with mini-
mum variance, it is possible that a biased estimate will give us a better mean
squared error.

Consider a case where the true model is

Y = β0 + β1X1 + β2X2 + ε

and that X1 and X2 are almost perfectly correlated (statisticians say X1 and
X2 are co-linear). What happens if we leave X2 out?

Then the model is very well approximated by

Y = β0 + (β1 + β2)X1 + ε

and we may get a good estimate of Y estimating 2 parameters instead of 3.
Our estimate will be a bit biased but we may lower our variance considerably
creating an estimate with smaller expected prediciton error than the least
squares estimate.

We won’t be able to interpret the estimated parameter, but our prediction may
be good.

In subset selection regression we select a number of covariates to include in the
model. Then we look at all possible combinations of covariates and pick the one
with the smallest RSS.

Consider the prostate cancer data set presented in the HTF book, available in
the ElemStatLearn R package (Figure 1). Notice that residual sum of squares
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Figure 1: Prediction error (RSS) for all possible subset models for training and
test sets for prostate cancer data. The solid lines denote the minimums.
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consistently drops for the training set as larger models are used, whereas smaller
models tend to do better for test set residual sum of squares.

For a given number of predictors, how do we find the model that gives the
smallest RSS? There are algorithms that do this, but you do not really want
to use this. We will describe penalty and shrinking methods that work better
later on.

How do we choose the number of covariates to include? That’s a bit harder,
and the subject of this Section.

Overview

Each of the methods we have described so far can be parameterized in a way
corresponding to model complexity. For instance, k-nearest neighbors is param-
eterized by k; subset selection in regression is parameterized by the number of
predictors in the model; trees can be parameterized by the size penalty param-
eter α.

In classical statistical theory we usually assume that the underlying model gen-
erating the data is in the family of models we are considering. In this case bias
is not an issue and efficiency (low variance) is all that matters. Much of the
theory in classical statistics is geared toward finding efficient estimators.

In this course we try not make the above assumptions. Furthermore, for the
techniques we have shown (and will show) asymptotic and finite sample bias and
variance estimates are not always easy (many times impossible) to find in closed
form. In this Chapter we discuss in-sample approximation, and resampling
methods that are commonly used to get estimates of prediction error.

Remember that the main difficulty with model assessment and selection is that
the observed prediction error for training data becomes smaller with model
complexity regardless of the prediction ability on the test data. See figure 1
again.

In this Chapter we will look at choosing the complexity parameter with the
hope of improving expected prediction error. For all methods we can think of
an estimate f̂(x) (for example, in regression for k-nn it is the average outcome
in the neighborhood of size k around x, in linear regression it is given by the
linear function β0 + β′x, and in regression trees by the average outcome in the
partition where x falls). Furthermore, for all of these methods we will index
the estimate with parameter λ, (e.g. f̂λ) and assume from the context what λ
refers to (k in k-nn, tree size in tree methods, subset size in linear regression).

Model Selection and Assessment

Typically there are two parts to solving a prediction problem: model selection
and model assessment. In model selection we estimate the performance of var-
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ious competing models with the hope of choosing the best one. Having chosen
the final model, we assess the model by estimating the prediction error on new
data.

Remember that the best model is defined as the one with the lowest EPE:

EPE(λ) = E[L{Y − f̂λ(X)}]

Where Y and X are drawn at random from the population and the expectation
averages anything that is random.

Typical loss function are squared error, L(Y, f̂(X)) = (Y −f̂(X))2, and absolute
error, L(Y, f̂(X)) = |Y − f̂(X)|.

We define training error as the observed average loss

1
N

N∑
i=1

L{yi, f̂(xi)}

With squared error loss this is the residual sum of squares divided by N, which
we will call the Average Squared Error (ASE).

