Unsupervised Methods

(mostly clustering)

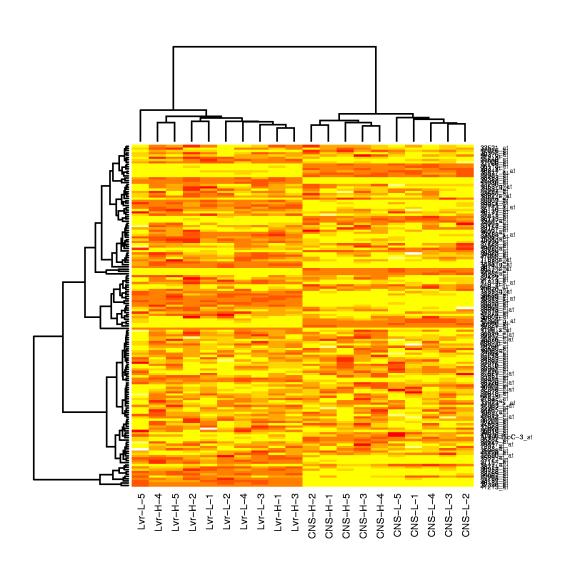
Unsupervised Methods

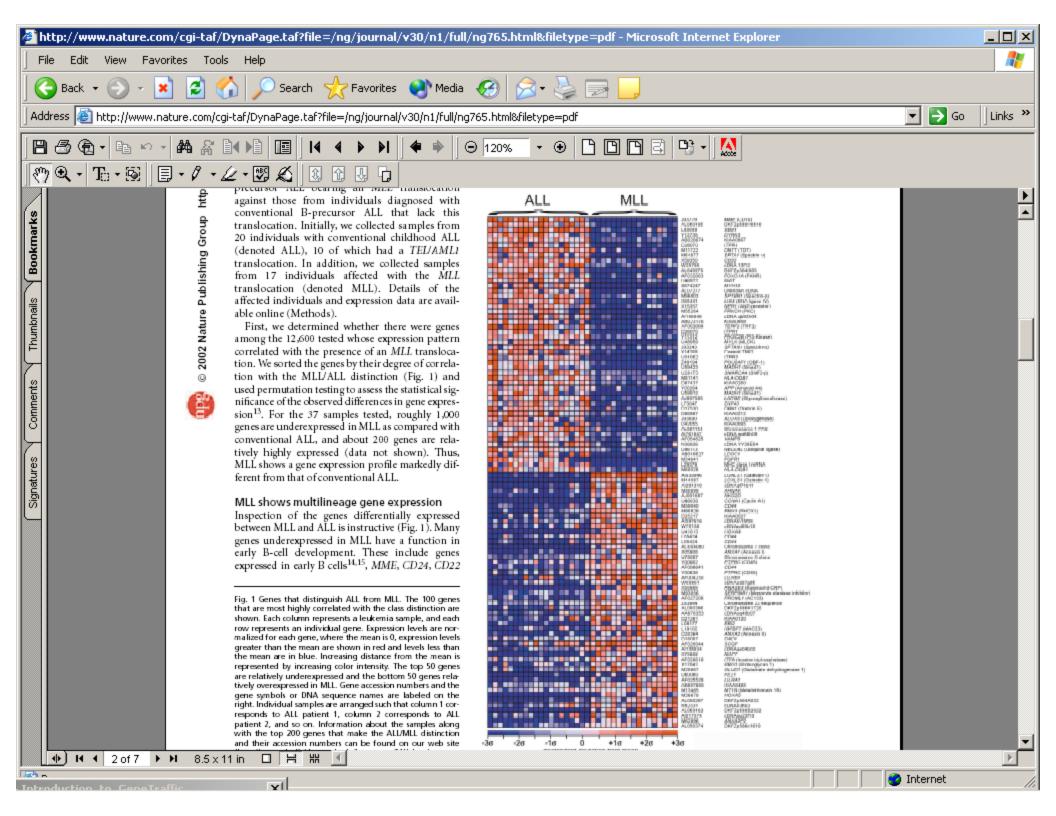
- All this time in class we have seen supervised methods:
 - Data have outcomes: (x_i, y_i)
- In this section, we will look at data without outcomes
- Previously, we cared about P(X,Y), but concentrated on P(Y | X) since that's what matters for prediction
- Now, we want P(X) since there is no outcome Y

