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Grace Wahba

Departments of Statistics and
Biostatistics and Medical Informatics

University of Wisconsin-Madison
Madison, WI 53706

Abstract

We present a novel method for estimating
tree-structured covariance matrices directly
from observed continuous data. Specifically,
we estimate a covariance matrix from obser-
vations of p continuous random variables en-
coding a stochastic process over a tree with
p leaves. A representation of these classes of
matrices as linear combinations of rank-one
matrices indicating object partitions is used
to formulate estimation as instances of well-
studied numerical optimization problems.

In particular, our estimates are based on pro-
jection, where the covariance estimate is the
nearest tree-structured covariance matrix to
an observed sample covariance matrix. The
problem is posed as a linear or quadratic
mixed-integer program (MIP) where a setting
of the integer variables in the MIP specifies
a set of tree topologies of the structured co-
variance matrix. We solve these problems to
optimality using efficient and robust existing
MIP solvers.

We present a case study in phylogenetic anal-
ysis of gene expression and a simulation study
comparing our method to distance-based tree
estimating procedures.

1 INTRODUCTION

In this paper, we formulate the problem of estimating
a tree-structured covariance matrix from observations
of multivariate continuous random variables as mixed-
integer programs (MIP) (Bertsimas and Weismantel,
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2005; Wolsey and Nemhauser, 1999). Specifically, we
estimate the covariance matrix of p continuous ran-
dom variables that encode a stochastic process over a
tree where the p variables are observed at the leaves.
In particular, we look at estimates that arise from
projection problems that compute the nearest tree-
structured matrix to the observed sample covariance.
These projection problems lead to linear or quadratic
mixed integer programs for which algorithms for global
solutions are well known and reliable production codes
exist. The formulation of these problems hinges on a
representation of a tree-structured covariance matrix
as a linear expansion of outer products of indicator
vectors that specify nested partitions of objects.

Our setting is similar to the well-known problem
of Chow and Liu (1968) except for two key differences:
a) in the Chow-Liu setting all variables are observed
while in our case we assume observations are made
only at the leaves of the tree, b) the stochastic model
under which data is assumed to be generated is dif-
ferent in our setting where we assume a continuous
stochastic process over a tree (see Section 2) as op-
posed to the tree specifying a set of second-order con-
ditional independence statements, that is, tree branch
lengths are informative in our case. Our motivation
for this method is the discovery of phylogenetic struc-
ture directly from gene expression data. Recent stud-
ies have adapted existing techniques in population ge-
netics to perform evolutionary analysis of gene ex-
pression (Fay and Wittkopp, 2007; Gu, 2004; Oakley
et al., 2005; Rifkin et al., 2003; Whitehead and Craw-
ford, 2006). Typically, these methods first estimate a
phylogenetic tree from DNA or amino acid sequence
data and subsequently analyze expression data. A co-
variance matrix constructed from the sequence-derived
tree is used to correct for the lack of independence
in the expression of phylogenetically related objects.
However, recent results have shown that the hierar-
chical structure of sequence-derived tree estimates is
highly sensitive to the genomic region chosen to build
them. To circumvent this difficulty, we propose a sta-
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ble method for deriving tree-structured covariance ma-
trices directly from gene expression as an exploratory
step that can guide investigators in their modelling
choices for these types of comparative analysis.

The paper is organized as follows. In Section 2 we
formulate the representation of tree-structured co-
variance matrices and give some results regarding
the space of such matrices. Section 2.3 shows how
to define the constraints that ensure matrices are
tree-structured as constraints in mixed-integer pro-
grams (MIPs) and formulates projection problems un-
der these constraints. Section 3.1 presents simula-
tion results on estimating the tree topology from ob-
served data that show how our MIP-based method
compares favorably to the the well-known Neighbor-
Joining method (Saitou, 1987) using distances com-
puted from the observed covariances. We present our
results on a case study on phylogenetic analysis of ex-
pression in yeast gene families in Section 3.2. A dis-
cussion, including related work, follows in Section 4.