For categorical data, using square loss doesn’t make much sense. Typical loss
functions are 0–1 loss, L(G, Ĝ(X)) = 0 if G = Ĝ(X), 0 otherwise, and the log-
likelihood: L(G, Ĝ(X)) = −2

∑K
k=1 I(G = k) log p̂k(X) = −2 log p̂G(X). The

latter is also called cross-entropy. Notice the –2 is used so that for normal error
it is becomes equivalent to the loss function.

The training errors are obtained as in the continuous example. For 0–1 loss it
is simple the percentage of times we are wrong in the training data. For the
likelihood loss we simply use the observed log-likelihood times –2/N:

− 2
N

N∑
i=1

log p̂gi(xi)

As we have discussed various times, the training error underestimates the test
error or EPE. In today’s lectures we describe ways of getting better estimates
of EPE.

Split Samples

When the amount of data and computation time permits it, there is no method
better than data splitting. The idea is simple: Divide the data in three parts:
train, validation, and test. We use the train and validation data to select the
best model and the test data to assess the chosen model.

The recipe is the following:

4



1. In the first part, model selection, the validation model is treated as the
test data. We train all competing model on the train data and define
the best model as the one that predicts best in the validation set. We
could re-split the train/validation data, do this many times, and select
the method that, on average, best performs.

2. Because we chose the best model among many competitors, the observed
performance will be a bit biased. Therefore, to appropriately assess per-
formance on independent data we look at the performance on the test
set.

3. Finally, we can re-split everything many times and obtain average results
from steps 1) and 2).

There is no obvious choice on how to split the data. It depends on the signal
to noise ratio which we, of course, do not know. A common choice is 1/2, 1/4,
and 1/4.

There are two common problems:

1. When the amount of data is limited, the results from fitting a model
to 1/2 the data can be substantially different to fitting to all the data.
An extreme example: We have 12 data points and want to consider a
regression model with 7 parameters.

2. Model fitting might have high computational requirements.

In this Chapter we describe some in-sample methods for model selection as well
as less biased split sample methods.

Bias-Variance trade-off

We want to estimate f and assume our data comes from the following model:

Yi = f(Xi) + εi

with the ε IID, independent of X, and variance σ2.

Suppose we are using k-nearest neighbors and want to decide what is the best
neighborhood size λ (we’ve been calling this k, but in this section we use λ to
index complexity parameters).

To quantify “best”, we say it is the λ that minimizes the expected prediction
error:

EPE(λ) = E[{Y − f̂λ(X)}2] (1)
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Where, as mentioned, Y and X are drawn at random from the population and
the expectation averages anything that is random.

The above is better understood in the following way. Let f̂λ be the estimate
obtained with the training data. Now, imagine that we get a completely inde-
pendent data point. Let’s simplify by assuming X = x∗ is fixed. So what we
are looking to minimize is simply

E[{Y ∗ − f̂λ(x∗)}2]

This can be broken up into the following pieces.

Err(x0) = σ2 + {E[f̂λ(x∗)]− f(x∗)}2 + var[f̂λ(x0)] (2)

= Irreducible error + Bias2 + Variance (3)

The first term is due to unpredictable measurement error. There is nothing we
can do about it. The second term is bias of the estimator (squared) and the
last term is the estimator’s variance.

Notice that the above calculation can be done because the Y ∗i s are independent
of the estimates f̂λ(xi)s, the same can’t be said about the Yis.

In general, we want to pick a λ that performs well for all x. If instead of just
one new point we obtain N then we would have

1
N

N∑
i=1

E[Y ∗i − f̂λ(x∗i )] = σ2 + {E[f̂λ(x0)]− f(x0)}2 + var[f̂λ]

If we instead assume X is random we can use expectations instead of averages
and we are back to our original equation (1).

For k-nearest neighbors, these expressions have a simple form

Err(x0) = E[(Y − f̂λ)2|X = x0] (4)

= σ2 +

[
f(x0)− 1

k

k∑
l=1

f(xl)

]2

+
σ2

k
(5)

If k is small, then the estimated function can best adapt to the underlying true
function. On the other hand, as k increases, bias can increase, but there is a
reduction in variance.

