Unsupervised Methods

(mostly clustering)



Unsupervised Methods

« All this time In class we have seen

supervised methods:
— Data have outcomes: (x,y;)

* In this section, we will look at data
without outcomes

- Previously, we cared about P(X,Y), but
concentrated on P(Y | X) since that’s
what matters for prediction

- Now, we want P(X) since there is no
outcome Y



Outline

- Hierarchical Clustering
- K-means (and K-medioids) clustering

- Model-Based clustering (Gaussian
Mixture Models)

— EM algorithm
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against those from individuals diagnosed with ALL MLL
conventional B-precursor ALL that lack this ——.
translocation. Initially, we collected samples from
20 individuals with conventional childhood ALL
(denoted ALL), 10 of which had a TEL/AML!
translocation. In addition, we collected samples
from 17 individuals affected with the MLL
translocation (denoted MLL). Details of the
affected individuals and expression data are avail-
able online (Methods).

First, we determined whether there were genes
among the 12,600 tested whose expression pattern
correlated with the presence of an MLL transloca-
tion. We sorted the genes by their degree of correla-
tion with the MLIJALL distinction (Fig. 1) and
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tively highly expressed (data not shown). Thus,
MLL shows a gene expression profile markedly dif-
ferent from that of conventional ALL.

MLL shows multilineage gene expression

Inspection of the genes differentially expressed
between MLL and ALL isinstructive (Fig. 1). Many
genes underexpressed in MLL have a function in
carly B-cell development. These include genes
expressed in carly B cells'"5, MME, CD24, CD22

Signatures

Fig. 1 Genes that distinguish ALL from MLL. The 100 genes
that are most highly correlated with the class distinction are 1 M >
shown. Each column represents a leukenia sample, and each et
rovs represents an individual gene. Expression levek are nor- = us

malized for each gene, where the mean is 0, expression levels
greater than the mean are shown in red and levels less than
the mean are in blue. Inaeasing distance from the mean is
represented by increasing color intensity. The top 50 genes
are relatively underexpressed and the bottom 50 geres rela
tively overexpressed in MLL. Gene accession numbers and the
gene symbols or DNA sequence names are labeled on the
right. Individual samples are arranged such that column 1 cor-
responds to ALL patient 1, column 2 corresponds to ALL
patient 2, and =o on. Information about the samples alkng
with the top 200 genes that make the ALUMLL distinction
and their accession numbers can be found on cur web site
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exactly the gernunal centre phenotype nivitro, as determined by the
failure of a variety of activation conditions to induce the expression
of BCL-6 protein, a highly specific marker for germinal centre B

snature of germmal centre B cells was reproduced virnally
unchanged in FL, supporting the view that this lymphoma arises
from this stage of Bcell differentiation (Fig. 2).
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granuloma. The difference in the gene ex-
pression profiles between the two leprosy
subclasses suggested that their differences
in disease manifestation may reflect two
opposing gene expression programs that
influence the type of host response (/0).
The most pronounced differences in T-lep
and L-lep gene expression profiles were
among genes within the immune response
family (Fig. 3). The gene expression pro-
files were consistent with previous data
showing that type 1 cytokines associated
with cell-mediated immunity predominate
in T-lep lesions, whereas type 2 cytokines
predominate in L-lep lesions (2, /1. 12).
For example. genes encoding the type |
cytokines lymphotoxin-a. interleukin (IL)-
7. and IL-15 were comparatively up-regu-

lated in T-lep lesions, as well as genes

encoding CD1b and signaling lymphocytic

activation molecule (SLAM), two mole- II I

cules previously linked to cell-mediated

immunity and type-l cytokine production I I
in these patients (/3-15). In contrast, L-lep

lesions differentially expressed the type 2

cytokines transforming growth factor—8

and [L-5, as well as IL4 and IL-10, al- LIL213 141818
though the differences in gene expression " Lelep patients
for the latter two genes between the patient

groups were not statistically significant

(P not = 0.05) and were instead confirmed

by quantitative polymerase chain reaction

(qPCR) (&). As part of the type 2 pattern,

L-lep lesions also exhibited marked up-

negu!atlon' of genes r_elated to humqml m- low ROV high
munity, including immunoglobulin (Ig) 1 ;

heavy and light chains and molecules in- Relative cxpression

volved in B cell activation. Cix 1 Twua nncninarsicad Aata anshicac canarata lanrac natiante inta clinically ralovart cohelaceac
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Distance

Clustering organizes things that are close into
groups

What does it mean for two genes to be close?

What does it mean for two samples to be
close?

Once we know this, how do we define groups?