2 TREE-STRUCTURED
COVARIANCE MATRICES

Our objects of study are covariance matrices of dif-
fusion processes defined over trees (Cavalli-Sforza and
Edwards, 1967; Felsenstein et al., 2004). Usually, a
Brownian motion assumption is made on the diffusion
process where steps are independent and normally dis-
tributed with mean zero. However, covariance matri-
ces of diffusion processes with independent steps, mean
zero and finite variance will also have the structure we
are studying here. We do not make any normality as-
sumptions on the diffusion process and, accordingly, fit
covariance matrices by minimizing a projection objec-
tive instead of maximizing a likelihood function. Thus,
for a tree T defined over p objects, our assumption is
that the observed data are realizations of a random
variable Y ∈ Rp with Cov(Y ) = B, where B is a tree-
structured covariance matrix defined by T .

Figure 1 shows a tree with four leaves, corresponding
to a diffusion process for four objects. A rooted tree
defines a set of nested partitions of objects such that
each node in the tree (both interior and leaves) corre-
sponds to a subset of these objects. In our example,
the lower branch exiting the root corresponds to sub-
set {1, 2}. The root of the tree corresponds to the set
of all objects while each leaf node corresponds to a
singleton set. The subset corresponding to an interior
node is the union of the non-overlapping subsets of
that node’s children. Edges are labeled with nonneg-
ative real numbers indicating tree branch lengths.

Denoting B = Cov(Y ), entry Bij is the sum of branch
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Figure 1: A schematic example of a phylogenetic tree
and corresponding covariance matrix. The root is the
leftmost node, while leaves are the rightmost nodes.
Branch lengths are arbitrary nonnegative real num-
bers.

lengths for the path starting at the root and ending
at the last common ancestor of leaves i and j. In our
example, B12 = a12 is the length of the branch from
the root to the node above leaves 1 and 2. For leaf i,
Bii is the sum of the branch lengths of the path from
root to leaf. The covariance matrix B for our example
tree is given in Figure 1(b). If we swap the positions
of labels 3 and 4 in our example tree such that label
3 is the topmost label and construct a covariance ma-
trix accordingly we recover the same covariance ma-
trix B. In fact, any tree that specifies this particular
set of nested partitions and branch lengths generates
the same covariance matrix. All trees that define the
same set of nested partitions are said to be of the same
topology, and we say that covariance matrices that are
generated from trees with the same topology belong to
the same class. However, a tree topology that specifies
a different set of nested partitions generates a different
class of covariance matrices.

2.1 REPRESENTATION

Let d =
[
a12 a34 a1 a2 a3 a4

]T be a column
vector containing the branch lengths of the tree in Fig-
ure 1. We can write B =

∑6
k=1 dkM

k where Mk is a
matrix such that Mk

i,j = 1 if objects i and j co-occur
in the subset corresponding to the node where branch
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k ends.

We can use indicator vectors vk to specify the Mk

matrices in the linear expansion of B as outer prod-
ucts of vk with itself. For example, letting v1 =[
1 1 0 0

]T , we get M1 = v1v
T
1 . Thus, using vec-

tors vk we can write B =
∑6
k=1 dkvkv

T
k and defining

matrices V =
[
v1 v2 . . . v6

]
and D = diag(d), we

can equivalently write B = V DV T . Since the basis
matrix V in this expansion is determined by the nested
partitions defined by the corresponding tree topology,
all covariance matrices of the same class are generated
by linear expansions of a corresponding matrix V with
branch lengths specified in the diagonal matrix D. On
the other hand, a distinct basis matrix V corresponds
to each distinct tree topology. Matrices spanned by
the set of matrices V that correspond to valid parti-
tions are tree-structured covariance matrices. We now
characterize this set of valid V matrices by defining a
partition property, and give a representation theorem
for tree-structured covariance matrices based on this
property.

Definition 1 (Partition Property) A basis matrix
V of size p-by-(2p−1) with entries in {0, 1} and unique
columns has the partition property for trees of size p if
it satisfies the following conditions: 1) V contains the
vector of all ones e = (1, 1, . . . , 1)T ∈ Rp as a column;
and 2) for every column w in V with more than one
non-zero entry, it contains exactly two columns u and
v such that u+ v = w.

