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Kernel Methods

Below is the results of using running mean (K nearest neighbor) to estimate the
effect of time to zero conversion on CD4 cell count.

Figure 1: Running mean estimate: CD4 cell count since zeroconversion for HIV
infected men.

One of the reasons why the running mean (seen in Figure 1) is wiggly is because
when we move from xi to xi+1 two points are usually changed in the group
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we average. If the new two points are very different then s(xi) and s(xi+1)
may be quite different. One way to try and fix this is by making the transition
smoother. That’s one of the main goals of kernel smoothers.

Kernel Smoothers

Generally speaking a kernel smoother defines a set of weights {Wi(x)}ni=1 for
each x and defines

f̂(x) =
n∑

i=1

Wi(x)yi. (1)

Most smoothers can be considered to be kernel smoothers in this very general
definition. However, what is called a kernel smoother in practice has a simple
approach to represent the weight sequence {Wi(x)}ni=1: by describing the shape
of the weight function Wi(x) via a density function with a scale parameter that
adjusts the size and the form of the weights near x. It is common to refer to
this shape function as a kernel K. The kernel is a continuous, bounded, and
symmetric real function K which integrates to one:

∫
K(u) du = 1.

For a given scale parameter h, the weight sequence is then defined by

Whi(x) =
K
(

x−xi

h

)∑n
i=1K

(
x−xi

h

)
Notice:

∑n
i=1Whi(xi) = 1

The kernel smoother is then defined for any x as before by

f̂(x) =
n∑

i=1

Whi(x)Yi.

Because we think points that are close together are similar, a kernel smoother
usually defines weights that decrease in
a smooth fashion as one moves away from the target point.

Running mean smoothers are kernel smoothers that use a “box” kernel. A natu-
ral candidate for K is the standard Gaussian density. (This is very inconvenient
computationally because its never 0). This smooth is shown in Figure 2 for
h = 1 year.

In Figure 3 we can see the weight sequence for the box and Gaussian kernels
for three values of x.
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Figure 2: CD4 cell count since zeroconversion for HIV infected men.
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Figure 3: CD4 cell count since zeroconversion for HIV infected men.
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Technical Note: An Asymptotic result

For the asymptotic theory presented here we will assume the stochastic design
model with a one-dimensional covariate.

For the first time in this Chapter we will set down a specific stochastic model.
Assume we have n IID observations of the random variables (X,Y ) and that

Yi = f(Xi) + εi, i = 1, . . . , n (2)

where X has marginal distribution fX(x) and the εi IID errors independent of
the X. A common extra assumption is that the errors are normally distributed.
We are now going to let n go to infinity. . . What does that mean?

For each n we define an estimate for f(x) using the kernel smoother with scale
parameter hn.

Theorem 1. Under the following assumptions

1.
∫
|K(u)| du <∞

2. lim|u|→∞ uK(u) = 0

3. E(Y 2) ≤ ∞

4. n→∞, hn → 0, nhn →∞

Then, at every point of continuity of f(x) and fX(x) we have∑n
i=1K

(
x−xi

h

)
yi∑n

i=1K
(

x−xi

h

) → f(x) in probability.

Proof : Optional homework. Hint: Start by proving the fixed design model.

Local Regression

Local regression is used to model a relation between a predictor variable and
response variable. To keep things simple we will consider the fixed design model.
We assume a model of the form

Yi = f(xi) + εi

where f(x) is an unknown function and εi is an error term, representing random
errors in the observations or variability from sources not included in the xi.

We assume the errors εi are IID with mean 0 and finite variance var(εi) = σ2.

We make no global assumptions about the function f but assume that locally it
can be well approximated with a member of a simple class of parametric func-
tion, e.g. a constant or straight line. Taylor’s theorem says that any continuous
function can be approximated with polynomial.
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Techinical note: Taylor’s theorem

We are going to show three forms of Taylor’s theorem.

• This is the original. Suppose f is a real function on [a, b], f (K−1) is
continuous on [a, b], f (K)(t) is bounded for t ∈ (a, b) then for any distinct
points x0 < x1 in [a, b] there exist a point x between x0 < x < x1 such
that

f(x1) = f(x0) +
K−1∑
k=1

f (k)(x0)
k!

(x1 − x0)k +
f (K)(x)
K!

(x1 − x0)K .

Notice: if we view f(x0) +
∑K−1

k=1
f(k)(x0)

k! (x1−x0)k as function of x1, it’s
a polynomial in the family of polynomials

PK+1 = {f(x) = a0 + a1x+ · · ·+ aKx
K , (a0, . . . , aK)′ ∈ RK+1}.

• Statistician sometimes use what is called Young’s form of Taylor’s Theo-
rem:

Let f be such that f (K)(x0) is bounded for x0 then

f(x) = f(x0) +
K∑

k=1

f (k)(x0)
k!

(x− x0)k + o(|x− x0|K), as |x− x0| → 0.

Notice: again the first two term of the right hand side is in PK+1.

• In some of the asymptotic theory presented in this class we are going to
use another refinement of Taylor’s theorem called Jackson’s Inequality:

Suppose f is a real function on [a, b] with K is continuous derivatives then

min
g∈Pk

sup
x∈[a,b]

|g(x)− f(x)| ≤ C
(
b− a

2k

)K

with Pk the linear space of polynomials of degree k.