For subset selection in linear regression f̂λ(x0) = β′x where the parameter vector
β̂ with λ = p components is fit with least-squares, we have
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Err(x0) = E[(Y − f̂λ)2|X = x0] (6)

σ2 +
[
f(x0)− Ef̂(xi)

]2
+ ‖h(x0)‖2σ2 (7)

Here h(x0) = X(X′X)−1x0, the N -vector of linear weights that produces the fit
f̂λ = x′0(X′X)−1X′y, and hence var[f̂λ(x0)] = ‖h(x0)‖2σ2. While this variance
changes with x0, its average is (p/N)σ2.

For N new points, we would have

1
N

N∑
i=1

Err(xi) = σ2 +
1
N

N∑
i=1

[f(xi)− Ef̂(xi)]2 +
p

N
σ2

Here model complexity is directly related to the number of parameters p.

Sidebar: Ridge Regression

By only considering some of the covariates we were able to improve our predic-
tion error. However, the choice of one covariate over an another can sometimes
be a very arbitrary decision as including either works well but both together do
no work as well (this happens often with correlated predictors).

Notice that in subset-selection for linear regression, we are estimating models of
the form f̂λ(x) = x′β where β is constrained to have exactly (say λ) non-zero
βs. The selection problem is, having chosen λ, select which p− λ coefficients β
will be exactly zero.

Thus, we can think of the subset selection procedure as one that shrinks some
of the coefficients to 0. But what if we do this in a smoother way? Instead of
either keeping it (multiply by 1) or not (multiply by 0), let’s permit smoother
shrinkage (multiply by a number between 0 and 1).

For ridge regression instead of minimizing least squares we penalize for having
too many β that are big by considering the following minimization criteria:

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

β2
j .

We will denote the parameter vector that minimizes this β̂ridge. Here complex-
ity parameter λ is a penalty. We saw a similar penalty parameter in tree-based
methods.

One can demonstrate mathematically that minimizing the above expression is
equivalent to minimizing the regular RSS
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Figure 2: Prediction error (RSS) for ridge regression with varying penalty pa-
rameters
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N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 subject to
p∑
j=1

β2
j ≤ s

where s is inversely proportional to lambda.

Notice that when λ is 0, we get the least squares estimate. However, as λ
gets bigger, over fitting gets more expensive as larger values of β penalize the
criterion more. The smallest penalty occurs when all the βs are 0. This gives
us an estimate with small variance but likely large bias.

Although this problems looks complicated it turns out the resulting predictor
is a linear estimate!

One can show that the solution is (in linear algebra notation)

β̂ridge = (X′X + λI)−1X′y

As with subset-selection, we can write the estimated f̂λ = Sλy, using again a
hat matrix. Later on we’ll start calling these smoother matrices.

In Figure we see the RSS in a test and training set for the prostate cancer data
for various values of λ.

As expected the RSS in the training set is best when λ = 0 (no shrinkage,
nothing stopping us from over-fitting). However, for the training set the smallest
RSS occurs for λ ≈ 5

The least squares estimates are given below. Notice age has a significant pro-
tective effect. This is at odds with out intuition.

Est SEt Pr(>|t|)
(Intercept) -0.10 1.42 0.9434
lcavol 0.59 0.10 9.58e-07 ***
lweight 0.73 0.28 0.0160 *
age -0.03 0.01 0.0257 *
lbph 0.18 0.07 0.0244 *
svi 0.50 0.32 0.1329
lcp -0.16 0.10 0.1299
gleason 0.07 0.17 0.6983
pgg45 0.01 0.004 0.1199

Ridge regression shrinks the regression coefficients toward 0. Notice what hap-
pens to these coefficients as λ grows. Notice in particular what happens to
age.
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Figure 3: Estimated coefficients using ridge regression with various penalty
parameters.
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SVD, PCA and ridge regression

The singular value decomposition (SVD) of the centered input matrix X gives
us insight into the nature of ridge regression.

This decomposition is extremely useful in many statistical analysis methods.
We will see it again later.

