
Optimizing MPF Queries: Decision Support and
Probabilistic Inference

Héctor Corrada Bravo†

† University of Wisconsin-Madison
Madison, WI USA

hcorrada@cs.wisc.edu

Raghu Ramakrishnan†‡

‡ Yahoo! Research
Santa Clara, CA USA

raghu@cs.wisc.edu

ABSTRACT
Managing uncertain data using probabilistic frameworks has
attracted much interest lately in the database literature,
and a central computational challenge is probabilistic in-
ference. This paper presents a broad class of aggregate
queries, called MPF queries, inspired by the literature on
probabilistic inference in statistics and machine learning.
An MPF (Marginalize a Product Function) query is an ag-
gregate query over a stylized join of several relations. In
probabilistic inference, this join corresponds to taking the
product of several probability distributions, while the aggre-
gate operation corresponds to marginalization. Probabilistic
inference can be expressed directly as MPF queries in a re-
lational setting, and therefore, by optimizing evaluation of
MPF queries, we provide scalable support for probabilistic
inference in database systems. To optimize MPF queries, we
build on ideas from database query optimization as well as
traditional algorithms such as Variable Elimination and Be-
lief Propagation from the probabilistic inference literature.

Although our main motivation for introducing MPF que-
ries is to support easy expression and efficient evaluation
of probabilistic inference in a DBMS, we observe that this
class of queries is very useful for a range of decision support
tasks. We present and optimize MPF queries in a general
form where arbitrary functions (i.e., other than probability
distributions) are handled, and demonstrate their value for
decision support applications through a number of illustra-
tive and natural examples.

Categories and Subject Descriptors:
H.2.8 [Database Management]: Database Applications
H.2.4 [Database Management]: Systems – Query Processing

General Terms: Algorithms, Management, Performance.

Keywords: Probabilistic Inference, Aggregate Queries.

1. INTRODUCTION
Recent proposals for managing uncertain information re-

quire the evaluation of probability measures defined over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

a large number of discrete random variables. This paper
presents MPF queries, a broad class of aggregate queries ca-
pable of expressing this probabilistic inference task. By opti-
mizing query evaluation in the MPF (Marginalize a Product
Function) setting we provide direct support for scalable prob-
abilistic inference in database systems. Further, looking be-
yond probabilistic inference, we define MPF queries in a
general form that is useful for Decision Support, and demon-
strate this aspect through several illustrative queries.

The MPF setting is based on the observation that func-
tions over discrete domains are naturally represented as re-
lations where an attribute (the value, or measure, of the
function) is determined by the remaining attributes (the in-
puts, or dimensions, to the function) via a Functional De-
pendency (FD). We define these Functional Relations, and
present an extended Relational Algebra to operate on them.
A view V can then be created in terms of a stylized join
of a set of ‘local’ functional relations such that V defines a
joint function over the union of the domains of the ‘local’
functions. MPF queries are a type of aggregate query that
computes view V ’s joint function value in arbitrary subsets
of its domain:

select Vars, Agg(V[f]) from V group by Vars.

We optimize the evaluation of MPF queries by extend-
ing existing database optimization techniques for aggregate
queries to the MPF setting. In particular, we show how a
modification to the algorithm of Chaudhuri and Shim [4, 5]
for optimizing aggregate queries yields significant gains over
evaluation of MPF queries in current systems. We also ex-
tend existing probabilistic inference techniques such as Vari-
able Elimination to develop novel optimization techniques
for MPF queries. To the best of our knowledge, this paper
presents the first approaches to probabilistic inference that
provide scalability and cost-based query evaluation. Sec-
tion 5 gives an empirical evaluation of these optimization
techniques in a modified Postgres system.

In the rest of this introduction, we outline the probabilis-
tic inference problem and explain the connection to MPF
query evaluation, describe our approach to optimizing such
queries, and illustrate the value of MPF queries for decision
support.

1.1 Probabilistic Inference as Query
Evaluation

Consider a joint probability distribution P over discrete
random variables A, B, C and D (see Section 3 for an ex-
ample). The probabilistic inference problem is to compute
values of the joint distribution, say P (A = a, B = b, C, D),

or values from conditional distributions, P (A|B = b, C =
c, D = d) for example, or values from marginal distribu-
tions, for example P (A, B). All of these computations are
derived from the joint distribution P (A, B, C, D). For exam-
ple, computing the marginal distribution P (A, B) requires
summing out variables C and D from the joint.

Since our variables are discrete we can use a relation to
store the joint distribution with a tuple for each combina-
tion of values of A, B, C and D. The summing out operation
required to compute marginal P (A, B) can then be done us-
ing an aggregate query on this relation. However, the size of
the joint relation is exponential in the number of variables,
making the probabilistic inference problem potentially ex-
pensive.

If the distribution was “factored” (see Section 3 for speci-
fics) the exponential size requirement could be alleviated
by using multiple smaller relations. Existing work addresses
how to derive suitable factorizations [12], but that is not the
focus of this paper; we concentrate on the inference task.

Given factorized storage of the probability distribution,
probabilistic inference still requires, in principle, computing
the complete joint before computing marginal distributions,
where reconstruction is done by multiplying distributions to-
gether. In relational terms, inference requires reconstructing
the full joint relation using joins and then computing an ag-
gregate query. This paper addresses how to circumvent this
requirement by casting probabilistic inference in the MPF
setting, that is, as aggregate query evaluation over views.
We will see conditions under which queries can be answered
without complete reconstruction of the joint relation, thus
making probabilistic inference more efficient. By optimizing
query evaluation in a relational setting capable of expressing
probabilistic inference, we provide direct scalable support
to large-scale probabilistic systems. For a more complete
discussion of Bayesian Networks and inference using MPF
queries, see Section 3.2.