A matrix V with the partition property can be con-
structed by starting with the column e ∈ Rp and split-
ting it into two nonzero columns u and v with u+v = e.
These form the next two columns of V . The remaining
columns of V are generated by splitting previously un-
split columns recursively into the sum of two nonzero
columns, until we finally obtain columns with a sin-
gle nonzero. It is easy to see that the total number
of splits is p− 1, with two columns generated at each
split. It follows that V does not contain the the zero
column, and contains all p vectors that contain p − 1
zero terms and a single entry of 1.

Theorem 2 (Tree Covariance Representation)
A matrix B is a tree-structured covariance matrix if
and only if B = V DV T where D is a diagonal matrix
with nonnegative entries and the basis matrix V has
the partition property.

Proof Assume B is a tree-structured covariance
matrix defined by tree T , then construct matrix
V using the method above starting from the root
of T , splitting each vector according to the nested
partitions at each node of T . By construction, V
will satisfy the partition property and by placing

branch lengths, which are non-negative by definition,
in diagonal matrix D we will have B = V DV T . On
the other hand, let B = V DV T with D diagonal and
V having the partition property. Then construct a
tree by the reverse construction: starting at the root
and vector e ∈ Rp, create a nested partition from the
vectors u and v such that u+ v = e which must exist
since V has the partition property. Define branch
lengths from D correspondingly, and continue this
construction recursively. B will then be the covariance
matrix defined by the resulting tree and therefore be
tree-structured.

2.2 CHARACTERISTICS

We now state some facts about the set of tree-
structured covariance matrices which we make use of
in our estimation procedures.

Proposition 3 The set of tree-structured covariance
matrices B = V DV T generated by a single basis ma-
trix V is convex.

Proof Let d1 and d2 be the branch length vec-
tors of tree-structured covariance matrices B1 =
V diag(d1)V T and B2 = V diag(d2)V T . Let θ ∈ [0, 1],
then B = θB1+(1−θ)B2 = V diag(θd1+(1−θ)d2)V T .
So, B is a tree of the same structure with branch
lengths given by θd1 + (1− θ)d2.

We will use this fact to express estimation problems
for trees of fixed topology as convex optimization prob-
lems. However, estimation of general tree-structured
covariance matrices is not so simple, as the set of all
tree-structured covariance matrices is not convex in
general. We can see this in the case p = 3 by con-
sidering the following example. Defining

V1 =

0 0 1 1 1
0 1 0 1 1
1 0 0 0 1

 , V2 =

0 0 1 0 1
0 1 0 1 1
1 0 0 1 1

 ,

we see that V1 and V2 both have the partition prop-
erty. Therefore by Theorem 2, the matrices B1 =
V1diag(d1)V T1 and B2 = V2diag(d2)V T2 are both tree-
structured covariance matrices when d1 and d2 contain
nonnegative entries. If B is a convex combination of
B1 and B2, we will have B12 6= 0 and B23 6= 0 but
B13 = 0. It is not possible to identify a matrix V with
the partition property such that B = V DV T , since
any such V may contain only a single column apart
from the three “unit” columns (1, 0, 0)T , (0, 1, 0)T , and
(0, 0, 1)T , and none of the possible candidates for this
additional column (namely, (1, 1, 0)T , (1, 0, 1)T , and
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(0, 1, 1)T ) can produce the required nonzero pattern
for B. This example can be extended trivially to suc-
cessively higher dimensions p by expanding V1 and V2

appropriately.

2.3 PROJECTION BY MIXED-INTEGER
PROGRAMMING

The non-convexity of the set of tree-structured covari-
ance matrices requires estimation procedures that han-
dle the combinatorial nature of optimization over this
set. We model these problems as mixed-integer pro-
grams (MIPs). In particular, we make use of the fact
that algorithms for mixed-integer linear and quadratic
programs are well understood and that robust produc-
tion codes for solving them are available.