Fitting local polynomials

Local weighter regression, or loess, or lowess, is one of the most popular smooth-
ing procedures. It is a type of kernel smoother. The default algorithm for loess
adds an extra step to avoid the negative effect of influential outliers.

We will now define the recipe to obtain a loess smooth for a target covariate x0.

The first step in loess is to define a weight function (similar to the kernel K we
defined for kernel smoothers). For computational and theoretical purposes we
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will define this weight function so that only values within a smoothing window
[x0 + h(x0), x0 − h(x0)] will be considered in the estimate of f(x0).

Notice: In local regression h(x0) is called the span or bandwidth. It is like
the kernel smoother scale parameter h. As will be seen a bit later, in local
regression, the span may depend on the target covariate x0.

This is easily achieved by considering weight functions that are 0 outside of
[−1, 1]. For example Tukey’s tri-weight function

W (u) =
{

(1− |u|3)3 |u| ≤ 1
0 |u| > 1.

The weight sequence is then easily defined by

wi(x0) = W

(
xi − x0

h(x)

)

We define a window by a procedure similar to the k nearest points. We want
to include α× 100% of the data.

Within the smoothing window, f(x) is approximated by a polynomial. For
example, a quadratic approximation

f(x) ≈ β0 + β1(x− x0) +
1
2
β2(x− x0)2 for x ∈ [x0 − h(x0), x0 + h(x0)].

For continuous function, Taylor’s theorem tells us something about how good
an approximation this is.

To obtain the local regression estimate f̂(x0) we simply find the β = (β0, β1, β2)′

that minimizes

β̂ = arg min
β∈R3

n∑
i=1

wi(x0)[Yi − {β0 + β1(xi − x0) +
1
2
β2(xi − x0)}]2

and define f̂(x0) = β̂0.

Notice that the Kernel smoother is a special case of local regression. Proving
this is a Homework problem.

Defining the span

In practice, it is quite common to have the xi irregularly spaced. If we have
a fixed span h then one may have local estimates based on many points and
others is very few. For this reason we may want to consider a nearest neighbor
strategy to define a span for each target covariate x0.
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Define ∆i(x0) = |x0 − xi|, let ∆(i)(x0) be the ordered values of such distances.
One of the arguments in the local regression function loess() is the span. A
span of α means that for each local fit we want to use α× 100% of the data.

Let q be equal to αn truncated to an integer. Then we define the span h(x0) =
∆(q)(x0). As α increases the estimate becomes smoother.

In Figures 4 — 6 we see loess smooths for the CD4 cell count data using spans
of 0.05, 0.25, 0.75, and 0.95. The smooth presented in the Figures are fitting a
constant, line, and parabola respectively.

Figure 4: CD4 cell count since zeroconversion for HIV infected men.

Symmetric errors and Robust fitting

If the errors have a symmetric distribution (with long tails), or if there appears
to be outliers we can use robust loess.
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Figure 5: CD4 cell count since zeroconversion for HIV infected men.
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Figure 6: CD4 cell count since zeroconversion for HIV infected men.
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We begin with the estimate described above f̂(x). The residuals

ε̂i = yi − f̂(xi)

are computed.

Let

B(u; b) =
{
{1− (u/b)2}2 |u| < b

0 |u| ≥ b
be the bisquare weight function. Let m = median(|ε̂i|). The robust weights are

ri = B(ε̂i; 6m)

The local regression is repeated but with new weights riwi(x). The robust
estimate is the result of repeating the procedure several times.

If we believe the variance var(εi) = aiσ
2 we could also use this double-weight

procedure with ri = 1/ai.

Multivariate Local Regression

Because Taylor’s theorems also applies to multidimensional functions it is rela-
tively straight forward to extend local regression to cases where we have more
than one covariate. For example if we have a regression model for two covariates

Yi = f(xi1, xi2) + εi

with f(x, y) unknown. Around a target point x0 = (x01, x02) a local quadratic
approximation is now

f(x1, x2) ≈ β0+β1(x1−x01)+β2(x2−x02)+β3(x1−x01)(x2−x02)+
1
2
β4(x1−x01)2+

1
2
β5(x2−x02)2

Once we define a distance, between a point x and x0, and a span h we can define
define waits as in the previous sections:

wi(x0) = W

(
||xi,x0||

h

)
.

It makes sense to re-scale x1 and x2 so we smooth the same way in both direc-
tions. This can be done through the distance function, for example by defining
a distance for the space Rd with

||x||2 =
d∑

j=1

(xj/vj)2

with vj a scale for dimension j. A natural choice for these vj are the standard
deviation of the covariates.

Notice: We have not talked about k-nearest neighbors. As we will see in later
the curse of dimensionality will make this hard.
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Example

We look at part of the data obtained from a study by Socket et. al. (1987) on
the factors affecting patterns of insulin-dependent diabetes mellitus in children.
The objective was to investigate the dependence of the level of serum C-peptide
on various other factors in order to understand the patterns of residual insulin
secretion. The response measurement is the logarithm of C-peptide concen-
tration (pmol/ml) at diagnosis, and the predictors are age and base deficit, a
measure of acidity. In Figure 7 we show a loess two dimensional smooth. Notice
that the effect of age is clearly non-linear.