Distance

« We need a mathematical definition of
distance between two points

- What are points?

- If each gene is a point, what is the
mathematical definition of a point?



Points

- Genel= (E,,, E121 nany E1N),
« Gene2= (E215 E225 meny EZN),

» Sample1=(E,,, E,;, ..., Eg,)’
+ Sample2= (E,,, E,,, ..., Eg,)’

+ E =expression gene g, sample i



Most Famous Distance

- Euclidean distance
— Example distance between gene 1 and 2:

— Sqrt of Sum of (E,, E,)?, i=1,...,N
- When Nis 2, this is distance as we know it:

Baltimore

— Distance
Latitude

Longitud

DC

When Nis 20,000 you have to think abstractly



Similarity

- Instead of distance, clustering can use
similarity

- If we standardize points then Euclidean
distance is equivalent to using absolute
value of correlation as a similarity index

- Other examples:
— Spearman correlation
— Categorical measures



The similarity/distance
matrices
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DATA MATRIX GENE SIMILARITY MATRIX



The similarity/distance
matrices

—h
—h

SAMPLE SIMILARITY MATRIX

G

DATA MATRIX



Hierarchical

 Divide all points into 2. Then divide each
group into 2. Keep going until you have
groups of 1 and can not divide further.

 This is divisive or top-down hierarchical
clustering. There is also agglomerative
clustering or bottom-up



Dendrograms

- We can then make
dendrograms
showing divisions

* The y-axis A el
represents the
distance between the
groups divided at
that point
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Note: Left and right is assigned arbitrarily.
Look at the hieght of division to find out distance.
For example, S5 and S16 are very far.



But how do we form actual
clusters?

We need to pick a height
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How to make a hierarchical clustering

. Choose samples and genes to include in

cluster analysis
Choose similarity/distance metric

Choose clustering direction (top-down or
bottom-up)

Choose linkage method (if bottom-up)
Calculate dendrogram

Choose height/number of clusters for
interpretation

Assess cluster fit and stability
Interpret resulting cluster structure



1. Choose samples and genes to include

Important step!
Do you want housekeeping genes included?

What to do about replicates from the same individual/
tumor?

Genes that contribute noise will affect your results.

Including all genes: dendrogram can’t all be seen at
the same time.

Perhaps screen the genes?



Height

140

135

130

125

Simulated Data with 4 clusters: 1-10,

(A)

70

A: 450 relevant genes plus
450 “noise” genes.

, 21-30,31-40

(B)

B: 450 relevant genes.




2. Choose similarity/distance matrix

Think hard about this step!
Remember: garbage in = garbage out

The metric that you pick should be a valid measure
of the distance/similarity of genes.

Examples:

— Applying correlation to highly skewed data will provide
misleading results.

— Applying Euclidean distance to data measured on
categorical scale will be invalid.

Not just “wrong”, but which makes most sense



Some correlations to choose from

K
Pearson Correlation: Y (% = X)(xy - X,)
k=1
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The difference is that, if you have two vectors X and Y with identical
shape, but which are offset relative to each other by a fixed value,
they will have a standard Pearson correlation (centered correlation)
of 1 but will not have an uncentered correlation of 1.



3. Choose clustering direction
(top-down or bottom-up)

- Agglomerative clustering (bottom-up)
— Starts with as each gene in its own cluster
— Joins the two most similar clusters
— Then, joins next two most similar clusters
— Continues until all genes are in one cluster

- Divisive clustering (top-down)
— Starts with all genes in one cluster

— Choose split so that genes in the two clusters are most
similar (maximize “distance” between clusters)

— Find next split in same manner
— Continue until all genes are in single gene clusters



Which to use?

Both are only ‘step-wise’ optimal: at each step the
optimal split or merge is performed

This does not imply that the final cluster structure is
optimal!
Agglomerative/Bottom-Up

— Computationally simpler, and more available.

— More “precision” at bottom of tree

— When looking for small clusters and/or many clusters, use
agglomerative

Divisive/Top-Down
— More “precision” at top of tree.
— When looking for large and/or few clusters, use divisive

In gene expression applications, divisive makes more
sense.

Results ARE sensitive to choice!
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4. Choose linkage method (if bottom-up)

- Single Linkage: join clusters
whose distance between closest
genes is smallest (elliptical) -
‘c

- Complete Linkage: join clusters
whose distance between furthest
genes is smallest (spherical)

- Average Linkage: join clusters

whose average distance is the
smallest.

G




5. Calculate dendrogram
6. Choose height/number of clusters for
interpretation

In gene expression, we don’t see “rule-based”
approach to choosing cutoff very often.