Every tree-structured covariance matrix satisfies the
following properties derived from the linear expansion
in Theorem 2: 1) Bij ≥ 0 for all i and j, since all
entries in V and d are nonnegative; 2) Bii ≥ Bij for
all i and j, since V has the partition property, every
component of d that is added to an off-diagonal entry
is added to the corresponding diagonal entries along
with the component of d corresponding to the column
in V with a single non-zero entry for the corresponding
leaves; 3) Bij ≥ min(Bik, Bjk) for all i, j, and k, with
i 6= j 6= k. Since V has the partition property, then
for every three off-diagonal entries there is one entry
that has at least one fewer component of d added in
than the other two components.

Since every tree-structured covariance matrix can be
expressed as B = V DV T according to Theorem 2, it
is also positive semidefinite, since V DV T =

∑
i diviv

T
i

is the sum of positive semidefinite matrices. Also,
the three properties above follow from the expansion
B = V DV T , therefore any matrix that satisfies these
properties is also positive semidefinite, so we need not
add semidefiniteness constraints in the optimization
problems below. Therefore, we can solve estimation
problems for unknown tree topologies by constrain-
ing covariance matrices to satisfy the above properties.
However, the third constraint is not convex, so we use
integrality constraints to model it.

We begin by rewriting this third constraint for each
distinct triplet i > j > k as a disjunction of three
constraints:

Bij ≥ Bik = Bjk (1a)
Bik ≥ Bij = Bjk (1b)
Bjk ≥ Bij = Bik.. (1c)

This can be derived by noting that the third property
above holds for all orderings of the given i, j, and k
thus preventing any one of the values Bij , Bik, Bjk

Table 1: Mixed integer constraints defining tree-
structured covariance matrices

Bij ≥ 0 ∀i, j (3a)
Bii ≥ Bij ∀i 6= j (3b)
Bij ≥ Bik − (1− ρijk1)M (3c)
Bik ≥ Bjk − (1− ρijk1)M (3d)
Bjk ≥ Bik − (1− ρijk1)M (3e)
Bik ≥ Bij − (1− ρijk2)M (3f)
Bij ≥ Bjk − (1− ρijk2)M (3g)
Bjk ≥ Bij − (1− ρijk2)M (3h)
Bjk ≥ Bij − (ρijk11 + ρijk2)M (3i)
Bij ≥ Bik − (ρijk11 + ρijk2)M (3j)
Bik ≥ Bij − (ρijk11 + ρijk2)M (3k)

ρijk1 + ρijk2 ≤ 1 (3l)
ρijk1, ρijk2 ∈ {0, 1} ∀ i > j > k. (3m)

from being strictly smaller than the other two values,
leading to a tie for the smallest value.

A standard way of modeling disjunctions is to use
{0, 1} variables in the optimization problem (Bertsi-
mas and Weismantel, 2005). In our case we can use
two integer variables ρijk1 and ρijk2, under the con-
straint that ρijk1 +ρijk2 ≤ 1, that is, they can both be
0, or, strictly one of the two is allowed to take the value
1. With these binary variables we can write the con-
straints (1) in a way that the constraint corresponding
to the nonzero-valued binary variable must be satis-
fied. For example, constraint (1a) is transformed to:

Bij ≥ Bik − (1− ρijk1)M (2a)
Bik ≥ Bjk − (1− ρijk1)M (2b)
Bjk ≥ Bik − (1− ρijk1)M, (2c)

where M is a very large positive constant. Constraints
(1b) and (1c) are transformed similarly yielding the
full set of mixed-integer constraints in Table 1. When
ρijk1 = 1, these constraints imply that constraint 1a
is satisfied. However, since ρijk1 = 1 we must have
ρijk2 = 0 which implies that constraints 1b and 1c need
not be satisfied for a solution to be feasible. When
ρijk1 = ρijk2 = 0, then constraint 1c must be satisfied.

We can now give our MIP formulation to the prob-
lem of estimating a tree-structured covariance matrix
when tree topology is unknown. That is, given a sam-
ple covariance matrix S and a basis matrix V , we
find the nearest tree-structured covariance matrix in
norm ‖ · ‖. We will look at problems using Frobenius
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norm, ‖B‖F =
√∑

ij B
2
ij , and sum-absolute-value

(sav) norm, ‖B‖sav =
∑
ij |Bij |.