Figure 7: Loess fit for predicting C.Peptide from Base.deficit and Age.

Linear Smoothers: Influence, Variance, and Degrees of Free-
dom

All the smoothers presented in this course are linear smoothers. This means that
we can think of them as version of Kernel smoothers because every estimate f̂(x)
is a linear combination of the data Y thus we can write it in the form of equation
(1).
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If we forget about estimating f at every possible x and consider only the ob-
serverd (or design) points x1, . . . , xn, we can write equation (1) as

f̂ = Sy.

Here f = {f(x1), . . . , f(xn)} and S is defined by the algorithm we are using.

Question: What is S for linear regression? How about for the kernel smoother
defined above?

How can we characterize the amount of smoothing being performed? The
smoothing parameters provide a characterization, but it is not ideal because it
does not permit us to compare between different smoothers and for smoothers
like loess it does not take into account the shape of the weight function nor the
degree of the polynomial being fit.

We now use the connections between smoothing and multivariate linear regres-
sion (they are both linear smoothers) to characterize pointwise criteria that
characterize the amount of smoothing at a single point and global criteria that
characterize the global amount of smoothing.

We will define variance reduction, influence, and degrees of freedom for linear
smoothers.

The variance of the interpolation estimate is var[Y1] = σ2. The variance of our
smooth estimate is

var[f̂(x)] = σ2
n∑

i=1

W 2
i (x)

so we define
∑n

i=1W
2
i (x) as the variance reduction. Under mild conditions one

can show that this is less than 1.

Because
n∑

i=1

var[f̂(xi)] = tr(SS′)σ2,

the total variance reduction from
∑n

i=1 var[Yi] is tr(SS′)/n.

In linear regression the variance reduction is related to the degrees of freedom,
or number of parameters. For linear regression,

∑n
i=1 var[f̂(xi)] = pσ2. One

widely used definition of degrees of freedoms for smoothers is df = tr(SS′).

The sensitivity of the fitted value, say f̂(xi), to the data point yi can be mea-
sured by Wi(xi)/

∑n
i=1Wn(xi) or Sii (remember the denominator is usually

1).

The total influence or sensitivity is
∑n

i=1Wi(xi) = tr(S).

In linear regression tr(S) = p is also equivalent to the degrees of freedom. This
is also used as a definition of degrees of freedom.
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Figure 8: Degrees of freedom for loess and smoothing splines as functions of the
smoothing parameter. We define smoothing splines in a later lecture.

Finally we notice that

E[(y − f̂)′(y − f̂)] = {n− 2tr(S) + tr(SS′)}σ2

In the linear regression case this is (n− p)σ2. We therefore denote n− 2tr(S) +
tr(SS′) as the residual degrees of freedom. A third definition of degrees of
freedom of a smoother is then 2tr(S)− tr(SS′).

Under relatively mild assumptions we can show that

1 ≤ tr(SS′) ≤ tr(S) ≤ 2tr(S)− tr(SS′) ≤ n

Splines and Friends: Basis Expansion and Regularization

Through-out this section, the regression function f will depend on a single, real-
valued predictor X ranging over some possibly infinite interval of the real line,
I ⊂ R. Therefore, the (mean) dependence of Y on X is given by

f(x) = E(Y |X = x), x ∈ I ⊂ R. (3)

For spline models, estimate definitions and their properties are more easily char-
acterized in the context of linear spaces.

Linear Spaces

In this chapter our approach to estimating f involves the use of finite dimen-
sional linear spaces.
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Figure 9: Comparison of three definition of degrees of freedom

Remember what a linear space is? Remember definitions of dimension, linear
subspace, orthogonal projection, etc. . .

Why use linear spaces?

• Makes estimation and statistical computations easy.

• Has nice geometrical interpretation.

• It actually can specify a broad range of models given we have discrete
data.

Using linear spaces we can define many families of function f ; straight lines,
polynomials, splines, and many other spaces (these are examples for the case
where x is a scalar). The point is: we have many options.

Notice that in most practical situation we will have observations (Xi, Yi), i =
1, . . . , n. In some situations we are only interested in estimating f(Xi), i =
1, . . . , n. In fact, in many situations it is all that matters from a statistical
point of view. We will write f when referring to the this vector and f̂ when
referring to an estimate. Think of how its different to know f and know f .
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Let’s say we are interested in estimating f . A common practice in statistics is
to assume that f lies in some linear space, or is well approximated by a g that
lies in some linear space.

For example for simple linear regression we assume that f lies in the linear space
of lines:

α+ βx, (α, β)′ ∈ R2.

For linear regression in general we assume that f lies in the linear space of linear
combinations of the covariates or rows of the design matrix. How do we write
it out?

Note: Through out this chapter f is used to denote the true regression function
and g is used to denote an arbitrary function in a particular space of functions.
It isn’t necessarily true that f lies in this space of function. Similarly we use f
to denote the true function evaluated at the design points or observed covariates
and g to denote an arbitrary function evaluated at the design points or observed
covariates.