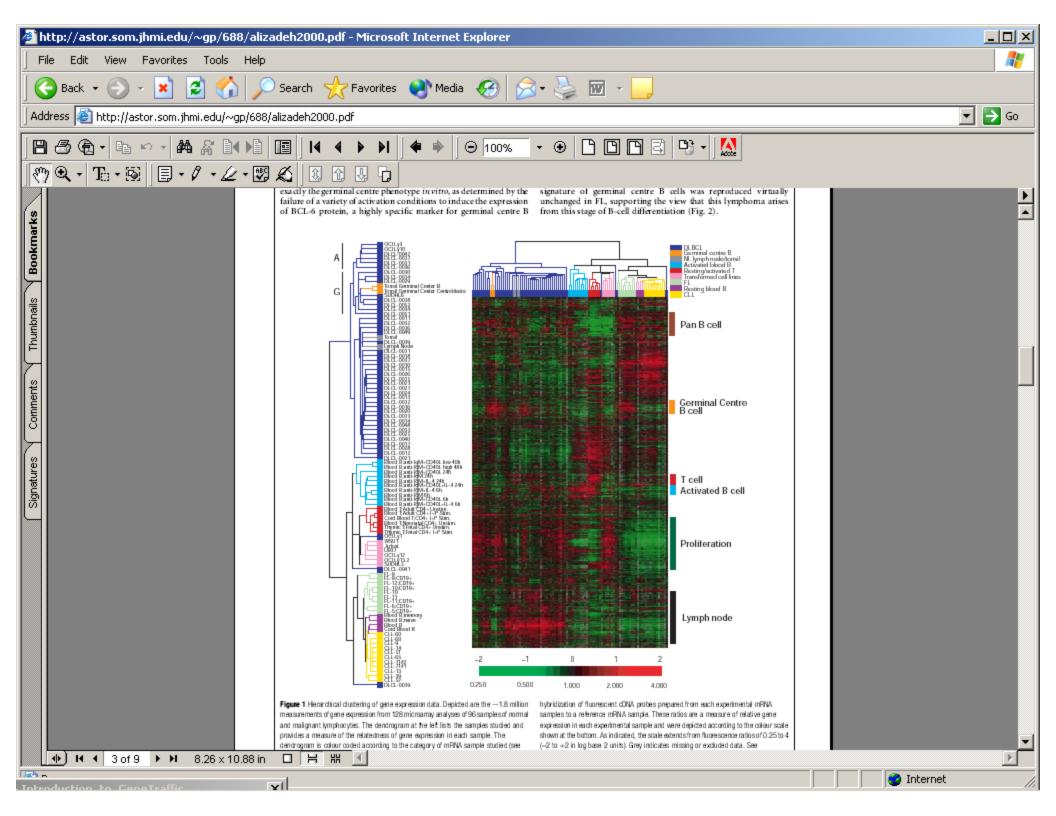
Outline

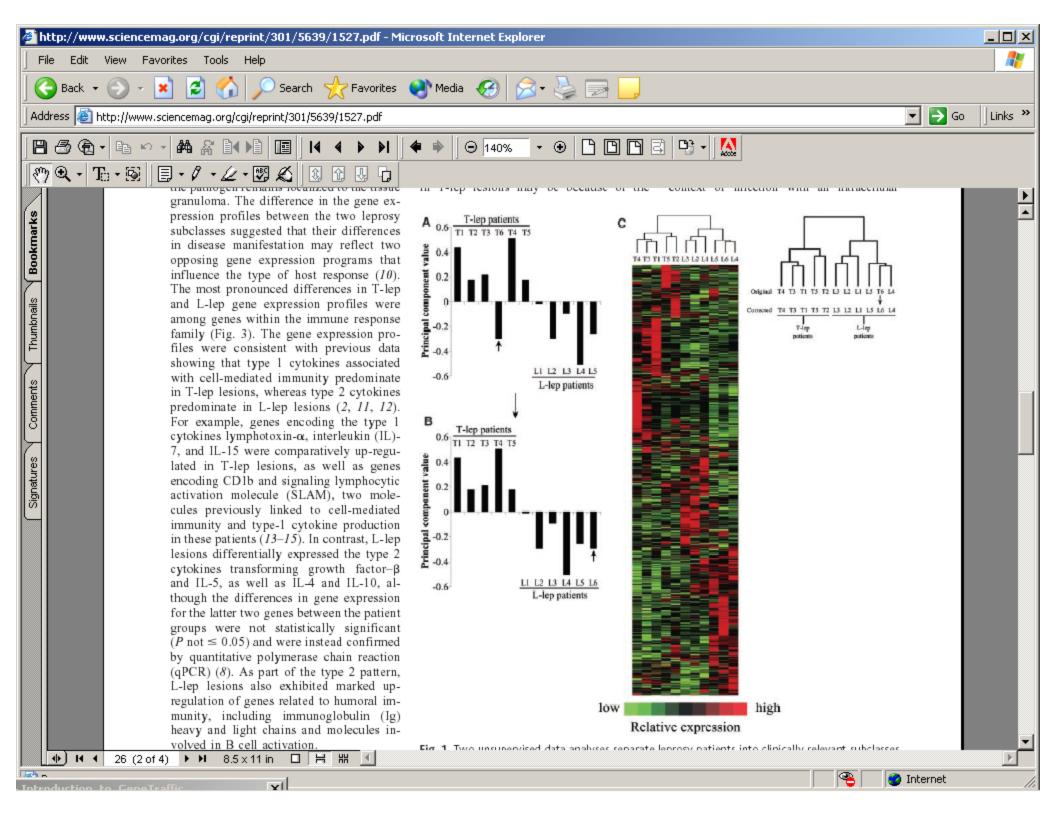
- Hierarchical Clustering
- K-means (and K-medioids) clustering
- Model-Based clustering (Gaussian Mixture Models)
 - EM algorithm