For Frobenius norm ‖ · ‖F , the problem reduces to a
mixed-integer quadratic program. Let s2 be the vec-
torization of symmetric matrix S such that ‖S‖F =
‖s2‖2, then the nearest tree-structured covariance ma-
trix in Frobenius norm to matrix S is given by the
corresponding matrix representation of solution b̂ of
the following mixed integer quadratic program:

min
b∈Rp(p+1)/2,ρ∈Rp̄

f(b) = 1
2b
T b− sT2 b

s.t. constraints (3a)- (3m) hold for B,

where p̄ = 2p!
(p−3)! .

We can similarly find the nearest tree structured co-
variance matrix in sum-absolute-value (sav) norm.
Letting s1 be the vectorization of symmetric matrix
S such that ‖S‖sav = ‖s1‖1, then the nearest tree-
structured covariance matrix in sum-absolute-value
norm is given by the corresponding matrix represen-
tation of solution b̂ to the MIP above with objective
f(b) = ‖s1 − b‖1.

3 EXPERIMENTAL RESULTS

All experiments and analyses were carried out in R (R
Development Core Team, 2007), and many utilities
of the ape package (Paradis et al., 2004) were used.
We used CPLEX 9.0 (Ilog, 2003) to solve the mixed-
integer programs through an interface to R written
by the authors available at http://cran.r-project.
org/web/packages/Rcplex/.

3.1 SIMULATION STUDY

An alternative method to estimate a tree-structured
covariance matrix from an observed sample covariance
is to use a distance-based tree-building method such
as the Neighbor-Joining (NJ) algorithm (Saitou, 1987)
on distances derived from a sample covariance B as
Dij = Bii + Bjj − 2Bij . In this simulation, we com-
pared how well do tree-structured covariance matrix
estimates reflect the true underlying tree structure of
the data when estimated by this NJ-based method ver-
sus our MIP-based projection methods. We measured
how close tree structures are using the tree topological
distance defined by Penny and Hendy (1985) which
essentially counts the number of mismatched nested
partitions defined by the trees.

For the simulation we first generated ten trees of size
ten at random using the rtree function of the R ape
library (Paradis et al., 2004). This gives ten tree-
structured covariance matrices {B1, . . . , B10} of size

10-by-10. From each tree-structured covariance ma-
trix Bi we drew 10 sample covariances from a Wishart
distribution with mean Bi and the desired degrees of
freedom df . From each of the 10 sampled matrices
we estimated a tree-structured covariance matrix and
recorded its topological distance to the true matrix Bi.
In Figure 2(a) we report the mean topological distance
of the resulting 100 estimates as a function of the de-
grees of freedom df , or number of observations. The
values of the x-axis are defined to satisfy df = 10×2x,
so for x = 0 there are 10 observations in each sample
and so on.

We can see that the method based on NJ is unable to
recover the correct structure even for large numbers of
observations, while the MIP-based method converged
to the correct structure for a sample size 16 times the
number of taxa. Although the topological distances
even for smaller sample sizes are not too large, this
simulation also illustrates that, as expected, having
a large number of replicates is better for this method.
This observation is partly the reason for concatenating
different experiments in the yeast gene-family analysis
of Section 3.2.

3.2 GENE FAMILY ANALYSIS OF YEAST
GENE EXPRESSION

We applied our methods to the analysis of gene
expression in Saccharomyces cerevisiae gene fami-
lies data presented in Oakley et al. (2005) and re-
trieved from "http://www.lifesci.ucsb.edu/eemb/
labs/oakley/pubs/MBE2005data/". Following the
methodology of Gu et al. (2002), the yeast genome
is partitioned into gene families using an amino acid
sequence similarity heuristic. The largest 10 of the
resulting families are used in this analysis with fam-
ily sizes ranging from p = 7 to p = 18 genes. The
gene expression data is from 19 cDNA microarray time
course experiments. Each time point in the series is
the log2 ratio of expression at the given time point to
expression at the base line under varying experimental
conditions. We refer to Oakley et al. (2005) for further
details.