Now we will see how and why it’s useful to use linear models in a more general
setting.

Technical note: A linear model of order p for the regression function (3)
consists of a p-dimensional linear space G, having as a basis the function

Bj(x), j = 1, . . . , p

defined for x ∈ I. Each member g ∈ G can be written uniquely as a linear
combination

g(x) = g(x; θ) = θ1B1(x) + · · ·+ θpBp(x)

for some value of the coefficient vector θ = (θ1, . . . , θp)′ ∈ Rp.

Notice that θ specifies the point g ∈ G.

How would you write this out for linear regression?

Given observations (Xi, Yi), i = 1, . . . , n the least squares estimate (LSE) of f
or equivalently f(x) is defined by f̂(x) = g(x; θ̂), where

θ̂ = arg min
θ∈Rp

n∑
i=1

{Yi − g(Xi,θ)}2.

Define the vector g = {g(x1), . . . , g(xn)}′. Then the distribution of the obser-
vations of Y |X = x are in the family

{N(g, σ2In); g = [g(x1), . . . , g(xn)]′, g ∈ G} (4)

and if we assume the errors ε are IID normal and that f ∈ G we have that
f̂ = [g(x1; θ̂), . . . , g(xn; θ̂)] is the
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maximum likelihood estimate. The estimand f is an n × 1 vector. But how
many parameters are we really estimating?

Equivalently we can think of the distribution is in the family

{N(Bθ, σ2); θ ∈ Rp} (5)

and the maximum likelihood estimate for θ is θ̂. Here B is a matrix of basis
elements defined soon. . .

Here we start seeing for the first time where the name non-parametric comes
from. How are the approaches (4) and (5) different?

Notice that obtaining θ̂ is easy because of the linear model set-up. The ordinary
least square estimate is

(B′B)θ̂ = B′Y

where B is is the n × p design matrix with elements [B]ij = Bj(Xi). When
this solution is unique we refer to g(x; θ̂) as the OLS projection of Y into G (as
learned in the first term).

Parametric versus non-parametric

In some cases, we have reason to believe that the function f is actually a member
of some linear space G. Traditionally, inference for regression models depends
on f being representable as some combination of known predictors. Under this
assumption, f can be written as a combination of basis elements for some value
of the coefficient vector θ. This provides a parametric specification for f . No
matter how many observations we collect, there is no need to look outside the
fixed, finite-dimensional, linear space G when estimating f .

In practical situations, however, we would rarely believe such relationship to be
exactly true. Model spaces G are understood to provide (at best) approximations
to f ; and as we collect more and more samples, we have the freedom to audition
richer and richer classes of models. In such cases, all we might be willing to
say about f is that it is smooth in some sense, a common assumption being
that f have two bounded derivatives. Far from the assumption that f belong
to a fixed, finite-dimensional linear space, we instead posit a nonparametric
specification for f . In this context, model spaces are employed mainly in our
approach to inference; first in the questions we pose about an estimate, and
then in the tools we apply to address them. For example, we are less interested
in the actual values of the coefficient θ, e.g. whether or not an element of θ is
significantly different from zero to the 0.05 level. Instead we concern ourselves
with functional properties of g(x; θ̂), the estimated curve or surface, e.g. whether
or not a peak is real.

To ascertain the local behavior of OLS projections onto approximation spaces
G, define the pointwise, mean squared error (MSE) of ĝ(x) = g(x; θ̂) as

E{f(x)− ĝ(x)}2 = bias2{ĝ(x)}+ var{ĝ(x)}
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where
bias{ĝ(x)} = f(x)− E{ĝ(x)} (6)

and
var{ĝ(x)} = E{ĝ(x)− E[ĝ(x)]}2

When the input values {Xi} are deterministic the expectations above are with
respect to the noisy observation Yi. In practice, MSE is defined in this way even
in the random design case, so we look at expectations conditioned on X.

Note: The MSE and EPE are equivalent. The only difference is that we ignore
the first σ2 due to measuremnet error contained in the EPE. The reason I use
MSE here is because it is what is used in the Spline and Wavelet literature.

When we do this, standard results in regression theory can be applied to derive
an expression for the variance term

var{ĝ(x)} = σ2B(x)′(B′B)−1B(x)

where B(x) = (B1(x), . . . , Bp(x))′, and the error variance is assumed constant.

Under the parametric specification that
f ∈ G, what is the bias?

This leads to classical t- and F-hypothesis tests and associated parametric con-
fidence intervals for θ. Suppose on the other hand, that f is not a member of
G, but rather can be reasonably approximated by an element in G. The bias (6)
now reflects the ability of functions in G to capture the essential features of f .

Local Polynomials

In practical situations, a statistician is rarely blessed with simple linear rela-
tionship between the predictor X and the observed output Y . That is, as a
description of the regression function f , the model

g(x; θ) = θ1 + θ2x, x ∈ I

typically ignores obvious features in the data. This is certainly the case for the
values of 87Sr.