1.2 Optimization of MPF Queries
Like usual aggregate queries over views, there are two op-

tions for evaluating an MPF query: 1) the relation defined
by view V is materialized, and queries are evaluated directly
on the materialized view; or, 2) each query is rewritten using
V ’s definition and then evaluated, so that constructing the
relation defined by V is an intermediate step. The first ap-
proach requires that the materialized view is updated as base
relations change. In the latter, the problem of view main-
tenance is avoided, but this approach is prohibitive if com-
puting V ’s relation is too expensive. The rewriting option
is likely to be appropriate for answering individual queries,
and variations of the former might be appropriate if we have
knowledge of the anticipated query workload. In this paper,
we study the query rewrite approach.

Chaudhuri and Shim [4, 5] define an algorithm for opti-
mizing aggregate query evaluation based on pushing aggre-
gate operations inside join trees. We present and evaluate
an extension of their algorithm and show that it yields sig-
nificant gains over evaluation of MPF queries in existing
systems (see Section 5). We also present and evaluate the
Variable Elimination (VE) technique [27] from the literature
on optimizing probabilistic inference and show similar gains
over existing systems. Additionally, we present extensions
to VE based on ideas in the Chaudhuri and Shim algorithm
that yield better plans than traditional VE.

Contracts

Warehouses

Transporters

Location

Ctdeals

part_idsupplier_idpurchase
_price

warehouse_id

contractor_id

w_overhead

transporter_id
t_overhead

part_id

warehouse_id

qty

contractor_id

transporter_id

ct_discount

Figure 1: A supply chain decision support schema.
Measure attributes are shaded.

1.3 MPF Queries and Decision Support
So far, we have emphasized the relationship between the

MPF setting and probabilistic inference. However, MPF
queries can be used in a broader class of applications. Con-
sider the enterprise schema shown in Figure 1:

1) Contracts: stores terms for a part’s purchase from a
supplier;

2) Warehouses: each warehouse is operated by a contrac-
tor and has an associated multiplicative factor deter-
mining the storage overhead for parts;

3) Transporters: transporters entail an overhead for trans-
porting a part;

4) Location: the quantity of each part sent to a ware-
house;

5) Ctdeals: contractors may have special contracts with
transporters which reduce the cost of shipping to their
warehouses when using that transporter.

Since contracts with suppliers, storage and shipping over-
heads, and deals between contractors and transporters are
not exclusively controlled by the company, it draws these
pieces of information from diverse sources and combines
them to make decisions about supply chains.

Total investment on each supply chain is given by the
product of these base relations for a particular combination
of dimension values. This can be computed by the following
view:

create view invest(pid,sid,wid,cid,tid,inv) as
select pid, sid, wid, cid, tid,

(p price * w overhead * t overhead *
qty * ct discount) as inv

from contracts c, warehouses w, transporters t,
location l,ctdeals ct

where c.pid = l.pid and l.wid = w.wid ...

Now consider querying this view, not for a complete sup-
ply chain, but rather, only for each part. For example, we
may answer the question What is the minimum supply chain
investment on each part? by posing the MPF query:

select pid, min(inv) from invest group by pid

Several additional types of queries over this schema are
natural: What is the cost of taking warehouse w1 offline?
What is the cost of taking warehouse w1 offline if, hypothet-
ically, part p1 had a 10% lower price? See Section 2.2.

1.4 Contributions and Organization
The contributions of this paper are as follows:

1. We introduce MPF queries, which significantly gener-
alize the relational framework introduced by Wong [23]
for probabilistic models. With this generalized class of
queries, probabilistic inference can be expressed as a
query evaluation problem in a relational setting. MPF
queries are also motivated by decision support appli-
cations.

2. We extend the optimization algorithm of Chaudhuri
and Shim for aggregate queries to the MPF setting,
taking advantage of the semantics of functional rela-
tions and the extended algebra over these relations.
This extension produces better quality plans for MPF
queries than those given by the procedure in [4, 5],

3. We build on the connection to probabilistic inference
and extend existing inference techniques to develop
novel optimization techniques for MPF queries. Even
for the restricted class of MPF queries that correspond
to probabilistic inference, to the best of our knowledge
this is the first approach that addresses scalability and
cost-based plan selection.

4. We implement our optimization techniques in a mod-
ified Postgres system, and present a thorough evalu-
ation that demonstrates significant performance im-
provement.

The paper is organized as follows: Section 2 formally de-
fines the MPF query setting; in Section 3 we show how prob-
abilistic inference can be cast in terms of MPF queries; Sec-
tion 4 describes and analyzes optimization schemes for single
MPF queries; experimental results are shown in Section 5.

2. MPF SETTING DEFINITION
We now formalize the MPF query setting. First, we define

functional relations:

Definition 1. Let s be a relation with schema
{A1, . . . , Am, f} where f ∈ R. Relation s is a functional
relation (FR) if the Functional Dependency A1A2 · · ·Am →
f holds. The attribute f is referred to as the measure at-
tribute of s.

We make several observations about FRs. First, any de-
pendency of the form Ai → f can be extended to the max-
imal FD in Definition 1 and is thus sufficient to define an
FR. Second, we do not assume relations contain the entire
cross product of the domains of A1, . . . , Am, although this
is required in principle for probability measures. We refer
to such relations as complete. Finally, any relation can be
considered an FR where f is implicit and assumed to take
the value 1.

Functional relations can be combined using a stylized join
to create functions with larger domains. This join is defined
with respect to a product operation on measure attributes:

Definition 2. Let s1 and s2 be functional relations, the
product join of s1 and s2 is defined as:

s1
∗
1 s2 = πVar(s1)∪Var(s2),s1[f]∗s2[f](s1 1 s2),

where Var(s) is the set of non-measure attributes of s.