Heatmaps









Distance

- Clustering organizes things that are close into groups
- What does it mean for two genes to be close?
- What does it mean for two samples to be close?
- Once we know this, how do we define groups?

Distance

 We need a mathematical definition of distance between two points

What are points?

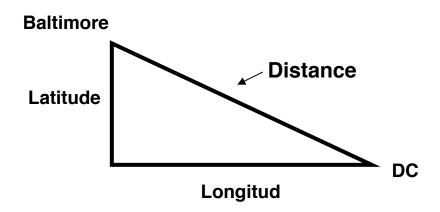
 If each gene is a point, what is the mathematical definition of a point?

Points

- Gene1= $(E_{11}, E_{12}, ..., E_{1N})$
- Gene2= $(E_{21}, E_{22}, ..., E_{2N})$ '
- Sample1= $(E_{11}, E_{21}, ..., E_{G1})$ '
- Sample2= $(E_{12}, E_{22}, ..., E_{G2})$
- E_{gi} =expression gene g, sample i

Most Famous Distance

- Euclidean distance
 - Example distance between gene 1 and 2:
 - Sqrt of Sum of $(E_{1i}-E_{2i})^2$, i=1,...,N
- When N is 2, this is distance as we know it:

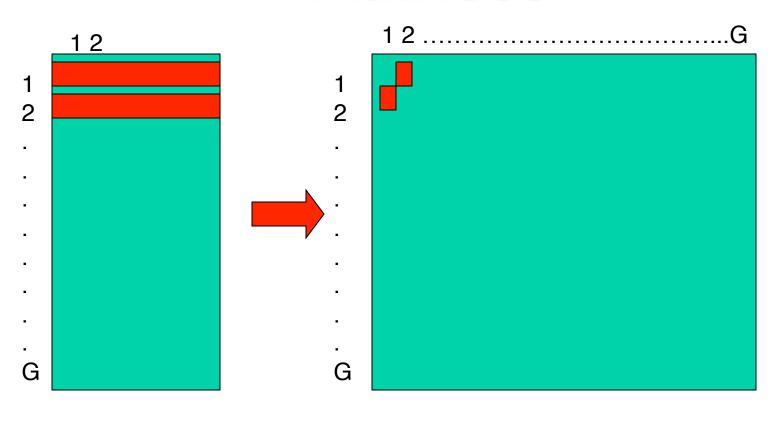


When N is 20,000 you have to think abstractly

Similarity

- Instead of distance, clustering can use similarity
- If we standardize points then Euclidean distance is equivalent to using absolute value of correlation as a similarity index
- Other examples:
 - Spearman correlation
 - Categorical measures

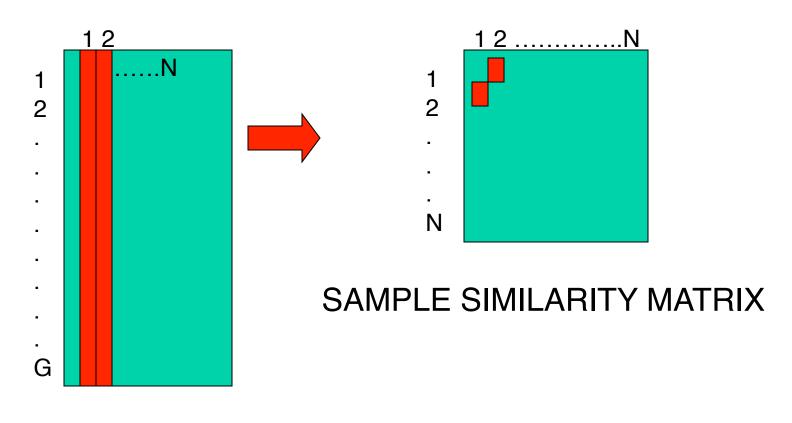
The similarity/distance matrices



DATA MATRIX

GENE SIMILARITY MATRIX

The similarity/distance matrices



DATA MATRIX

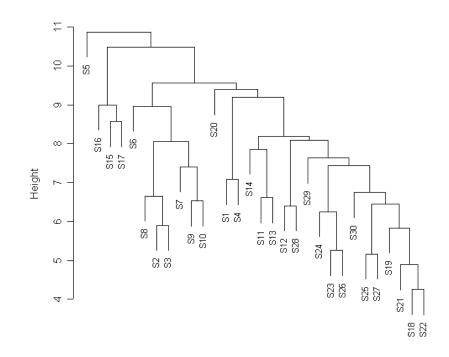
Hierarchical

 Divide all points into 2. Then divide each group into 2. Keep going until you have groups of 1 and can not divide further.