The Strontium data set was collected to test several hypotheses about the catas-
trophic events that occurred approximately 65 million years ago. The data con-
tains Age in million of years and the ratios described here. There is a division
between two geological time periods, the Cretaceous (from 66.4 to 144 million
years ago) and the Tertiary (spanning from about 1.6 to 66.4 million years ago).
Earth scientist believe that the boundary between these periods is distinguished
by tremendous changes in climate that accompanied a mass extension of over
half of the species inhabiting the planet at the time. Recently, the composi-
tions of Strontium (Sr) isotopes in sea water has been used to evaluate several
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hypotheses about the cause of these extreme events. The dependent variable
of the data-set is related to the isotopic make up of Sr measured for the shells
of marine organisms. The Cretaceous-Tertiary boundary is referred to as KTB.
There data shows a peak is at this time and this is used as evidence that a
meteor collided with earth.

The data presented in the Figure ?? represents standardized ratio of strontium–
87 isotopes (87Sr) to strontium–86 isotopes (86Sr) contained in the shells of
foraminifera fossils taken form cores collected by deep sea drilling. For each
sample its time in history is computed and the standardized ratio is computed:

87δSr =
(

87Sr/86Sr sample
87Sr/86Sr sea water

− 1
)
× 105.

Earth scientist expect that 87δSr is a smooth-varying function of time and that
deviations from smoothness are mostly measurement error.

Figure 10: 87δSr data.

To overcome this deficiency, we might consider a more flexible polynomial model.
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Let Pk denote the linear space of polynomials in x of order at most k defined as

g(x; θ) = θ1 + θ2x+ · · ·+ θkx
k−1, x ∈ I

for the parameter vector θ = (θ1, . . . , θk) ∈ Rk. Note that the space Pk consists
of polynomials having degree at most k − 1.

In exceptional cases, we have reasons to believe that the regression function f
is in fact a high-order polynomial. This parametric assumption could be based
on physical or physiological models describing how the data were generated.

For historical values of 87δSr we consider polynomials simply because our sci-
entific intuition tells us that f should be smooth.

Recall Taylor’s theorem: polynomials are good at approximating well-behaved
functions in reasonably tight neighborhoods. If all we can say about f is that
it is smooth in some sense, then either implicitly or explicitly we consider high-
order polynomials because of their favorable approximation properties.

If f is not in Pk then our estimates will be biased by an amount that reflects
the approximation error incurred by a polynomial model.

Computational Issue: The basis of monomials

Bj(x) = xj−1 for j = 1, . . . , k

is not well suited for numerical calculations (x8 can be VERY BIG compared to
x). While convenient for analytical manipulations (differentiation, integration),
this basis is ill-conditioned for k larger than 8 or 9. Most statistical packages
use the orthogonal Chebyshev polynomials (used by the R command poly()).

An alternative to polynomials is to consider the space PPk(t) of piecewise
polynomials with break points t = (t0, . . . , tm+1)′. Given a sequence a = t0 <
t1 < · · · < tm < tm+1 = b, construct m+ 1 (disjoint) intervals

Il = [tl−1, tl), 1 ≤ l ≤ m and Im+1 = [tm, tm+1],

whose union is I = [a, b]. Define the piecewise polynomials of order k

g(x) =


g1(x) = θ1,1 + θ1,2x+ · · ·+ θ1,kx

k−1, x ∈ I1
...

...
gm+1(x) = θm+1,1 + θm+1,2x+ · · ·+ θm+1,kx

k−1, x ∈ Ik+1.

Splines

In many situations, breakpoints in the regression function do not make sense.
Would forcing the piecewise polynomials to be continuous suffice? What about
continuous first derivatives?
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We start by consider the subspaces of the piecewise polynomial space. We will
denote it with PPk(t) with t = (t1, . . . , tm)′ the break-points or interior knots.
Different break points define different spaces.

We can put constrains on the behavior of the functions g at the break points.
(We can construct tests to see if these constrains are suggested by the data but,
will not go into this here)

Here is a trick for forcing the constrains and keeping the linear model set-up.
We can write any function g ∈ PPk(t) in the truncated basis power :

g(x) = θ0,1 + θ0,2x+ · · ·+ θ0,kx
k−1 +

θ1,1(x− t1)0+ + θ1,2(x− t1)1+ + · · ·+ θ1,k(x− t1)k−1
+ +

...
θm,1(x− tm)0+ + θm,2(x− tm)1+ + · · ·+ θm,k(x− tm)k−1

+

where (·)+ = max(·, 0). Written in this way the coefficients θ1,1, . . . , θ1,k record
the jumps in the different derivative from the first piece to the second.

Notice that the constrains reduce the number of parameters. This is in agree-
ment with the fact that we are forcing more smoothness.

Now we can force constrains, such as continuity, by putting constrains like
θ1,1 = 0 etc. . .

We will concentrate on the cubic splines which are continuous and have contin-
uous first and second derivatives. In this case we can write:

g(x) = θ0,1 + θ0,2x+ · · ·+ θ0,4x
3 + θ1,k(x− t1)3 + · · ·+ θm,k(x− tm)3

How many “parameters” in this space?

Note: It is always possible to have less restrictions at knots where we believe the
behavior is “less smooth”, e.g for the Sr ratios, we may have “unsmoothness”
around KTB.