This definition is clearer when expressed in SQL:

select A1,...,Am,(s1.f * s2.f) as f
from s1,s2
where s1.A1 = s2.A1,..., s1.Ak = s2.Ak

where {A1, . . . , Am} = Var(s1) ∪Var(s2), and
{A1, . . . , Ak} = Var(s1) ∩Var(s2).

Implicit in the Relational Algebra expression for product
join are the assumptions that tables define a unique measure,
and that measure attributes are never included in the set of
join conditions. Note that the domain of the resulting joined
function is the union of the domains of the operands, and
that the product join of two FRs is itself an FR.

We propose the following SQL extension for defining views
based on the product join:

create mpfview r as
(select vars, measure = (* s1.f,s2.f,...,sn.f)
from s1, s2, ..., sn
where joinquals)

where the last argument in the select clause lists the measure
attributes of base relations and the multiplicative operation
used in the product join. This simplifies syntax and makes
explicit that a single product operation is used in the prod-
uct join.

For example, our decision support schema can be defined
as:

create mpfview invest(pid,sid,wid,cid,tid,inv) as
select pid, sid, wid, cid, tid,

measure=(* p price, w overhead, t overhead,
qty, ct discount) as inv

from contracts c, warehouses w, transporters t,
location l,ctdeals ct

where c.pid = l.pid and l.wid = w.wid ...

2.1 MPF Queries
We are now in position to define MPF queries.

Definition 3. MPF Queries. Given view definition r
over base functional relations si, i = 1, 2, . . . , n such that

r = s1
∗
1 s2

∗
1 · · · ∗1 sn, compute

πX,AGG(r[f])GroupByX(r)

where X ⊆
Sn

i=1 Var(si), and AGG is an aggregate function.
We refer to X as the query variables.

Note that the result of an MPF query is an FR, thus MPF
queries may be used as subqueries defining further MPF
problems.

To clarify the definition, we have not specified the MPF
setting at its full generality. FRs may contain more than a
single measure attribute as long as the required functional
dependency holds for each measure attribute. For simplicity
of presentation, all examples of FRs we use will contain a
single measure attribute. Also, the requirement that the
measure attribute f is real-valued (f ∈ R) is not strictly
necessary. However, f must take values from a set where
a multiplicative and an additive operation are defined in
order to specify the product operation in product join and
the aggregate operation in the MPF query. For the real
numbers we may, obviously, take × as the multiplicative
operation and +, min or max as the additive operation.
Another example is the set {0, 1} with logical ∧ and ∨ as
the multiplicative and additive operations.

For the purposes of query evaluation, significant optimiza-
tion is possible if operations are chosen so that the multi-
plicative operation distributes with respect to the additive
operation. This corresponds to the condition that the set
from which f takes values is a commutative semi-ring [1,
15]. Both the real numbers and {0, 1} with their correspond-
ing operations given in the previous paragraph possess this
property.

2.2 MPF Query Forms
We can identify a number of useful MPF query variants

that arise frequently. Using the schema in Figure 1, we
present templates and examples for variants in a decision
support context. In the following, we assume that r is as in
Definition 3.

Basic: This is the query form used in the definition of
MPF queries above:

select X,AGG(r.f) from r group by X

Example: What is the minimum investment on each part?

select pid, min(inv) from invest group by pid

Restricted answer set: Here we are only interested in
a subset of a function’s measure as given by specific values
of the query variables. We add a where X=c clause to the
Basic query above. Example: How much would it cost for
warehouse w1 to go off-line?

select wid, sum(inv) from invest where wid=w1
group by wid

Constrained domain: Here we compute the function’s
measure for the query variables conditioned on given values
for other variables. We add a where Y=c clause to the Basic
query with Y 6∈ X. Example: How much money would each
contractor lose if transporter t1 went off-line?

select cid, sum(inv) from invest where tid=t1
group by cid

The optimization schemes we present in Section 4 are for
the three query types above. Of course, there are other
useful types of MPF queries. Future work might consider
optimizing the following types:

Constrained range: Here function values in the result
are restricted. This is useful when only values that satisfy a
given threshold are required. This is accomplished by adding
a having f<c clause to the basic query.

The next two query types are of a hypothetical nature
where alternate measure or domain values are considered.

Alternate measure: here the measure value of a given
base relation is hypothetically updated. For example, how
much money would contractor c1 lose if warehouse w1 went
off-line if, hypothetically, part p1 was a different price?

Alternate domain: alternatively, variable values in base
relations may be hypothetically updated. For example, how
much money would contractor c1 lose if warehouse w1 went
off-line under a hypothetical transfer of contractor c1’s deal
with transporter t1 to transporter t2?

3. MPF QUERIES AND PROBABILISTIC
INFERENCE

Modeling and managing data with uncertainty has drawn
considerable interest recently. A number of models have

been proposed by the Statistics and Machine Learning [2,
10, 13, 20], and Database [7, 8, 3, 11] communities to define
probability distributions over relational domains. For exam-
ple, the DAPER formulation [13] extends Entity-Relation-
ship models to define classes of conditional independence
constraints and local distribution parameters.

3.1 Probabilistic Databases
Dalvi and Suciu [7, 18], and Ré et al. [17, 18] define a rep-

resentation for probabilistic databases [11], and present an
approximate procedure to compute the probability of query
answers. They represent probabilistic relations as what we
have called functional relations, where each tuple is associ-
ated with a probability value. Queries are posed over these
functional relations, with the probability of each answer tu-
ple given by the probability of a boolean formula. Ré et
al. [17] define a middleware solution to approximate the
probability of the corresponding boolean formula.