The analysis in Oakley et al. (2005) uses phylogenetic
trees estimated from the coding regions of genes in a
likelihood model to determine if a gene family shows
a phylogenetic effect in each of the 19 experiments.
Therefore, for each gene family and experiment we
have a matrix Ygi of size ni-by-p where ni is the num-
ber of time points in the ith experiment and p is the
gene family size. We partition the experiments of each
gene family into two disjoints sets P = {1, . . . , l} and
NP = {l + 1, . . . , 19} where l is the number of experi-
ments classified as phylogenetic in Oakley et al. (2005).
This partition yields two matrices of measurements for
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Mean topological distance, NJ vs. MIP
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jection under Frobenius norm.

each gene family YgP =
[
Y Tg1 · · · Y Tgl

]T
and sim-

ilarly for YgNP , obtained by concatenating the mea-
surement matrices of experiments in the corresponding
set. The idea of concatenating gene expression mea-
surement matrices directly to estimate covariance was
sparked by the success of Stuart et al. (2003) where
gene expression measurements were concatenated di-
rectly to measure correlation between genes. Since we
will treat the rows of these two matrices as samples
from distributions with EY = 0, we center each row
independently to have mean 0.

We estimate tree-structured covariance matrices B̂gP
and B̂gNP using our MIP projection methods from the
sample covariances obtained from matrices YgP and
YgNP . To describe the strength of the hierarchical
structure of these estimated covariances we define the
structural strength metric as follows:

SS(B) =
1
p

p∑
i=1

maxi 6=j Bij
Bii

. (4)

The term maxi6=j Bij is the largest covariance between
gene i and a different gene j. This is the length of the
path from the root to the immediate ancestor of leaf
i in the corresponding tree. Therefore, the ratio in
SS(B) compares the length of the path from the root
to leaf i to the length of the subpath from the root to
i’s immediate ancestor. A value of SS(B) near zero
means that on average objects have zero covariance,
values near one means that the tree is strongly hier-
archical where objects spend very little time taking
independent steps in the diffusion process.

Under the classification of experiments as undergo-

ing phylogenetic versus non-phylogenetic evolution we
expect that the structural strength metric should be
quite different for estimated tree-structured covari-
ance matrices B̂gP and B̂gNP . That is, we expect
that SS(B̂gP ) ≥ SS(B̂gNP ) for most gene families
g. We show our results in Figure 2(b) which validate
this hypothesis. We plot SS(B̂gP ) versus SS(B̂gNP )
for each gene family g. The diagonal is the area
where SS(B̂gP ) = SS(B̂gNP ). We see that in fact
SS(B̂gP ) > SS(B̂gNP ) for all gene families g except
the Hexose Transport Family.

For illustrative purposes, we examine the resulting
tree for the ABC (ATP-binding cassette) Transporters
gene family (see Jungwirth and Kuchler (2006) for a
short literature review). The eight genes included in
this family are members of the subfamily conferring
pleiotropic drug resistance (PDR) and are all located
in the plasma membrane. A number of transcription
factors have been found for the PDR subfamily, in-
cluding the PDR3 factor considered one of the master
regulators of the PDR network (Delaveau et al., 1994).
Figure 2 shows the tree estimated by the MIP projec-
tion method for this family along with the sequence-
derived tree reported by Oakley et al. (2005). We can
notice topological differences between the two trees, in
particular, the subtree in Figure 2(c) containing genes
YOR328W, YDR406W, YOR153W and YDR011W
indicated in red.