We can write this as a linear space. This setting is not computationally conve-
nient. In S-Plus there is a function bs() that makes a basis that is convenient
for computations.

There is asymptotic theory that goes along with all this but we will not go into
the details. We will just notice that

E[f(x)− g(x)] = O(h2k
l + 1/nl)

where hl is the size of the interval where x is in and nl is the number of points
in it. What does this say?
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Splines in terms of Spaces and sub-spaces

The p-dimensional spaces described in Section 4.1 were defined through basis
function Bj(x), j = 1, . . . , p. So in general we defined for a given range I ⊂ Rk

G = {g : g(x) =
p∑

j=1

θjβj(x),x ∈ I, (θ1, . . . , θp) ∈ Rp}

In the previous section we concentrated on x ∈ R.

In practice we have design points x1, . . . , xn and a vector of responses y =
(y1, . . . , yn). We can think of y as an element in the n-dimensional vector space
Rn. In fact we can go a step further and define a Hilbert space with the usual
inner product definition that gives us the norm

||y|| =
n∑

i=1

y2
i

Now we can think of least squares estimation as the projection of the data y to
the sub-space G ⊂ Rn defined by G in the following way

G = {g ∈ Rn : g = [g(x1), . . . , g(xn)]′, g ∈ G}

Because this space is spanned by the vectors [B1(x1), . . . , Bp(xn)] the projection
of y onto G is

B(B′B)−B′y

as learned in 751. Here [B]ij = Bj(xi).

Natural Smoothing Splines

Natural splines add the constrain that the function must be linear after the
knots at the end points. This forces 2 more restrictions since f ′′ must be 0 at
the end points, i.e the space has k + 4 − 2 parameters because of this extra 2
constrains.

So where do we put the knots? How many do we use? There are some data-
driven procedures for doing this. Natural Smoothing Splines provide another
approach.

What happens if the knots coincide with the dependent variables {Xi}. Then
there is a function g ∈ G, the space of cubic splines with knots at (x1, . . . , xn),
with g(xi) = yi, i, . . . , n, i.e. we haven’t smoothed at all.

Consider the following problem: among all functions g with two continuous first
two derivatives, find one that minimizes the penalized residual sum of squares

n∑
i=1

{yi − g(xi)}2 + λ

∫ b

a

{g′′(t)}2 dt
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where λ is a fixed constant, and a ≤ x1 ≤ · · · ≤ xn ≤ b. It can be shown
(Reinsch 1967) that the solution to this problem is a natural cubic spline with
knots at the values of xi (so there are n− 2 interior knots and n− 1 intervals).
Here a and b are arbitrary as long as they contain the data.

It seems that this procedure is over-parameterized since a natural cubic spline
as this one will have n degrees of freedom. However we will see that the penalty
makes this go down.

Computational Aspects

We use the fact that the solution is a natural cubic spline and write the possible
answers as

g(x) =
n∑

j=1

θjBj(x)

where θj are the coefficients and Bj(x) are the basis functions. Notice that if
these were cubic splines the functions lie in a n+ 2 dimensional space, but the
natural splines are an n dimensional subspace.

Let B be the n× n matrix defined by

Bij = Bj(xi)

and a penalty matrix Ω by

Ωij =
∫ b

a

B′′i (t)B′′j (t) dt

now we can write the penalized criterion as

(y −Bθ)′(y −Bθ) + λθ′Ωθ

It seems there are no boundary derivatives constraints but they are implicitly
imposed by the penalty term.

Setting derivatives with respect to θ equal to 0 gives the estimating equation:

(B′B + λΩ)θ = B′y.

The θ̂ that solves this equation will give us the estimate ĝ = Bθ̂.

Is this a linear smoother?

Write:
ĝ = Bθ = B(B′B + λΩ)−1B′y = (I + λK)−1y

where K = B− 1′ΩB−1. Notice we can write the criterion as

(y − g)′(y − g) + λg′Kg

If we look at the “kernel” of this linear smoother we will see that it is similar
to the other smoothers presented in this class.
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Figure 11: Smoothing spline fitted using different penalties.

Smoothing and Penalized Least Squares

In Section 4.4.1 we saw that the smoothing spline solution to a penalized least
squares is a linear smoother.

Using the notation of Section 4.4.1, we can write the penalized criterion as

(y −Bθ)′(y −Bθ) + λθ′Ωθ

Setting derivatives with respect to θ equal to 0 gives the estimating equation:

(B′B + λΩ)θ = B′y

the θ̂ that solves this equation will give us the estimate ĝ = Bθ̂.

Write:
ĝ = Bθ = B(B′B + λΩ)−1B′y = (I + λK)−1y
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where K = B′−ΩB−.

Notice we can write the penalized criterion as

(y − g)′(y − g) + λg′Kg

If we plot the rows of this linear smoother we will see that it is like a kernel
smoother.

Figure 12: Kernels of a smoothing spline.

Notice that for any linear smoother with a symmetric and nonnegative definite
S, i.e. there S− exists, then we can argue in reverse: f̂ = Sy is the value that
minimizes the penalized least squares criteria of the form

(y − f)′(y − f) + f ′(S− − I)f .

Some of the smoothers presented in this class are not symmetrical but are close.
In fact for many of them one can show that asymptotically they are symmetric.