A significant optimization in their framework pushes eval-
uation of suitable subqueries to the relational database en-
gine. These subqueries are identical to MPF queries, that
is, aggregate queries over the product join of functional re-
lations. Thus, their optimization is constrained by the en-
gine’s ability to process MPF queries. Our optimization
algorithms in Section 4 allow for significantly more efficient
processing of these subqueries than existing systems, thus
improving the efficiency of their middleware approximation
method.

They specify two aggregates used in these subqueries:
SUM, and PROD, where PROD(α, β) = 1− (1−α)(1− β).
Optimization of the SUM case is handled directly by the al-
gorithms we present, but the distributivity assumptions we
require for optimization (see Section 4) are violated by the
PROD aggregate, since PROD(αβ, αγ) 6= αPROD(β, γ).
However, we may bound the non-distributive PROD aggre-
gate as follows:

αPROD(β, γ) ≤ PROD(αβ, αγ) ≤ 2α max(β, γ).

We can compute each of the two bounds in the MPF set-
ting, so optimization is possible. In cases where this loss
of precision is allowable, ranking applications for example,
the gains of using the MPF setting is significant due to its
optimized evaluation.

3.2 Bayesian Networks
In general, we can use the MPF setting to represent dis-

crete multivariate probability distributions that satisfy cer-
tain constraints. In this section, we show how MPF queries
can be used to query Bayesian Network (BN) models of un-
certain data. BNs [16, 14, 6] are widely-used probabilistic
models that satisfy some conditional independence proper-
ties that allow the distribution to be factored into local dis-
tributions over subsets of random variables.

To understand the intuition behind BNs, consider a prob-
abilistic model over the cross product of large discrete do-
mains. A functional relation can represent this distribution
but its size makes its use infeasible. However, if the func-
tion was factored, we could use the MPF setting to express
the distribution using smaller local functional relations. For
probability distributions, factorization is possible if some
conditional independence properties hold; a BN represents
such properties graphically.

Consider binary random variables A, B, C, D. A func-

C

A D

B

A Pr(A)

0 0.9
1 0.1 B A Pr(B|A)

0 0 0.9
1 0 0.1
0 1 0.4
1 1 0.6

C A Pr(C|A)

0 0 0.2
1 0 0.8
0 1 0.7
1 1 0.3

D B C Pr(D|B,C)

0 0 0 0.2
1 0 0 0.8
0 0 1 0.7
1 0 1 0.3
0 1 0 0.5
1 1 0 0.5
0 1 1 1
1 1 1 0

Figure 2: A simple Bayesian Network

tional relation of size 24 can be used to represent a joint
probability distribution. If, however, a set of conditional
independencies exists such that

Pr(A, B, C, D) = Pr(A) Pr(B|A) Pr(C|A) Pr(D|B, C)

then the BN in Figure 2 may be used instead. For this ad-
mittedly small example, the gains of factorization are not
significant, but for a large number of large domains, fac-
torization can yield a significant size reduction. The joint
distribution is specified by the MPF view:

create mpfview joint as (
select A,B,C,D, measure = (* tA.p, tB.p,

tC.p, tD.p) as p
from tA, tB, tC, tD
where tA.A=tB.A and tA.A=tC.A ...)

The set of conditional independence properties that in-
duce a factorization may be given by domain knowledge, or
estimated from data [12]. Given the factorization, the local
function values themselves are estimated from data [12]. In
either case, counts from data are required to derive these
estimates. For data in multiple tables, where a join depen-
dency holds, the MPF setting can be used to compute the
required counts.

After the estimation procedure computes the local func-
tional relations we can use MPF queries to infer exact values
of marginal distributions. An example inference task is given
by the MPF query

select C,SUM(p) from joint where A=0 group by C

which computes the marginal probability distribution of vari-
able C when A = 0 is observed, Pr(C|A = 0).

3.3 Discussion and Related Work
Wong et al. [23, 24, 25] address the probabilistic inference

task in relational terms and propose an extended relational
model and algebra that expresses exactly this problem. The
MPF setting we present here is a generalization and rework-
ing of their formulation. A major benefit of framing this task
in a relational setting is that existing and new techniques for
efficient query evaluation can then be used. This opportu-
nity has not, to the best of our knowledge, been investigated;
our study of MPF query optimization in Section 4 is a first
step in this direction.

Finally, we remark that this paper applies to the prob-
lem of scaling exact probabilistic inference. This is required
in settings where results are composed with other functions

that are not monotonic with respect to likelihood, includ-
ing systems that compute expected risk or utility. In these
settings approximate probability values are not sufficient.
However, for other systems where only relative likelihood
suffices, e.g., ranking in information extraction, approximate
inference procedures [21, 22, 26] are sufficient and may be
more efficient.

4. MPF QUERY OPTIMIZATION
Section 2 hinted at the optimization benefit possible when

MPF views and queries are defined over domains with op-
erations chosen such that the multiplicative operation dis-
tributes with respect to the additive operation. We develop
this observation in this section. A generic algorithm has
been proposed for efficiently solving MPF problems [1, 15]
in non-relational settings. It makes use of this key distribu-
tive property to reduce the size of function operands, thus
making evaluation more efficient. We may cast this in rela-
tional terms as follows: the Group By (‘additive’) operation
distributes with the product join (‘multiplicative’) operation
so that Group By operator nodes can be pushed down into
the join tree thus reducing the size of join operands.

We study two algorithms and their variants that use the
distributivity property to optimize MPF query evaluation
by pushing down Group By nodes into join trees: (CS)
Chaudhuri and Shim’s algorithm for optimizing aggregate
queries [4, 5]; (CS+) our simple extension of CS that yields
significant gains over the original; (VE) the greedy heuris-
tic Variable Elimination algorithm [27] proposed for proba-
bilistic inference; and (VE+) our extension to VE based on
Chaudhuri and Shim’s algorithm that finds significantly bet-
ter plans than VE by being robust to heuristic choice. These
algorithms optimize basic, restricted answer and constrained
domain MPF query types. To the best of our knowledge, this
is the first paper to cast VE as a join tree transformation
operation.