The SVD of an N × p matrix X is

X = UDV′

with U and V N × p and p × p orthogonal matrices and D a p × p diagonal
matrix with entries d1 ≥ d2 ≥ . . . dp ≥ 0 called the singular values of X.

Technical Note: U is an orthogonal basis for the space defined by the columns
of X and V is an orthogonal basis for the space defined by the rows of X.

We can show that the least squares predictor for linear regression is

ŷ = Xβ̂ ls = X(X′X)−1X′y

= UU′y

Technical Note: U′y are the coordinates of y with respect to the orthogonal
basis U

The ridge solution can be expressed as

Xβ̂ridge = X(X′X + λI)−1X′y

= UD(D2 + λI)−1DU′y

=
p∑
j=1

uj
dj

dj + λ
u′jy

Notice that because λ > 0, dj

dj+λ ≤ 1. Like linear regression, ridge regression
computes the coordinates of y with respect to the orthogonal basis U. It then
shrinks these coordinates by the factors dj

dj+λ . This means that a greater amount
of shrinkage occurs when λ is big and for smaller djs.

What does having a small dj represent? A way to understand this is by looking
at the principal components of the variables in X.

If the X are centered, the sample covariance matrix is given by X′X/N and
X′X can be written as

X′X = VD2V.

Technical note: this is the eigen decomposition of X′X.

The vjs are called the eigen values and also the principal components directions
of X. Figure 4 shows a scatterplot of X and the directions as red (solid) and
blue (dashed) lines.
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Figure 4: Plot of two predictors, X2 versus X1, and the principal component
directions
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The first principal component z1 = Xv1 has the property that it has the largest
sample covariance among all normalized (coefficients squared add up to 1) linear
combinations of X. The sample variance is d2

1/N .

The derived variable z1 = Xv1 = u1d1 is called the first principal component.
Similarly zj = Xv1 is called the jth principal component. XV = UD is a
matrix with principal components in the columns. Figure 5 shows these.

Figure 5: Plot of two principal components of X.

We now see that ridge regression shrinks coefficients related to principal compo-
nents with small variance. This makes sense because we have less information
about them.

In the case of Figure 4, we can think of it as weight and height, we are saying
predict with the sum and ignore the difference. In this case, the sum give much
more info than the difference.
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Bias-variance trade-off linear models

Define Sλ as the hat matrix for a particular linear model parameterized by λ.
The estimated f̂s will be written as f̂λ = Sλy.

Define
vλ = f − E(Sλy)

as the bias vector.

Define ave(x2) = n−1
∑n
i=1 x

2
i for any vector x. We can derive the following

formulas:

MSE(λ) = n−1
n∑
i=1

var{f̂λ(xi)}+ ave(v2
λ)

= n−1tr(SλS′λ)σ2 + n−1v′λvλ
EPE(λ) = {1 + n−1tr(SλS′λ)}σ2 + n−1v′λvλ.

Notice for least-squares regression Sλ is idempotent so that tr(SλS′λ) = tr(Sλ) =
rank(Sλ) which is usually the number of parameters in the model. Later on,
we will sometimes refer to tr(SλS′λ) as the equivalent number of parameters or
degrees of freedom of our estimator.

Cross-validation: choosing complexity parameters

In the section, and the rest of the class, we will denote with f̂λ the estimate
obtained using complexity parameter λ.

In practice it is not common to have a new set of data y∗i , i = 1, . . . , n. Cross-
validation tries to imitate this by leaving out points (xi, yi) one at a time and
estimating the smooth at xi based on the remaining n − 1 points. The cross-
validation sum of squares is

CV(λ) = n−1
n∑
i=1

{yi − f̂−iλ (xi)}2

where f̂−iλ (xi) indicates the fit at xi computed by leaving out the i− th point.

We can now use CV to choose λ by considering a wide span of values of λ,
computing CV(λ) for each one, and choosing the λ that minimizes it. Plots of
CV(λ) vs. λ may be useful.