 This is divisive or top-down hierarchical clustering. There is also agglomerative clustering or bottom-up

Dendrograms

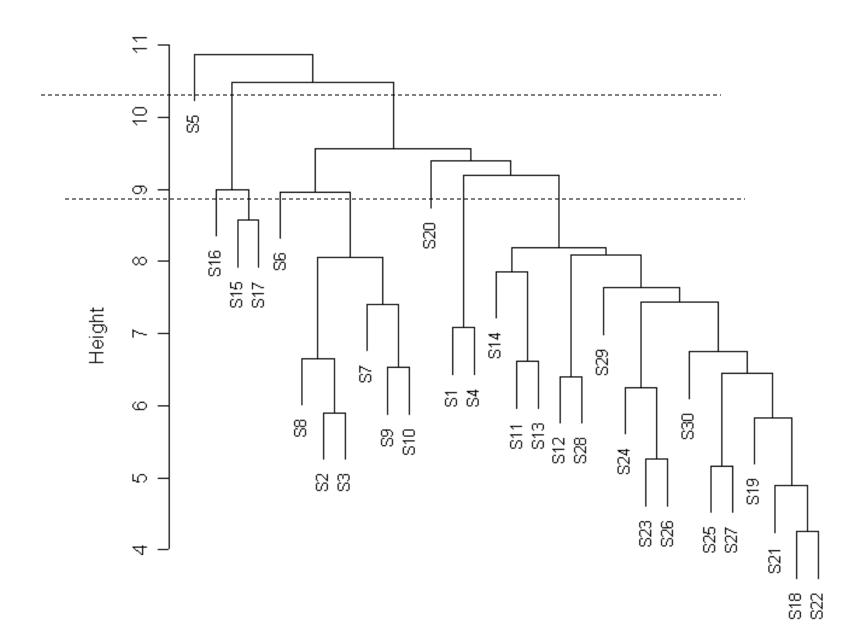
- We can then make dendrograms showing divisions
- The y-axis represents the distance between the groups divided at that point



Note: Left and right is assigned arbitrarily. Look at the hieght of division to find out distance. For example, S5 and S16 are very far.

But how do we form actual clusters?

We need to pick a height



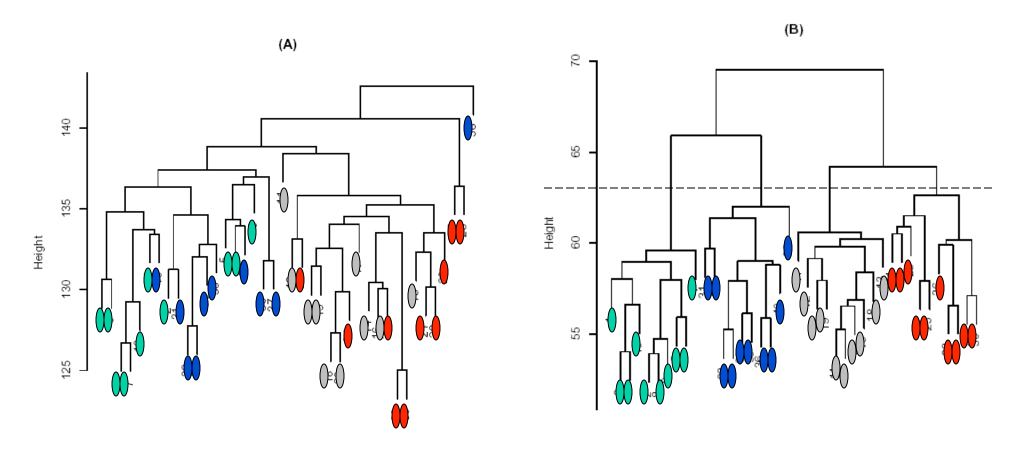
How to make a hierarchical clustering

- 1. Choose samples and genes to include in cluster analysis
- 2. Choose similarity/distance metric
- 3. Choose clustering direction (top-down or bottom-up)
- 4. Choose linkage method (if bottom-up)
- 5. Calculate dendrogram
- 6. Choose height/number of clusters for interpretation
- 7. Assess cluster fit and stability
- 8. Interpret resulting cluster structure

1. Choose samples and genes to include

- Important step!
- Do you want housekeeping genes included?
- What to do about replicates from the same individual/ tumor?
- Genes that contribute noise will affect your results.
- Including all genes: dendrogram can't all be seen at the same time.
- Perhaps screen the genes?