Eigen analysis and spectral smoothing

For a smoother with symmetric smoother matrix S, the eigendecomposition of
S can be used to describe its behavior.
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Let {u1, . . . ,un} be an orthonormal basis of eigenvectors of S with eigenvalues
θ1 ≥ θ2 · · · ≥ θn:

Suj = θjuj , j = 1, . . . , n

or

S = UDU′ =
n∑

j=1

θjuju′j .

Here D is a diagonal matrix with the eigenvalues as the entries.

For simple linear regression we only have two nonzero eigenvalues. Their eigen-
vectors are an orthonormal basis for lines.

Figure 13: Eigenvalues and eigenvectors of the hat matrix for linear regression.

The cubic spline is an important example of a symmetric smoother, and its
eigenvectors resemble polynomials of increasing degree.

It is easy to show that the first two eigenvalues are unity, with eigenvectors
which correspond to linear functions of the predictor on which the smoother is
based. One can also show that the other eigenvalues are all strictly between
zero and one.

The action of the smoother is now transparent: if presented with a response
y = uj , it shrinks it by an amount θj as above.
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Figure 14: Eigenvalues and eigenvectors 1 through 10 of S for a smoothing
spline.

Cubic smoothing splines, regression splines, linear regression, polynomial regres-
sion are all symmetric smoothers. However, loess and other “nearest neighbor”
smoothers are not.

Figure 15: Eigen vectors 11 through 30 for a smoothing spline for n = 30.

If S is not symmetric we have complex eigenvalues and the above decomposition
is not as easy to interpret. However we can use the singular value decomposition

S = UDV′

On can think of smoothing as performing a basis transformation z = V′y,
shrinking with ẑ = Dz the components that are related to “unsmooth compo-
nents” and then transforming back to the basis ŷ = Uẑ we started out with. . .
sort of.
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In signal processing signals are “filtered” using linear transformations. The
transfer function describes how the power of certain frequency components are
reduced. A low-pass filter will reduce the power of the higher frequency com-
ponents. We can view the eigen values of our smoother matrices as transfer
functions.

Notice that the smoothing spline can be considered a low-pass filter. If we
look at the eigenvectors of the smoothing spline we notice they are similar to
sinusoidal components of increasing frequency. Figure 14 shows the “transfer
function” defined by the smoothing splines.

Economical Bases: Wavelets and REACT estimators

If one consider the “equally spaced” Gaussian regression:

yi = f(ti) + εi, i = 1, . . . , n (7)

ti = (i− 1)/n and the εis IID N(0, σ2), many things simplify.

We can write this in matrix notation: the response vector y is Nn(f , σ2I) with
f = {f(t1), . . . , f(tn)}′.

As usual we want to find an estimation procedure that minimizes risk:

n−1E||f̂ − f ||2 = n−1E

[
m∑

i=1

{f̂(ti)− f(ti)}2
]
.

We have seen that the MLE is f̂i = yi which intuitively does not seem very
useful. There is actually an
important result in statistics that makes this more precise.

Stein (1956) noticed that the MLE is inadmissible: There is an estimation
procedure producing estimates with smaller risk that the MLE for any f .

To develop a non-trivial theory MLE won’t do. A popular procedure is to spec-
ify some fixed class F of functions where f lies and seek an estimator f̂ attaining
minimax risk

inf
f̂

sup
f∈F

R(f̂ , f)

By restricting f ∈ F we make assumptions on the smoothness of f . For example,
the L2 Sobolev family makes an assumption on the number m of continuous
derivatives and a limits the size of the mth derivative.
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Useful transformations

Remember f ∈ Rn and that there are many orthogonal bases for this space.
Any orthogonal basis can be represented with an orthogonal transform U that
gives us the coefficients for any f by multiplying ξ = U′f . This means that we
can represent any vector as f = Uξ.

Remember that the eigen analysis of smoothing splines we can view the eigen-
vectors a such a transformation.

If we are smart, we can choose a transformation U such that ξ has some useful
interpretation. Furthermore, certain transformation may be more “economical”
as we will see.

For equally spaced data a widely used transformation is the Discrete Fourier
Transform (DFT). Fourier’s theorem says that any f ∈ Rn

can be re-written as

fi = a0 +
n/2−1∑
k=1

{
ak cos

(
2πk
n

i

)
+ bk sin

(
2πk
n

i

)}
+ an/2 cos(πi)

for i = 1, . . . , n. This defines a basis and the coefficients a = (a0, a1, b1, . . . , . . . , an/2)′

can be obtained via a = U′f with U having columns of sines and cosines:

U1 = [n−1/2 : 1 ≤ i ≤ n]
U2k = [(2/n)1/2 sin{2πki/n} : 1 ≤ i ≤ n], k = 1, . . . , n/2

U2k+1 = [(2/n)1/2 cos{2πki/n} : 1 ≤ i ≤ n], k = 1, . . . , n/2− 1.

Note: This can easily be changed to the case where n is odd by substituting
n/2 by bn/2c and taking out the last term last term adn/2e.