Why do we think this is good? First notice that

E{yi − f̂−iλ (xi)}2 = E{yi − f(xi) + f(xi)− f̂−iλ (xi)}2

= σ2 + E{f̂−iλ (xi)− f(xi)}2.
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Using the assumption that f̂−iλ (xi) ≈ f̂λ(xi) we see that

E{CV(λ)} ≈ EPE(λ)

However, what we really want is

min
λ

E{CV(λ)} ≈ min
λ

EPE(λ)

but the law of large numbers says the above will do.

Why not simply use the averaged squared residuals

ASR(λ) = n−1
n∑
i=1

{yi − f̂λ(xi)}2?

It turns out this under-estimates the EPE. Notice in particular that the estimate
f̂(xi) = yi always has ASR equal to 0! But we know the EPE will not be small.

Later we will learn of a couple of ways we can adjust the ASR to form “good”
estimates of the MSE.

CV for linear models

Now we will see some of the practical advantages of linear models. Soon, we
will see classes of models that are much more flexible, but have these same
advantages.

For linear smoothers in general it is not obvious what is meant by f̂−iλ (xi). Let’s
give a definition. . .

Notice that any reasonable smoother will smooth constants into constants,
i.e. S1 = 1. If we think of the rows Si· of S as weight vectors, this condi-
tion is requiring that all the n weights in each of the n vectors add up to 1. We
can define f̂−iλ (xi) as the “weighted average”

Si·y =
n∑
j=1

Sijyj

but giving zero weight to the ith entry, i.e.

f̂−iλ (xi) =
1

1− Sii

∑
j 6=i

Sijyj .

From this definition we can find CV without actually making all the computa-
tions again. Lets see how:

Notice that
f̂−iλ (xi) =

∑
j 6=i

Sijyj + Siif̂
−i
λ (xi).
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The quantities we add up to obtain CV are the squares of

yi − f̂−iλ (xi) = yi −
∑
j 6=i

Sijyj − Siif̂−iλ (xi).

Adding and subtracting Siiyi we get

yi − f̂−iλ (xi) = yi − f̂λ(xi) + Sii(yi − f̂−iλ (xi))

which implies

yi − f̂−iλ (xi) =
yi − f̂λ(xi)

1− Sii
and we can write

CV(λ) = n−1
n∑
i=1

{
yi − f̂λ(xi)

1− Sii

}2

so we don’t have to compute f̂−iλ (xi)!

Lets see how this definition of CV may be useful in finding the MSE.

Notice that the above defined CV is similar to the ASR except for the division by
1−Sii. To see what this is doing we notice that in many situations Sii ≈ [SλSλ]ii
and 1/(1− Sii)2 ≈ 1 + 2Sii which implies

E[CV(λ)] ≈ EPE(λ) + 2ave[diag(Sλ)v2].

Thus CV adjusts ASR so that in expectation the variance term is correct but
in doing so induces an error of 2Sii into each of the bias components.

K-fold cross validation

We saw that for linear smoothers, we can get an estimate of EPE using (an
approximation) cross-validation, where a single training point is set aside and
tested with a model trained on the remaining points. For methods where no
such nice approximations exist, one has to do the cross-validation procedure
directly.

K-fold approximates this by testing on more than one point at a time. In
particular, the training set is divided in K equal-sized parts, and each is used
in turn as a validation set, testing with a model trained on the remaining K−1
parts.

Lasso

The lasso’s definition is similar to that of ridge regression. However, we obtain
very different results.
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N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 subject to
p∑
j=1

|βj | ≤ s

Like ridge regression it can be written as a penalized loss problem (also known
as lagrangian form):

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 + λ

p∑
j=1

|βj |

Unlike ridge regression, the lasso estimate β̂lasso does not have a closed-form
solution. However, there has been an explosion of algorithms to efficiently solve
the lasso problem for very large datasets (especially useful when n << p).