In this central section of the paper, we will define and
describe each of the optimization algorithms; present con-
ditions under which evaluation plans can be restricted to
the linear class, thus avoiding the extra overhead of search-
ing over nonlinear plans1; we will characterize and compare
the plan spaces explored by each of the algorithms given
and show that the plan space explored by CS+ contains
the space explored by VE; we will analyze the optimization
time complexity of the algorithms, and also give conditions
based on schema characteristics where VE will have signif-
icantly lower optimization time complexity than CS+; we
will extend VE so that its plan space is closer to the space
of CS+ plans without adding much optimization overhead;
and finally, we will propose a cost-based ordering heuristic
for Variable Elimination.

4.1 MPF Query Evaluation Algorithms
In this section, we will define the CS and VE algorithms

along with our extensions. We make use of the example
schema in Figure 1 again, with Q1 as a running example:

Q1: select wid, SUM(inv) from invest group by wid;

and consider an instance with table cardinalities and vari-
able domain sizes given in Table 1.

1We define linear and nonlinear plans in Section 4.1.

Table 1: Example cardinalities and domain sizes
Table # tuples

contracts 100K
warehouses 5K
transporters 500

location 1M
ctdeals 500K

Variable # ids

part ids 100K
supplier ids 10K

warehouse ids 5K
contractor ids 1K
transporter ids 500

We need to define linear and nonlinear plans. In linear
plans, every interior node in a join tree has at least one leaf
node as a child. Conversely, in nonlinear plans both children
of interior nodes may be interior nodes as well. Leaf nodes
are base relations that appear in the query, whereas interior
nodes are intermediate relations that result from performing
join or Group By operations.

The CS Algorithm. Chaudhuri and Shim [4, 5] define
an optimization scheme for aggregate queries that pushes
Group By nodes into join trees. The CS algorithm explores
the space of linear plans using an extension of the dynamic
programming optimization algorithm of Selinger et al. [19].
They also define a condition that ensures the semantic cor-
rectness of the plan transformation.

Algorithm 1 illustrates the CS procedure. As in Selinger’s
dynamic programming algorithm, joinplan() in line 2 finds
the best linear plan that joins base relation rj to the optimal
plan for relation set Sj (optPlan(Sj)). However, the usual
algorithm is modified so that line 3 finds the best linear plan
that joins rj to the optimal plan for relation set Sj , this time
modified to include a Group By node as its topmost node.
Grouping in this added node is done on query variables and
variables appearing in a join condition on any relation not
yet joined into Sj . This ensures the semantic correctness of
the plan transformation. The cheapest of these two candi-
date plans is selected in line 4. The authors showed that
this greedy-conservative heuristic produces a plan that is no
worse in terms of IO cost than the näıve plan with a single
Group By node at the root of the join tree.

Algorithm 1 The CS optimization algorithm

1: for all rj , Sj such that Q′ = Sj ∪ {rj} do
2: q1j = joinplan(optPlan(Sj), rj)
3: q2j = joinplan(GroupBy(optPlan(Sj)), rj)
4: pj = minCosti(qij)
5: end for
6: optPlan(Q′) = minCostj(pj)

As defined, the CS procedure cannot evaluate MPF queries
efficiently. It does not consider the distributivity of Group
By and functional join nodes since it assumes that aggre-
gates are computed on a single column and not on the re-
sult of a function of many columns. The resulting evaluation
plan would be as in Figure 3, same as the best plan without
any Group By optimization.

The CS+ Algorithm. We make a simple extension to the
CS algorithm, denoted CS+, that produces much better
plans. In the CS+ algorithm, joins are annotated as prod-
uct joins and the distributive property of the aggregate and
product join is verified. As in the CS algorithm, Group By
interior nodes must have as grouping variables both query
variables and variables appearing in any join condition on

any relation not yet joined into the current subplan. This
again ensures the semantic correctness of the resulting plan.
Figure 4 shows the CS+ plan for Q1. A Group By node
is added after the join of Location and Contracts since the
subplan joining Warehouses is cheaper.

The Nonlinear CS+ Algorithm. We extend the CS+ pro-
cedure to consider nonlinear plans as follows: (a) for rela-
tion set Sj we consider joining every relation set of size < j;
(b) we change joinplan() so that it returns the best non-
linear plan joining two relations; (c) instead of comparing
two plans we now compare four: one without any Group By
nodes (corresponding to line 2); another with a Group By
on Sj (corresponding to line 3); another with a Group By
on the operand (say, s′) being joined to Sj ; and finally, a
plan with Group By nodes on both Sj and s′. The cheapest
of these four plans is selected. From this point forward, will
refer to this nonlinear extension as CS+.

The VE Algorithm. Variable Elimination [27] is based on a
purely functional interpretation of MPF queries; our paper
is the first to apply VE to relational query optimization.
The domain of the function defined by the MPF view is
reduced one variable at a time until only the query vari-
ables remain. While this is an entirely different approach to
query optimization, not based on transformations between
equivalent Relational Algebra expressions, we can cast it in
relational terms: to eliminate a variable, all the tables that
include it are product-joined, and the result is aggregated
and grouped by the variables that have not been eliminated
so far. Algorithm 2 lists the VE algorithm. We denote the
set of relations in S where variable vj appears as rels(vj , S).
So optPlan(rels(vj , S)) is the optimal plan found by the op-
timizer for joining the set of relations where variable vj ap-
pears. We abuse notation slightly in line 9 where p denotes
the relation resulting from executing plan p of line 6.