To elucidate this topological difference, we turned to
the characteristics of the promoter (regulatory) regions
of the genes and asked whether transcription factor
(TF) binding site contents of the upstream regions
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Estimated Tree for ABC Transporters Gene Family

YDR011W
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(c)

Sequence−derived Tree for ABC Transporters Gene Family

YDR011W

YNR070W
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YIL013C

YOR011W

(d)

Figure 2: (a) Tree estimated by the MIP projection method using Frobenius norm for the ABC Transporters
gene family. (b) Sequence-derived tree reported by Oakley et al. (2005) for the ABC Transporters gene family.

could account for this difference. For each gene, we
generated a transcription factor binding site occur-
rence vector by simply counting the number of occur-
rences in the 1000 bp upstream of the coding region of
each of 128 known yeast transcription factor binding
site consensus sequences compiled using Gasch et al.
(2004) and the Promoter Database of Saccharomyces
cerevisiae (SCPD) (http://rulai.cshl.edu/SCPD/).
From this data we saw that the presence or absence of
the PDR3 transcription factor binding site in the flank-
ing upstream region may account for the topological
difference apparent in the two estimated trees.

It is known (Delaveau et al., 1994) that the four genes
in red in Figure 2 binding sites are, as opposed to
the other four genes, targets of this transcription fac-
tor which controls the pleiotropic drug resistance phe-
nomenon. The structure of the subtree in Figure 2(c)
corresponding to the PDR3 target genes essentially fol-
lows the frequency of PDR3 occurrences. On the other
hand, the structure of the subtree for the non-PDR3
target genes follows that of the sequence-derived tree
of Figure 2(d). Namely, pairs (YOR011W,YIL013C)
and (YPL058C,YNR070W) are near each other in
both the sequence-derived and the MIP-derived trees.
Therefore, after taking into account the initial split
characterized by the presence of the PDR3 transcrip-
tion factor, the MIP estimated tree (Figure 2(c)) is
similar to the sequence-derived tree (Figure 2(d)).

We reiterate the observation of Oakley et al. (2005)
that the choice of sequence region to create the refer-
ence phylogenetic trees used in their analysis plays a
crucial role and results could vary accordingly. From
our methods, we have found evidence that using up-
stream sequence flanking the coding region might yield
a tree that is better suited to explore the influence of
evolution in gene expression for this particular gene
family. We believe that finding a good estimate for

tree-structured covariance matrices directly from ex-
pression measurements can help investigators guide
their choices for downstream comparative analysis like
that of Oakley et al. (2005).

4 DISCUSSION

The work of McCullagh (McCullagh, 2006) on tree-
structured covariance matrices is the closest to our
work. He proposes the minimax projection to esti-
mate the structure of a given sample covariance ma-
trix. Given this structure, likelihood is maximized as
in Anderson (1973). The minimax projection is in-
dependent of the estimation problem being solved as
opposed to our MIP method which minimizes the es-
timation objective while finding tree structure simul-
taneously. Furthermore, the MIP solver guarantees
optimality upon completion, at the cost of longer ex-
ecution in difficult cases where the optimal trees in
many tree topologies have similar objective values.

MIPs have been used to solve phylogeny estimation
problems for haplotype data (Brown and Harrower,
2006; Sridhar et al., 2008). The observed data from
the tree leaves in this case is haplotype variation rep-
resented as sequences of ones and zeros. Although our
MIP formulation is related, the data in our case is
assumed to be observations from a diffusion process
along a tree, suitable for continuous traits like gene
expression.

We can place the problem of estimating tree-
structured covariance matrices in the broader context
of structured covariance matrix estimation (Anderson,
1973; Li et al., 1999; Schulz, 1997). In our setting,
maximum likelihood problems require that we extend
our computational methods to, for example, determi-
nant maximization problems. Solving these and sim-
ilar types of nonlinear MIPs is an active area of re-
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search in the optimization community (Lee, 2007). In
recent years, the problem of structured covariance ma-
trix estimation has been mainly addressed in its appli-
cation to sparse Gaussian Graphical Models (Baner-
jee and Natsoulis, 2006; Chaudhuri et al., 2007; Drton
and Richardson, 2004). In this instance, sparsity in
the inverse covariance matrix induces a set of condi-
tional independence properties that can be encoded as
a sparse graph (not necessarily a tree).

While we presented the structural strength metric in
Section 3.2, future work will concentrate on leveraging
these methods in principled hypothesis testing frame-
works that better assess the presence of hierarchical
structure in observed data. We expect that the re-
sulting methods are likely to impact how evolutionary
analysis of gene expression traits is conducted.
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