In practice one sees that the lasso makes more coefficients 0. This is sometimes
nicer for interpret-ability. See the book and papers on lasso for more informa-
tion. Figure 6 shows the path coefficients take as λ goes from infinity to zero.
Notice coefficients move from exactly zero to non-zero for some λ value, and
continue to grow as λ increases.

Since we don’t have a nice closed form solution, cross-validation has to be done
directly. Figure 7 shows the estimated expected prediction error from 10-fold
cross validation.

Other in-sample estimates

Mallow’s Cp

The following three sections describe the related ways of choosing the best model
using only the training data. These are sometimes called in-sample methods.
They were originally developed in the context of parametric models. For ex-
ample, Mallow’s Cp was developed for choosing the number of covariates in a
regression model (Mallows 1973).

The basic idea is to start with to try estimate the expected difference between
ASR and EPE. Remember ASR is a random quantity and EPE is not!

The larger the model, the more ASR underestimates EPE. For a linear model
with p covariates, Mallow’s Cp estimates this bias with 2 ∗ d/N ∗ σ̂2. A problem
here is that we need to estimate σ̂2. Which model do we use? Typically, a big
model (small bias) is used. Below I include some notes on the calculations as
presented by the Mallow.

The Cp statistic is defined as a criteria to assess fits when models with different
numbers of parameters are being compared. It is given by

Cp =
RSS(p)
σ2

−N + 2p (8)
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Figure 6: Path of coefficients in lasso estimate, prostate cancer data
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Figure 7: 10-fold cross-validation estimate of prediction error for lasso in
prostate cancer data
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If model(p) is correct then Cp will tend to be close to or smaller than p. There-
fore a simple plot of Cp versus p can be used to decide among models.

In the case of ordinary linear regression, Mallow’s method is based on estimating
the mean squared error (MSE) of the estimator β̂p = (X′pXp)−1X′pY,

E[β̂p − β]2

via a quantity based on the residual sum of squares (RSS)

RSS(p) =
N∑
n=1

(yn − xnβ̂p)2

= (Y −Xpβ̂p)′(Y −Xpβ̂p)
= Y′(IN −Xp(X′pXp)−1X′p)Y

Here IN is an N × N identity matrix. By using a result for quadratic forms,
presented for example as Theorem 1.17 in Seber’s book, page 13, namely

E[Y′AY] = E[Y′]AE[Y] + tr[ΣA]

Σ being the variance matrix of Y, we find that

E[RSS(p)] = E[Y′(IN −Xp(X′pXp)−1X′p)Y]

= E[β̂p − β]2 + tr
[
IN −Xp(X′pXp)−1X′p

]
σ2

= E[β̂p − β]2 + σ2
(
N − tr

[
(X′pXp)(X′pXp)−1

])
= E[β̂p − β]2 + σ2(N − p)

where N is the number of observations and p is the number of parameters.
Notice that when the true model has p parameters E[Cp] = p.
This shows why, if model(p) is correct, Cp will tend to be close to p.

One problem with the Cp criterion is that we have to find an appropriate esti-
mate of σ2 to use for all values of p.

Cp for smoothers

A more direct way of constructing an estimate of EPE is to correct the ASR. It
is easy to show that

E{ASR(λ)} =
{

1− n−1tr(2Sλ − SλS′λ)
}
σ2 + n−1v′λvλ

notice that
EPE(λ)− E{ASR(λ)} = n−12tr(Sλ)σ2
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This means that if we knew σ2 we could find a “corrected” ASR

ASR(λ) + 2tr(Sλ)σ2

with the right expected value.

For linear regression tr(Sλ) is the number of parameters so we could think
of 2tr(Sλ)σ2 as a penalty for large number of parameters or for un-smooth
estimates.

How do we obtain an estimate for σ2? If we had a λ∗ for which the bias is 0,
then the usual unbiased estimate is∑n

i=1{yi − fλ∗(xi)}2

n− tr(2Sλ∗ − Sλ∗S′λ∗)

The usual trick is to chose one a λ∗ that does little smoothing and consider
the above estimate. Another estimate that has been proposed it the first order
difference estimate

1
2(n− 1)

n−1∑
i=1

(yi+1 − yi)2

Once we have an estimate σ̂2 then we can define

Cp = ASR(λ) + n−12tr(Sλ)σ̂2

Notice that the p usually means number of parameters so it should be Cλ.