Algorithm 2 The Variable Elimination Algorithm

1: Set S = {s1, s2, . . . , sn}
2: Set V = Var(r) \ X
3: set p = null
4: while V 6= ∅ do
5: select vj ∈ V according to heuristic order
6: set p = GroupBy(optPlan(rels(vj , S)))
7: set V = V \ {vj}
8: remove relations containing vj from S
9: set S = S ∪ {p}
10: end while

Figure 5 shows the VE plan for Q1 with elimination order
tid,pid,cid. The efficiency of VE for query evaluation is de-
termined by the variable elimination order (see Section 4.6).
We again require that grouping in interior nodes contain
query variables and variables required for any subsequent
joins as grouping variables to ensure semantic correctness
of the resulting plans. In VE this is satisfied by definition
since query variables are not candidates for elimination and
variables are candidates for elimination as long as there is a
relation in the current set that includes it in a join condition.

4.2 Nonlinear MPF Query Evaluation
Including nonlinear plans in the space searched by an op-

timization algorithm for MPF queries is essential since there
are join operand reductions available to these plans that are

location contracts

1M 100K

ware.

5K

1M

ctdeals

transp.
500K

500

GB
wid

500M

5K

500M

∗

!

∗

!

∗

!

∗

!
1M

Figure 3: A CS plan for Q1

location contracts

1M 100K

ware.

5K
5K

ctdeals
transp.

500

GB
wid

25K

5K

25K

∗

!

∗

!

∗

!

∗

!

1M

GB
wid

5K 500K

Figure 4: A CS+ plan for Q1

ctdeals transp.

500K 500

ware.

5K

5K

contractslocation

1M 100K

5K

∗

!

∗

!

∗

!

500K
GB
cid

1KGB
wid
1M

∗

!5K

GB
wid

5K

Figure 5: A VE plan for Q1

not available to linear plans. When query variables are of
small domain, but appear in large tables, this is a signifi-
cant advantage. The example plan in Figure 4 illustrates
this point. Also note that the elimination order in Figure 5
induces a nonlinear join order. In fact, an advantage of VE
is that it produces nonlinear plans with, usually, small op-
timization time overhead.

For an MPF query on variable X we can, conservatively,
determine if a linear plan can efficiently evaluate it. We can
check this using an expression that depends on the domain
size of X, σX = |X|, and the size of the smallest base relation
containing X, σ̂X = mins∈rels(X) |s|. Both of these statistics
are readily available in the catalog of RDBMs systems. To
see the intuition behind this test, consider the following ex-
ample: X occurs in only two base relations s1 and s2, where
|s1| > |s2|, thus σ̂X = |s2|. A linear plan must, at best, join
s2 to an intermediate relation s′ of size σX resulting from
a join or Group By node where s1 is already included. On
the other hand, a nonlinear plan is able to reduce s2 to size
σX before joining to s′. Under a simple cost model where
joining R and S costs |R||S| and computing an aggregate on
R costs |R| log |R|, a linear plan is admissible if the following
inequality holds:

σ2
X + σ̂X log σ̂X ≥ σX σ̂X . (1)

4.3 Plan Spaces
We now turn to a characterization of the plan spaces ex-

plored by nonlinear CS+ and VE.

Definition 4 (Evaluation Plan Space P). Denote
as P the space of all nonlinear semantically correct evalua-
tion plans where either Group By or join nodes are interior
nodes, and are equivalent to a plan with only join interior
nodes and a single Group By node at the root.

CS+ performs a complete (but bounded) search of non-
linear join orders using dynamic programming with a local
greedy heuristic that adds interior Group By nodes.

Definition 5 (CS+ Plan Space P(CS+)). Let p ∈
P have the following property: if a single interior Group By
node is removed, the cost of the subplan rooted at its parent
node is greater. We define P(CS+) to be the set of all plans
in P that satisfy this property.

As we saw before, CS+ yields a plan that is no worse than
the plan with a single Group By at the root.

Definition 6 (VE Plan Space P(V E)). Let p ∈ P
have the following properties for every non-query variable v:
1) a Group By node immediately follows the join node closest
to the root where v appears as a join condition, and 2) all
joins where v appears as a join condition are contiguous.
We define P(V E) as the set of all plans in P that satisfy
these properties.

VE does not guarantee optimality due to its greedy heuristic
search, and it is known that finding the variable ordering
that yields the minimum cost plan is NP-complete in the
number of variables.

Theorem 1 characterizes these plan spaces. We say that
p ∈ P(A) if optimization algorithm A either computes its
cost, or can guarantee that there exists a plan p′ ∈ P(A)
that is cheaper than p. Although CS+ uses dynamic pro-
gramming, its greedy heuristic for adding Group By nodes
makes its search through P incomplete. Not surprisingly,
the plan space searched by VE is also incomplete. However,
we see that the plan space searched by CS+ includes the
plan space searched by VE. That is, CS+ will consider the
the minimum cost plan returned by VE for a given ordering.

Theorem 1. [Inclusion Relationships] Using the notation
above, we have:

P ⊃ P(CS+) ⊃ P(V E).

To prove this theorem, we need the following Lemma:

Lemma 1. Consider relations Sn = {r1, . . . , rn} where
variable v only appears in rk. Let

S′
n = {r1, . . . , GroupBy(rk), . . . , rn}.

For the CS+ algorithm, the following holds: for each output
tuple ordering, Cost(optPlan(Sn)) ≤ Cost(optPlan(S′

n)).

Proof. By induction on n. If n = 2, the Lemma fol-
lows since the plans are compared directly in line 4 of Al-
gorithm 1. Now assume Lemma is true for m ≤ n − 1. If
rk = rn then the Lemma follows since, again, the plans are
compared directly in line 4 of Algorithm 1. Otherwise, if
rk 6= rn then rk ∈ Sn−1 we have by the inductive hypoth-
esis Cost(optPlan(Sn−1)) ≤ Cost(optPlan(S′

n−1)) for each
tuple ordering of Sn−1 so the Lemma follows.

