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The next four paragraphs are from the book by Breiman et al.

At the University of California, San Diego Medical Center, when a heart at-
tack patient is admitted, 19 variables are measured during the first 24 hours.
They include BP, age, and 17 other binary covariates summarizing the medical
symptoms considered as important indicators of the patient’s condition.

The goal of a medical study can be to develop a method to identify high risk
patients on the basis of the initial 24-hour data.

The next Figure shows a picture of a tree-structured classification rule that
produced in the study. The letter F means not high-risk and the letter G means
high risk.
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How can we use data to construct trees that give us useful answers. There is a
large amount of work done in this type of problem. We will give an introductory
description in this Section.

The material here is based on lectures by Ingo Ruczinski.



Classifiers as Partitions

Notice that in the previous example we predict a positive outcome if both blood
pressure is high and age is higher than 62.5. This type of interaction is hard
to describe in a regression model. So far, we have not discussed any methods
that include interactions, mainly due to the curse of dimensionality. There are
too many interactions to consider and too many ways to quantify their effect.
Regression trees thrive on such interactions. What is a curse for parameteric
approaches is a blessing for regression trees.

A good example is the following olive data:

e 572 olive oils were analyzed for their content of eight fatty acids (palmitic,
palmitoleic, stearic, oleic, linoleic, arachidic, linolenic, and eicosenoic).

e There were 9 collection areas, 4 from Southern Italy (North and South
Apulia, Calabria, Siciliy), two from Sardinia (Inland and Coastal) and 3
from Northern Italy (Umbria, East and West Liguria)

e The concentration of different fatty acids vary from up to 85% for oleic
acid to as lows as 0.01% for eicosenic acid.

e See Forina M., Armanino C., Lanteri S., and Tiscornia E. (1983). Classi-
fication of olive oils from their fatty acid composition. In Martens H. and
Russwurm Jr. H. eds., Food Research and Data Analysis, pp. 189-214.
Applied Science Publishers, London

The data look like this:

Notice that we can separate the covariate space so that we get perfect prediction
without a very complicated “model”.

The tree representation of this picture is

Partitions such as these can also handle data where linear methods work well.
A good (and very famous) example is Fisher’s Iris Data:

However, none of the methods we have described permit a division of the space
without using many parameters.

Trees

These data motivate the approach of partitioning the covariate space X into
disjoint sets Ap,...,A; with G =jforalxe Aj. There are too many ways
of doing so we try to make the approach parsimonious. Notice that linear
regression/classification restrict partition to certain planes.

Trees are a completely different way of partitioning. All we require is that the
partition can be achieved by successive binary partitions based on the different
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eicosenoje= 0.065
I

linoleic3

r=10.54

Sardinia
98/0/0

Southern Italy
0/0/323

Northern Italy
0/151/0
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predictors. Once we have a partition, we base our prediction on the average of
the Y's in each partition. We can use this for both classification and regression.

Example of a classification tree

Suppose that we have a scalar outcome, Y, and a p-vector of explanatory vari-
ables X. Assume Y € K = {1,2,...,k}.

The subsets created by the splits are called nodes. The subsets which are not
split are called terminal nodes.

Each terminal node gets assigned to one of the classes. So if we had three
classes, we could get A} = X} U Xy, Ay = X5 and Az = X7 U Xg. If we are using
the data, we assign the class most frequently found in that subset of X. We call
these classification trees.

A classification tree partitions the X-space and provides a predicted value, per-
haps arg max; Pr(Y = s|X € A;) in each region.

Example of a regression tree

Again, suppose we have a scalar outcome Y, and a p-vector of explanatory
variables X. Now assume Y € R.
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CART versus Linear Models

See Figure

Searching for good trees

In general, the idea is the following:

1. Grow an overly large tree usign forward selection. At each step, find the

best split. Grow until all terminal nodes either

(a) have < m (perhaps m = 1) data points

(b) are “pure” (all points in a node have [almost] the same outcome).