Notice this motivates a definition for degrees of freedoms.

AIC

Akaike (1977) developed a correction for more general situations, i.e. not just
the squared error case. The AIC derives a correction for the training error with
the more general likelihood loss. To do this

The AIC is simply:

AIC = − 2
N

loglik + 2d/N

This reduces to Mallow’s Cp in the case of Gaussian likelihood. Below is the
derivation as shown by Akaike (1977).

Suppose we observe a realization of a random variable Y , with distribution
defined by a parameter β∏

xi∈N0

f(yi; xi,β) ≡ fY(y; X,β) (9)
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where y is the observed response associated with the covariates X and β ∈ RP
is a P × 1 parameter vector.

We are interested in estimating β. Suppose that before doing so, we need to
choose from among P competing models, generated by simply restricting the
general parameter space RP in which β lies.

In terms of the parameters, we represent the full model with P parameters as:

Model(P): fY(y; x,βP ),βP = (β1, . . . , βp, βp+1, . . . , βP )′.

We denote the “true value” of the parameter vector β with β∗.

Akaike (1977) formulates the problem of statistical model identification as one
of selecting a model fY(y; x,βp) based on the
observations from that distribution, where the particular restricted model is
defined by the constraint βp+1 = βp+2 = · · · = βP = 0, so that

Model(p): fY(y; x,βp),βp = (β1, . . . , βp, 0, . . . , 0)′ (10)

We will refer to p as the number of parameters and to Ωp as the sub-space of
RP defined by restriction (10). For each p = 1, . . . , P , we may assume model(p)
to estimate the non-zero components of the vector β∗. We are interested in a
criterion that helps us chose among these P competing estimates.

Akaike’s original work is for IID data, however it is extended to a regression type
setting in a straight forward way. Suppose that the conditional distribution of
Y given x is know except for a P -dimensional parameter β. In this case, the
probability density function of Y = (Y1, . . . , Yn) can be written as

fY(y; X,β) ≡
n∏
i=1

f(yi; xi,β) (11)

with X the design matrix with rows xi.

Assume that there exists a true parameter vector β∗ defining a true probability
density denoted by fY(y; X,β∗). Given these assumptions, we wish to select
β, from one of the models defined as in (10), “nearest” to the true parameter
β∗ based on the observed data y. The principle behind Akaike’s criterion is to
define “nearest” as the model that minimizes the Kullback-Leibler Information
Quantity

∆(β∗; X,β) =
∫
{log fY(y; X,β∗)− log fY(y; X,β)} fY(y; X,β∗) dy. (12)

The analytical properties of the Kullback-Leibler Information Quantity are dis-
cussed in detail by Kullback (1959) . Two important properties for Akaike’s
criterion are

1. ∆(β∗; X,β) > 0 if fY(y; X,β∗) 6= fY(y; X,β)
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2. ∆(β∗; X,β) = 0 if and only if fY(y; X,β∗) = fY(y; X,β)

almost everywhere on the range of Y. The properties mentioned suggest that
finding the model that minimizes the Kullback-Leibler Information Quantity is
an appropriate way to choose the “nearest” model.

Since the first term on the right hand side of (12) is constant over all models
we consider, we may instead maximize

H(β) =
∫

log fY(y; X,β)fY(y; X,β∗) dy

=
n∑
i=1

∫
log f(yi; X,β) f(yi; xi,β∗) dyi. (13)

Let β̂p be the maximum likelihood estimate under Model(p). Akaike’s procedure
for model selection is based on choosing the model which produces the estimate
that maximizes Eβ∗

[
H(β̂p)

]
among all competing models. Akaike then derives

a criterion by constructing an asymptotically unbiased estimate of Eβ∗

[
H(β̂p)

]
based on the observed data.