Tend to look for what makes a good story.
There are more rigorous methods. (more later)

“Homogeneity” and “Separation” of clusters can be
considered. (Chen et al. Statistica Sinica, 2002)

Other methods for assessing cluster fit can help
determine a reasonable way to “cut” your tree.



K-means

« We start with some

data

* Interpretation:
— We are showing

expression for two o’
samples for 14 genes °0®
— We are showing ®

expression for two
genes for 14 samples

- This is simplifaction




K-means

« Choose K centroids

- These are starting
values that the user
picks.

- There are some data
driven ways to do it




K-means

- Make first partition

by finding the

closest centroid for

each point @

- This is where o
distance is used 0@




K-means

* Now re-compute the

centroids by taking
the middle of each

cluster




K-means

- Repeat until the
centroids stop
moving or until you
get tired of waiting

®)

G

o X




K-medoids

« A little different

- Centroid: The average of

- Initializing requires

the samples within a ®
cluster o°

Medoid: The
“representative object” ®
within a cluster. 0O

O

choosing medoids at O
random. ©




K-means Limitations

* Final results depend on starting values

- How do we chose K? There are methods
but not much theory saying what is best.

- Where are the pretty pictures?



Model-Based Clustering

« Choose K centroids

- These are starting ®
values that the user X o ®
picks. ‘

 There are some data o. X
driven ways to do it % X

® O
° ([
([




Model-Based Clustering

* No partitions now

- Assumption:

O

— Each cluster can be @ ©
modeled by a ©
parametric

distribution : X
AN
o

fi(z) ~ N(pp, o°)




Model-Based Clustering

* No partitions now

- Points can be ®
assigned to clusters e ®
with a probability ®

X)) ° X
P(cl(xz) = k|©) = iff;z()x)zl ‘® ® o




Model-Based Clustering

* Now re-compute the

centroids by taking o
the weighted mean o ©
of each cluster ®
,[lk — Zz ik i @
D i Zik < .i .X.
o
zi, = P(cl(z;) = k[O) °

2
* New: ré-compute
scale( )froma
weighted variance



Model-Based Clustering

- The general case:

fr(z) ~ N(p, Xi) ®




Model-Based Clustering

- Another way to look

at it:
— we have data points O
(:Bia Az)

— /\;is cluster X

assignment © G
O

— Which we don’t O

observe

- i.e. missing data



Model-Based Clustering

- Another way to look

at It:
— we have data points O
(:Bia Az)
— A\, is cluster %
assignment © G
— We just described the ° O
EM algorithm to get

MLE’s of means and
variances



Model-Based Clustering

- Yet another (but

similar) way to look

at it: °

— f(X) is a mixture of ©
normails

— X

f(x) ;kak(w) oo,

— EM s one algorithm ° @
to get MLEs of the

mixture components



7. Assess cluster fit and stability

PART OF THE MISUNDERSTOOD!

Most often ignored.

Cluster structure is treated as reliable and precise

BUT! Usually the structure is rather unstable, at least at the
bottom.

Can be VERY sensitive to noise and to outliers

Homogeneity and Separation

Cluster Silhouettes and Silhouette coefficient: how similar genes
within a cluster are to genes in other clusters (composite
separation and homogeneity) (more later with K-medoids)
(Rousseeuw Journal of Computation and Applied Mathematics,
1987)



Assess cluster fit and stability (continued)

- WADP: Weighted Average Discrepant Pairs
— Bittner et al. Nature, 2000
— Fit cluster analysis using a dataset
— Add random noise to the original dataset
— Fit cluster analysis to the noise-added dataset
— Repeat many times.
— Compare the clusters across the noise-added datasets.

« Consensus Trees
— Zhang and Zhao Functional and Integrative Genomics, 2000.

— Use parametric bootstrap approach to sample new data
using original dataset

— Proceed similarly to WADP.

— Look for nodes that are in a “majority” of the bootstrapped
trees.

« More not mentioned.....



Careful though....

- Some validation approaches are more
suited to some clustering approaches
than others.

* Most of the methods require us to define
number of clusters, even for hierarchical
clustering.

— Requires choosing a cut-point

— |f true structure is hierarchical, a cut tree
won’t appear as good as it might truly be.



Final Thoughts

The most overused statistical method in gene
expression analysis

Gives us pretty red-green picture with patterns

But, pretty picture tends to be pretty unstable.

Many different ways to perform hierarchical clustering
Tend to be sensitive to small changes in the data

Provided with clusters of every size: where to “cut”
the dendrogram is user-determined