Simulated Data with 4 clusters: 1-10, 11-20, 21-30, 31-40



A: 450 relevant genes plus 450 "noise" genes.

B: 450 relevant genes.

2. Choose similarity/distance matrix

- Think hard about this step!
- The metric that you pick should be a valid measure of the distance/similarity of genes.
- Examples:
 - Applying correlation to highly skewed data will provide misleading results.
 - Applying Euclidean distance to data measured on categorical scale will be invalid.
- Not just "wrong", but which makes most sense

Some correlations to choose from

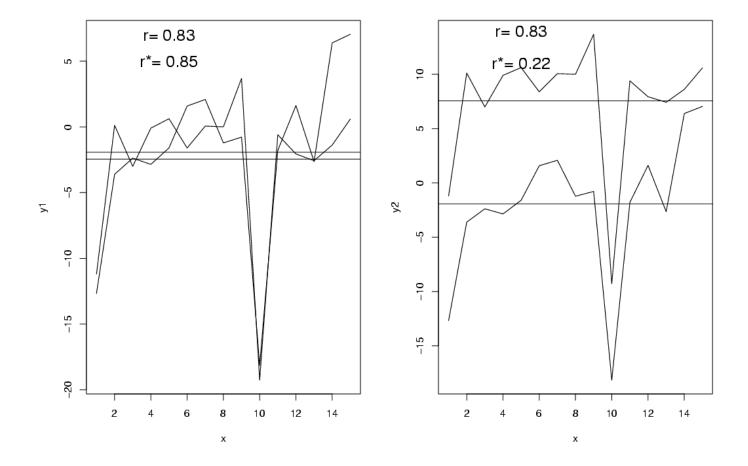
Pearson Correlation: $s(x_1, x_2) = \frac{\sum_{k=1}^{K} (x_{1k} - \overline{x}_1)(x_{2k} - \overline{x}_2)}{\sqrt{\sum_{k=1}^{K} (x_{1k} - \overline{x}_1)^2 \sum_{k=1}^{K} (x_{2k} - \overline{x}_2)^2}}$

Uncentered Correlation:

$$S(x_1, x_2) = \frac{\sum_{k=1}^{K} x_{1k} x_{2k}}{\sqrt{\sum_{k=1}^{K} x_{1k}^2 \sum_{k=1}^{K} x_{2k}^2}}$$

 Absolute Value of Correlation:

$$s(x_1, x_2) = \frac{\sum_{k=1}^{K} (x_{1k} - \overline{x}_1)(x_{2k} - \overline{x}_2)}{\sqrt{\sum_{k=1}^{K} (x_{1k} - \overline{x}_1)^2 \sum_{k=1}^{K} (x_{2k} - \overline{x}_2)^2}}$$



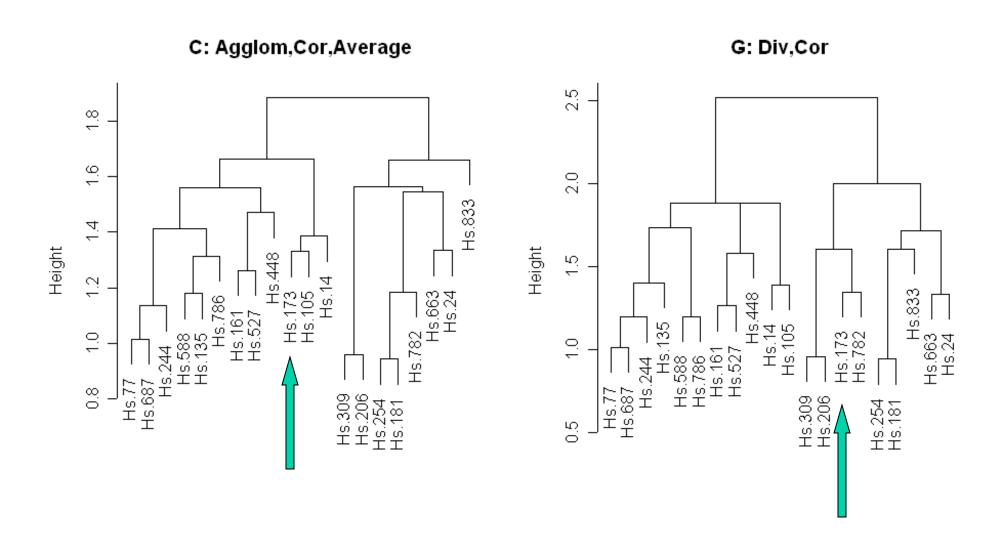
The difference is that, if you have two vectors X and Y with identical shape, but which are offset relative to each other by a fixed value, they will have a standard Pearson correlation (centered correlation) of 1 but will not have an uncentered correlation of 1.