Notice that H(β̂p) is a function, defined by (13), of the maximum likelihood
estimate β̂p, which is a random variable obtained from the observed data. A
natural estimator of its expected value (under the true distribution of the data)
is obtained by substituting the empirical distribution of the data into (13) result-
ing in the log likelihood equation evaluated at the maximum likelihood estimate
under model(p)

l(β̂p) =
n∑
i=1

log f(yi; xi, β̂p).

Akaike noticed that in general l(β̂p) will overestimate Eβ∗

[
H(β̂)

]
. In partic-

ular Akaike found that under some regularity conditions

Eβ∗

[
l(β̂p)−H(β̂p)

]
≈ p.

This suggests that larger values of p will result in smaller values of l(β̂p), which
may be incorrectly interpreted as a “better” fit, regardless of the true model. We
need to “penalize” for larger values of p in order to obtain an unbiased estimate
of the “closeness” of the model. This fact leads to the Akaike Information
Criteria which is a bias-corrected estimate given by

AIC(p) = −2l(β̂p) + 2p. (14)

See, for example, Akaike (1973) and Bozdogan (1987) for the details.
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BIC

Objections have been raised that minimizing Akaike’s criterion does not pro-
duce asymptotically consistent estimates of the correct model Notice that if we
consider Model(p∗) as the correct model then we have for any p > p∗

Pr [AIC(p) < AIC(p∗)] = Pr
[
2{l(β̂p)− l(β̂p∗)} > 2(p− p∗)

]
. (15)

Notice that, in this case, the random variable 2{l(β̂p)− l(β̂p∗)} is
the logarithm of the likelihood ratio of two competing models which, under
certain regularity conditions, is known to converge in distribution to χ2

p−p∗ , and
thus it follows that the probability in Equation (15) is not 0 asymptotically.
Some have suggested multiplying the penalty term in the AIC by some increasing
function of n, say a(n), that makes the probability

Pr
[
2{l(β̂p)− l(β̂p∗)} > 2a(n)(p− p∗)

]
asymptotically equal to 0. There are many choices of a(n) that would work in
this context. However, some of the choices made in the literature seem arbitrary.

Schwarz (1978) and Kashyap (1982) suggest using a Bayesian approach to the
problem of model selection which, in the IID case, results in a criterion that is
similar to AIC in that it is based on a penalized log-likelihood function evaluated
at the maximum likelihood estimate for the model in question. The penalty term
in the Bayesian Information Criteria (BIC) obtained by Schwarz (1978) is the
AIC penalty term p multiplied by the function a(n) = 1

2 log(N).

The Bayesian approach to model selection is based on maximizing the posterior
probabilities of the alternative models, given the observations. To do this we
must define a strictly positive prior probability πp = Pr[Model(p)] for each
model and a conditional prior dµp(β) for the parameter given it is in Ωp, the
subspace defined by Model(p). Let Y = (Y1, . . . , Yn) be the response variable
and define the distribution given β following (11)

fY(y|X,β) ≡
n∏
i=1

f(yi; xi,β)

The posterior probability that we look to maximize is

Pr [Model(p)|Y = y] =

∫
Ωp
πpfY(y|X,β)dµp(β)∑P

q=1

∫
Ωq
πqfY(y|X,β)dµq(β)

Notice that the denominator depends neither on the model nor the data, so we
need only to maximize the numerator when choosing models.

Schwarz (1978) and Kashyap (1982) suggest criteria derived by taking a Taylor
expansion of the log posterior probabilities of the alternative models. Schwarz
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(1978) presents the following approximation for the IID case

log
∫

Ωp

πpfY(y|X,β)dµp(β) ≈ l(β̂p)−
1
2
p log n

with β̂p the maximum likelihood estimate obtained under Model(p).

This fact leads to the Bayesian Information Criteria (BIC) which is

BIC(p) = −2l(β̂p) + p log n (16)
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