Proof. (Theorem 1)
(P(CS+) ⊆ P) This follows by definition of CS+ and

the semantic correctness of its plan transformation.
(P(CS+) 6= P) By the greedy heuristic, any plan p′ ∈ P

extending the plan not chosen in line 4 of Algorithm 1 is not
included in P(CS+). However, no guarantee is given that
p′ is more expensive than the plans extending the least ex-
pensive plan of line 4.

(P(V E) ⊆ P(CS+)) Let p be the best VE plan for elim-
ination order v1, . . . , vn. We prove this statement by induc-
tion on n. If n = 1, the statement holds trivially. Now
assume the statement is true for m ≤ n − 1 and consider
variables vm and vn and Sm = rels(vm, S). By the induc-
tive hypothesis we have that the subplan in p that eliminates
vm is in P(CS+). But, since vm only appears in the rela-
tion resulting from optPlan(Sm), by Lemma 1 we have that
the subplan in p eliminating vn is in P(CS+) as well. Thus
p ∈ P(CS+).

(P(V E) 6= P(CS+)) Consider a plan p ∈ P(V E) for a
variable ordering where v1 is preceded by v2 but rels(v1) ⊆
rels(v2). In this case, VE does not consider adding Group
By nodes to eliminate v1 in the subplan that eliminates v2,
but there exists a plan p′ ∈ P(CS+) that attempts to add
a Group By node to ‘eliminate’ v1 once rels(v1) are joined
in p. Thus p′ 6∈ P(V E).

4.4 Extending the Variable Elimination
Plan Space

We saw in the previous Section that the plan space consid-
ered by VE is a subset of the plan space considered by CS+.
In this section, we extend VE to narrow this gap by delaying
the elimination of variables if that results in cheaper plans
and by pushing Group By nodes into elimination subplans.
We use Functional Dependency information to implement
the delay strategy, and also use cost-based local decisions
similar to those used by the CS+ algorithm to implement
both the delay and pushing strategies.

As defined, VE considers all variables as candidates for
elimination; however, the elimination of some variables might
have no effect, that is, the result of Group By is the same
as projection. In other words there is exactly one tuple for
each group in the Group By clause. The following property
captures this:

Proposition 1. Let r be an MPF view over base rela-
tions s1, . . . , sn, and Y ∈ Var(r). If for each i, 1 ≤ i ≤ n an
FD Xi → si[f] holds where Xi ⊆ Var(si) and Y 6∈ Xi, then
GroupByVar(r)\Y (r) = πVar(r)\Y (r).

Proof. First, we note that for any functional relation
s with XY = Var(s) where the FD X → s[f] holds, then
GroupByX′(s) = πX′(s) for all X ′ ⊇ X since the FD implies
that there is only one row per value of X ′. By the condition
that FD’s Xi → si[f] hold, we have that ∪iXi → r[f] holds.
That means we can partition Var(r) into ∪iXi and Z with
Y ∈ Z and the Proposition follows.

A sufficient condition for Proposition 1 to apply is that
primary keys are given for each base relation where Y is
not part of any key. Furthermore, this Proposition holds for
any set of relations, so in any iteration of the VE algorithm,
if a variable satisfies the Proposition for the current set of
relations, that variable can be removed from the set of elim-
ination candidates. Applying this Proposition has the effect
of avoiding the addition of unnecessary Group By nodes.

In the absence of FD information, we present an extension
to Variable Elimination that uses cost-estimation to both
delay variable elimination and push Group By nodes into
elimination subplan join trees.

The VE+ Algorithm. Algorithm 2 requires two changes:
1) in line 6 we set p = optPlan(rels(vj , S)) to potentially
delay elimination to later iterations of the algorithm, and 2)
we assume that the function optPlan() uses the local greedy
conservative heuristic of CS+ to push Group By nodes into
elimination subplan join trees. The first modification re-
moves the Group By node in line 6 which eliminates the
variable chosen at the current iteration. This is done so
that the greedy heuristic of the second modification (from
the CS algorithm) is used to decide on the addition of this
Group By node if it yields a locally better plan.

These additions have the effect of extending P(V E) as
follows:

Definition 7 (VE+ Plan Space P(V E+)). Let p ∈
P satisfy the following conditions: 1) if a single interior
Group By node is removed, the cost of the subplan rooted at
its parent node is greater; and 2) for every non-query vari-
able v all join nodes where v appears as a join condition are
either contiguous or separated by only Group By nodes; that
is, no join node where v does not appear as a join condition
separates them. We define P(V E+) as the set of all plans
that satisfy these properties.

Now we may update our inclusion relationship:

Theorem 2 (Extended VE Space). Using the nota-
tion above, we have:

P(V E) ⊂ P(V E+) ⊂ P(CS+).

Proof. The proof is similar to that of Theorem 1.
(P(V E) ⊆ P(V E+)) Given an elimination order, the

same proof for CS+ and V E shows this case.
(P(V E) 6= P(V E+)) Consider an elimination order where

vi follows vj but rels(vi) ⊂ rels(vj), V E+ considers adding
Group By nodes to eliminate vi while creating the plan for
rels(vj), whereas V E does not. This is the same argument
given above for V E and CS+.

(P(V E+) ⊆ P(CS+)) The proof for this is the same as
the proof of P(V E) ⊆ P(CS+).

(P(V E+) 6= P(CS+)) The issue here is that V E+ only
considers plans where the joins for a given variable are con-
tiguous, whereas CS+ does not follow that constraint. In
the presence of indices and alternative access methods, con-
tiguous joins are not necessarily optimal, therefore CS+ is
able to produce plans that are not reachable to V E+.