3. Choose clustering direction (top-down or bottom-up)

- Agglomerative clustering (bottom-up)
 - Starts with as each gene in its own cluster
 - Joins the two most similar clusters
 - Then, joins next two most similar clusters
 - Continues until all genes are in one cluster
- Divisive clustering (top-down)
 - Starts with all genes in one cluster
 - Choose split so that genes in the two clusters are most similar (maximize "distance" between clusters)
 - Find next split in same manner
 - Continue until all genes are in single gene clusters

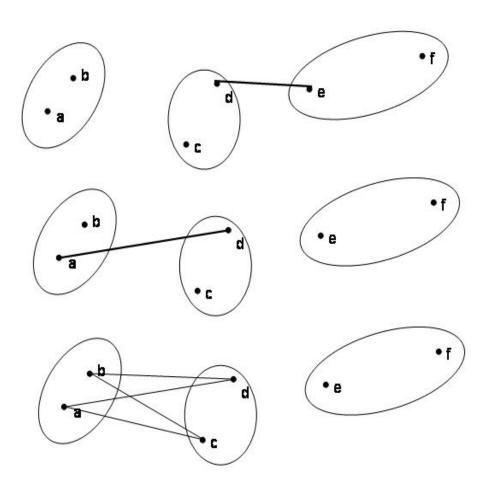
Which to use?

- Both are only 'step-wise' optimal: at each step the optimal split or merge is performed
- This does not imply that the final cluster structure is optimal!
- Agglomerative/Bottom-Up
 - Computationally simpler, and more available.
 - More "precision" at bottom of tree
 - When looking for small clusters and/or many clusters, use agglomerative
- Divisive/Top-Down
 - More "precision" at top of tree.
 - When looking for large and/or few clusters, use divisive
- In gene expression applications, divisive makes more sense.
- Results ARE sensitive to choice!



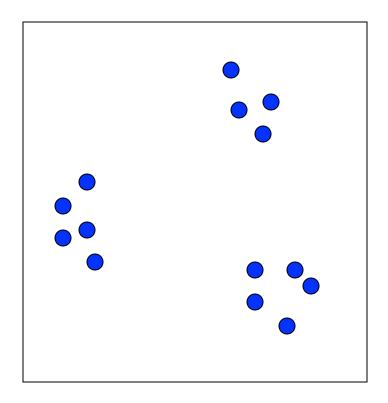
4. Choose linkage method (if bottom-up)

- Single Linkage: join clusters whose distance between closest genes is smallest (elliptical)
- Complete Linkage: join clusters whose distance between furthest genes is smallest (spherical)
- Average Linkage: join clusters whose average distance is the smallest.



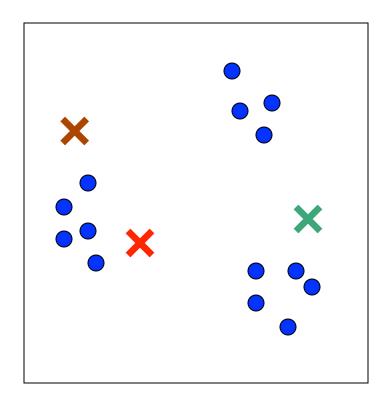
- 5. Calculate dendrogram
- 6. Choose height/number of clusters for interpretation
- In gene expression, we don't see "rule-based" approach to choosing cutoff very often.
- Tend to look for what makes a good story.
- There are more rigorous methods. (more later)
- "Homogeneity" and "Separation" of clusters can be considered. (Chen et al. Statistica Sinica, 2002)
- Other methods for assessing cluster fit can help determine a reasonable way to "cut" your tree.

- We start with some data
- Interpretation:
 - We are showing expression for two samples for 14 genes
 - We are showing expression for two genes for 14 samples
- This is simplifaction



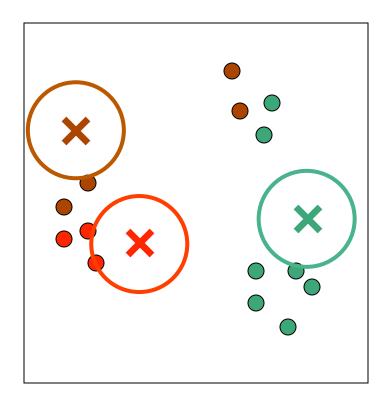
Iteration = 0

- Choose K centroids
- These are starting values that the user picks.
- There are some data driven ways to do it



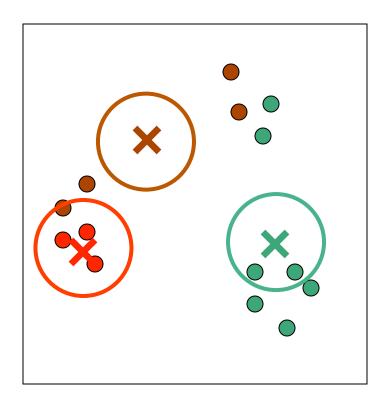
Iteration = 0

- Make first partition by finding the closest centroid for each point
- This is where distance is used