2. Prune the tree back, creating a nested sequence of trees, decreasing in com-

plexity

A problem in tree construction is how to use the training data to determine the
binary splits of X into smaller and smaller pieces. The fundamental idea is to
select each split of a subset so that the data in each of the descendent subsets

are “purer” that the data in the parent subset.
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The predictor space

Suppose we have p explanatory variables X1, ..

Each of the X; can be

., X, and N observations.

a) a numeric variable: — n — 1 possible splits
b) an ordered factor (categorical variable): — k — 1 possible splits
c¢) an unordered factor: — 2¥~1 — 1 possible splits.

We pick the split that results in the greatest decrease in impurity. We will soon
provide various definitions of impurity.

Deviance as a measure of impurity

A simple approach is to assume a multinomial model and then use deviance as
a definition of impurity.

Assume Y € G ={1,2,...,k}.

e At each node i of a classification tree we have a probability distribution

pir over the k classes.

e We observe a random sample n;; from the multinomial distribution spec-
ified by the probabilities p;x.

ik

e Given X, the conditional likelihood is then proportional to H(leaves 0 H(dasses k) Pi”

e Define a deviance D = ) D;, where D; = =23, n; log(pik)-
e Estimate p;i by pip = k.

s

For the olive tree we get the following values:

Root ni1 = 323 Nig = 98 niz = 151 ny = 572 D=1117.18
ﬁll = 0.56 ﬁ12=0.17 ﬁlg =0.24
No1 = 0 Nog = 98 No3 = 151 Ng = 249
P =1 P12 =0 P13 =10
P21 =0 | Po2 = 0.39 | po3 = 0.41
Split 2 ni1 = 323 Nig = 0 niz = 0 ny = 323 D=0
No1 = 0 Moo = 0 No3 = 151 Nog = 151
nay = 0 N3g = 98 Nnas = 0 ns = 98
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Other measures of impurity

Other commonly used measures of impurity at a node 4 of a classification tree
are

e missclasification rate: n% djea, Ly; # ki) =1 — P,

e the entropy: > pix log(pix)

e the GINI index: Zﬁgk Pijpik =1 — P,

where k; is the most frequent class in node 1.

For regression trees we use the residual sum of squares:
2
D= > (y— p)
cases j

where p;) is the mean values in the node that case j belongs to.

Recursive partitioning

INITTALIZE All cases in the root node
REPEAT Find optimal allowed split
Partition leaf according to split

STOP Stop when pre-defined criterion is met

Model Selection

e Grow a big tree T'

e Consider snipping off terminal subtrees (resulting in so-called rooted sub-
trees)

e Let R; be a measure of impurity at leaf ¢ in a tree. Define R = ). R;
e Define size as the number leaves in a tree

e Let R, = R+ « X size

The set of rooted subtrees of T' that minimize R, is nested.
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General Points

What’s nice:
e Decision trees are very “natural” constructs, in particular when the ex-
planatory variables are catgorical (and even better when they are binary)
e Trees are easy to explain to non-statisticians
e The models are invariant under transformations in the predictor space
e Multi-factor responses are easily dealt with

e The treatment of missing values is more satisfactory than for most other
models

e The models go after interactions immediately, rather than as an afterthought

e Tree growth is much more efficient than described here

e There are extensions for survival and longitudinal data, and there is an
extension called treed models. There is even a Bayesian version of CART

What’s not so nice

e Tree space is huge, so we may need lots of data

e We might not be able to find the best model at all

e It can be hard to assess uncertainty in inference about trees
e Results can be quite variable (tree selection is not very

e stable)

e Actual additivity becomes a mess in a binary tree

e Simple trees usually don’t have a lot of predictive power

e There is a selection bias for the splits
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16(3), pp 199-215, 2001.

e L. Breiman, JH Friedman, RA Olshen, and CJ Stone. Classification and
Regression Trees. Wadsworth Inc., 1984.
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2000.

e WM Venables, and BD Ripley. Modern Applied Statistics with S Springer,
NY, 4th edition, 2002.
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