If a signal is close to a sine wave f(t) = cos(2πjt/n + φ) for some integer
1 ≤ j ≤ n, only two of the coefficients in a will be big, namely the ones
associated with the columns 2j − 1 and 2j, the rest will be close to 0.

This makes the basis associated with the DFT very economical (and the peri-
odogram a good detector of hidden periodicities). Consider that if we where
to transmit the signal, say using modems and a telephone line, it would be
more “economical” to send a instead of the f . Once a is received, f = Ua is
reconstructed. This is basically what data compression is all about.

Because we are dealing with equally spaced data, the coefficients of the DFT
are also related to smoothness. Notice that the columns of U are increasing in
frequency and thus decreasing in smoothness. This means that a “smooth” f
should have only the first a = U′f relatively different from 0.

A close relative of the DFT is the Discrete Cosine Transform (DCT).

U1 = [n−1/2 : 1 ≤ i ≤ n]
Uk = [(2/n)1/2 cos{π(2i− 1)k/(2/n)} : 1 ≤ i ≤ n], k = 2, . . . , n
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Economical bases together with “shrinkage” ideas can be used to reduce risk
and even to obtain estimates with minimax properties. We will see this through
an example

An example

We consider body temperature data taken from a mouse every 30 minutes for
a day, so we have n = 48. We believe measurements will have
measurement error and maybe environmental variability so we use a stochastic
model like (7). We expect body temperature to change “smoothly” through-out
the day so we believe f(x) is smooth. Under this assumption ξ = U′f , with U
the DCT, should have only a few coefficients that are “big”.

Because the transformation is orthogonal we have that z = U′y is N(ξ, σ2I).
An idea we learn from Stein (1956) is to consider linear shrunken estimates
ξ̂ = {wz; w ∈ [0, 1]n}. Here the product wz is taken component-wise like in
S-plus.

We can then choose the shrinkage coefficients that minimize the risk

E||ξ̂ − ξ||2 = E||Uξ̂ − f ||2.
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Remember that Uξ = UU′f = f .

Relatively simple calculations show that w̃ = ξ2/(ξ2 + σ2) minimizes the risk
over all possible w ∈ Rn. The MLE obtained, with w = (1, . . . , 1)′, minimizes
the risk only if w̃ = (1, . . . , 1)′ which only happens when there is no variance!

Figure 16: Fitted curves obtained when using shrinkage coefficients of the from
w = (1, 1, . . . , 1, 0, . . . , 0), with 2m+ 1 the number of 1s used.

Notice that w̃ makes sense because it shrinks coefficients with small signal to
noise ratio. By shrinking small coefficients closer to 0 we reduce variance and
the bias we add is not very large, thus reducing risk. However, we don’t know ξ
nor σ2 so in practice we can’t produce w̃. Here is where having economical bases
are helpful: we construct estimation procedures that shrink more aggressively
the coefficients for which we have a-priori knowledge that they are “close to 0”
i.e. have small signal to noise ratio. Two examples of such procedure are:

In Figure 16, we show for the body temperature data the the fitted curves
obtained when using shrinkage coefficients of the from w = (1, 1, . . . , 1, 0, . . . , 0).

If Figure 17 we show the fitted curve obtained with w = (1, 1, . . . , 1, 0, . . . , 0)
and using REACT. In the first plot we show the coefficients shrunken to 0 with
crosses. In the second z plot we show wz with crosses. Notice that only the
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Figure 17: Estimates obtained with harmonic model and with REACT. We also
show the z and how they have been shrunken.

first few coefficients of the transformation are “big”. Here are the same pictures
for data obtained for 6 consecutive weekends.

Finally in Figure 18 we show the two fitted curves and compare them to the
average obtained from observing many days of data.

Notice that using w = (1, 1, 1, 1, 0, . . . , 0) reduces to a parametric model that
assumes f is a sum of 4 cosine functions.

Any smoother with a smoothing matrix S that is a projection, e.g. linear re-
gression, splines, can be consider a special case of what we have described here.

Choosing the transformation U is an important step in these procedure. The
theory developed for Wavelets motivate a choice of U that is especially good at
handling functions f that have “discontinuities”.

Wavelets

The following plot show a nuclear magnetic resonance (NMR) signal.
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Figure 18: Comparison of two fitted curves to the average obtained from ob-
serving many days of data.

The signal does appear to have some added noise so we could use (7) to model
the process. However, f(x) appears to have a peak at around x = 500 making
it not very smooth at that point.

Situations like these are where wavelets analyses is especially useful for “smooth-
ing”. Now a more appropriate word is “de-noising”.

The Discrete Wavelet Transform defines an orthogonal basis just like the DFT
and DCT. However the columns of DWT are locally smooth. This means that
the coefficients can be interpreted as local smoothness of the signal for different
locations.

Here are the columns of the Haar DWT, the simplest wavelet.

Notice that these are step function. However, there are ways (they involve
complicated math and no closed forms) to create “smoother” wavelets. The
following are the columns of DWT using the Daubechies wavelets

The following plot shows the coefficients of the DWT by smoothness level and
by location:

33



Using wavelet with shrinkage seems to perform better at de-noising than smooth-
ing splines and loess as shown by the following figure.

The last plot is what the wavelet estimate looks like for the temperature data
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