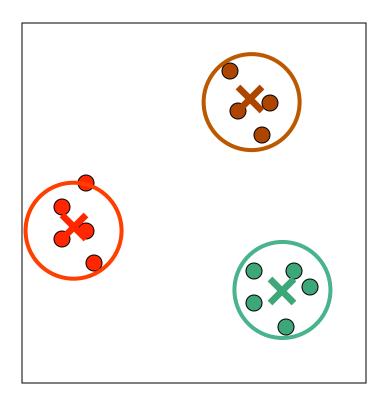
Iteration = 1

 Now re-compute the centroids by taking the *middle* of each cluster



Iteration = 2

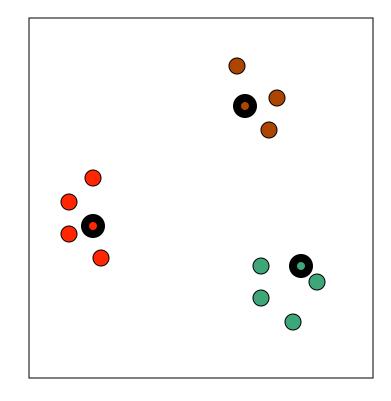
 Repeat until the centroids stop moving or until you get tired of waiting



Iteration = 3

K-medoids

- A little different
- Centroid: The average of the samples within a cluster
- Medoid: The "representative object" within a cluster.
- Initializing requires choosing medoids at random.



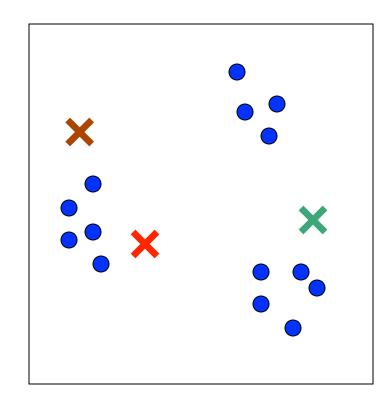
K-means Limitations

Final results depend on starting values

 How do we chose K? There are methods but not much theory saying what is best.

Where are the pretty pictures?

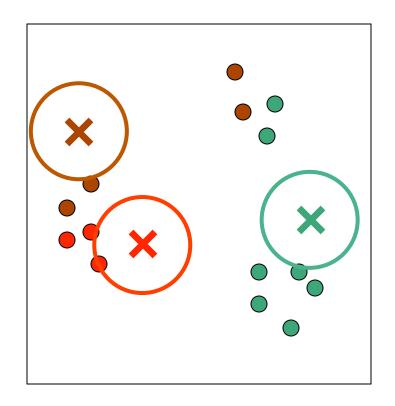
- Choose K centroids
- These are starting values that the user picks.
- There are some data driven ways to do it



Iteration = 0

- No partitions now
- Assumption:
 - Each cluster can be modeled by a parametric distribution

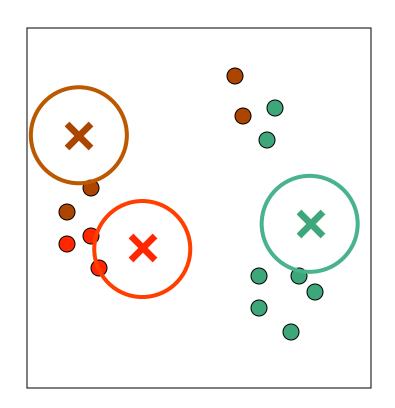
$$f_k(x) \sim N(\mu_k, \sigma^2 \mathbf{I})$$



Iteration = 1

- No partitions now
- Points can be assigned to clusters with a probability

$$P(cl(x) = k|\Theta) = \frac{f_k(x)\pi_k}{\sum_l f_l(x)\pi_l}$$



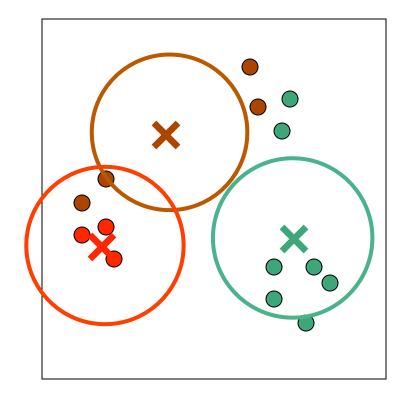
Iteration = 1

 Now re-compute the centroids by taking the weighted mean of each cluster

$$\hat{\mu}_k = \frac{\sum_i z_{ik} x_i}{\sum_i z_{ik}}$$

$$z_{ik} = P(cl(x_i) = k|\Theta)$$

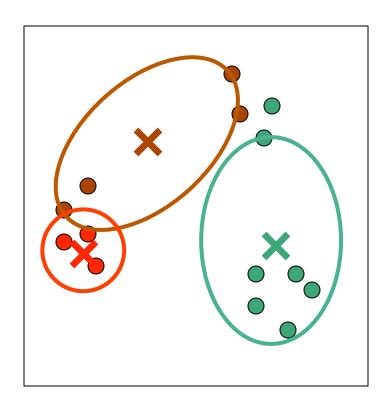
New: recompute scale () from a weighted variance



Iteration = 2

The general case:

$$f_k(x) \sim N(\mu_k, \Sigma_k)$$

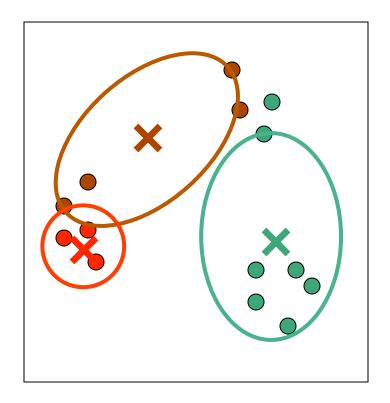


Iteration = 2

- Another way to look at it:
 - we have data points

$$(x_i, \Delta_i)$$

- Δ_i is cluster assignment
- Which we don't observe
 - · i.e. missing data

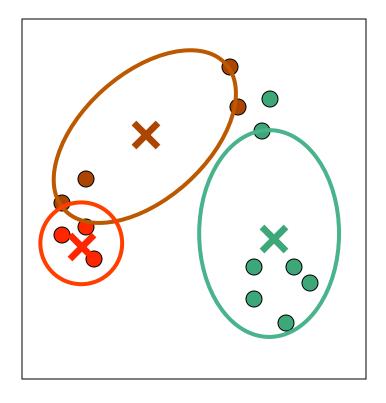


Iteration = 2

- Another way to look at it:
 - we have data points

$$(x_i, \Delta_i)$$

- Δ_i is cluster assignment
- We just described the EM algorithm to get MLE's of means and variances

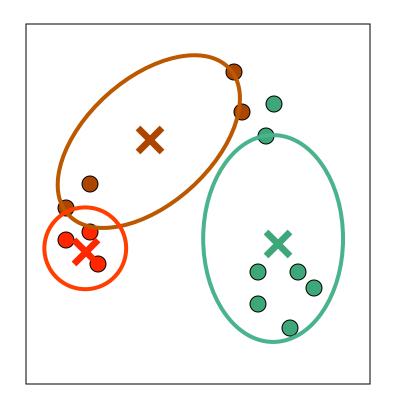


Iteration = 2

- Yet another (but similar) way to look at it:
 - f(X) is a mixture of normals

$$f(x) = \sum_{k} \pi_k f_k(x)$$

 EM is one algorithm to get MLEs of the mixture components



Iteration = 2

7. Assess cluster fit and stability

- PART OF THE MISUNDERSTOOD!
- Most often ignored.
- Cluster structure is treated as reliable and precise
- BUT! Usually the structure is rather unstable, at least at the bottom.
- Can be VERY sensitive to noise and to outliers
- Homogeneity and Separation
- Cluster Silhouettes and Silhouette coefficient: how similar genes within a cluster are to genes in other clusters (composite separation and homogeneity) (more later with K-medoids) (Rousseeuw Journal of Computation and Applied Mathematics, 1987)

Assess cluster fit and stability (continued)

WADP: Weighted Average Discrepant Pairs

- Bittner et al. Nature, 2000
- Fit cluster analysis using a dataset
- Add random noise to the original dataset
- Fit cluster analysis to the noise-added dataset
- Repeat many times.
- Compare the clusters across the noise-added datasets.

Consensus Trees

- Zhang and Zhao Functional and Integrative Genomics, 2000.
- Use parametric bootstrap approach to sample new data using original dataset
- Proceed similarly to WADP.
- Look for nodes that are in a "majority" of the bootstrapped trees.
- More not mentioned.....

Careful though....

- Some validation approaches are more suited to some clustering approaches than others.
- Most of the methods require us to define number of clusters, even for hierarchical clustering.
 - Requires choosing a cut-point
 - If true structure is hierarchical, a cut tree won't appear as good as it might truly be.

Final Thoughts

- The most overused statistical method in gene expression analysis
- Gives us pretty red-green picture with patterns
- But, pretty picture tends to be pretty unstable.
- Many different ways to perform hierarchical clustering
- Tend to be sensitive to small changes in the data
- Provided with clusters of every size: where to "cut" the dendrogram is user-determined