Although there is still a gap between P(V E+) and
P(CS+) corresponding to plans where join nodes for a vari-
able are not necessarily contiguous, our experimental results
in Section 5 show that CS+ rarely produces plans that are
not reachable by V E+.

4.5 Optimization Complexity
Another dimension of comparison between these proce-

dures is time required to find optimum plans. Since search
for optimal sub-plans in VE only occurs in line 6, for views
where variables exhibit low connectivity, that is, variables

... N tables

Figure 6: An example star MPF view.

appear only in a small subset of base relations, the cost of
finding a VE plan is low.

As opposed to CS+, VE optimization time can be in-
sensitive to variables that have high connectivity if aver-
age connectivity is low. Consider the star schema in Fig-
ure 6. This is the classic example where the optimization
time of Selinger-type dynamic programming procedures de-
grades. In fact, the optimization time complexity for CS+
is O(N2N) for N relations. For VE with a proper order-
ing heuristic, only two relations have to be joined at a time
for each variable, yielding optimization time complexity of
O(M) for M variables.

Theorem 3 summarizes these findings. We refer to an or-
dering heuristic for VE as proper if it orders variables by
connectivity. Of course, while this guarantees good perfor-
mance in terms of optimization time, it does not guarantee
good performance in terms of query evaluation time since
the resulting plan with a ‘proper’ heuristic might be sub-
optimum.

Theorem 3 (Optimization Time Complexity). Let
S be average variable connectivity, let M be the number of
variables, and N the number of tables. The worst-case op-
timization time complexity of VE with a proper heuristic
computable in linear time is O(MS2S). The worst-case op-
timization time complexity of CS+ is O(N2N).

Proof. The CS+ result is the standard complexity result
for Salinger-type dynamic programming algorithms. For
VE, a proper heuristic chooses a variable vj in line 5 of
Algorithm 2 where, on average, |rels(vj)| = S. Finding a
plan for these tables in line 6 takes O(S2S). At worst, this
is done M times, once for each variable.

4.6 Elimination Heuristics
We now define statistics to decide heuristic variable elim-

ination orderings.

Definition 8. Define the degree and width statistics for
variable v as:

1. degree(v) = |GroupBy(optPlan(rels(v, S)))|;

2. width(v) = |optPlan(rels(v, S))|.

The degree heuristic orders variables increasingly accord-
ing to estimates of the size of relation p in line 6 of Algo-
rithm 2, while the width heuristic orders variables increas-
ingly according to estimates of the size of p without its top-
most Group By node.

In the VE literature [9] these statistics are estimated by
the domain sizes of variables. For example, the degree heuris-
tic computes the size of the cross-product of the domains of
variables in p. This is an effect of the fact that the cost met-
ric minimized in VE, as defined in the MPF literature [1, 15],

is the number of addition and multiplication operations used
in evaluating the query. This is a valid cost metric in that
setting since operands are assumed to be memory-resident,
and more significantly, single algorithms are assumed to im-
plement each of the multiplication and summation opera-
tions. These are not valid assumptions in the relational case
where there are multiple algorithms to implement join (mul-
tiplication) and aggregation (summation), and the choice
of algorithm is based on the cost of accessing disk-resident
operands. Thus, relational cardinality estimates are used in
our implementation to compute these statistics.

The degree heuristic greedily minimizes the size of join
operands higher in the join tree. However, there are cases
where executing the plan that yields these small operands
is costly, whereas plans that use a different order are less
expensive. In this case, looking at estimates of the cost of
eliminating a variable as an ordering heuristic is sensible:

Definition 9. Define the elimination cost statistic for
variable v as elimcost(v) = Cost(optPlan(rels(v, S)).

A straightforward way of implementing the elimination
cost heuristic is to call the query optimizer on the set of re-
lations that need to be joined to estimate the cost of the plan
required to eliminate a variable. However, for this heuristic
to be computed efficiently, both average variable connec-
tivity and maximum variable connectivity must be much
lower than the number of tables, otherwise Variable Elimi-
nation would exhibit the same optimization time complexity
as CS+.

While width and elimination cost estimate the cost of
eliminating variables, the degree heuristic seeks to minimize
the cost of future variable eliminations. There is a trade-off
between greedily minimizing the cost of the current elimi-
nation subplan vs. minimizing the cost of subsequent elim-
ination subplans. To address this trade-off we combine the
degree and either width or elimination cost heuristics by
computing the mean of their normalized values. We study
the effect of these heuristics and their combinations in Sec-
tion 5.3.

To summarize the contributions of this central section: 1)
we presented a necessary condition under which evaluation
plans can be restricted to the linear class; 2) we charac-
terized the plan spaces explored by each of the algorithms
given; 3) we extended VE so that its plan space is closer to
the space of CS+ plans without adding much optimization
overhead; 4) we analyzed the optimization time complexity
of both algorithms, and gave conditions based on schema
characteristics where one would be better than the other;
and 5) we proposed a cost-based ordering heuristic for Vari-
able Elimination.

5. EXPERIMENTAL RESULTS
We now present experimental results illustrating the dis-

cussion in Section 4. We modified the PostgreSQL 8.1 opti-
mizer to implement each algorithm at the server (not mid-
dleware) level. The extensions in Section 2 were added to the
PostgreSQL language. Experiments were performed on a 3
GHz Pentium IV Linux desktop with 2.4 GB of RAM and 38
GB of hard disk space. In most of these experiments, we do
not compare the CS algorithm since its performance is sub-
stantially worse and distorts the scale of the plots, making
it harder to see the relative performance of the other (much

better) algorithms. However, the results in Section 5.4 make
this comparison and illustrate the significant difference in
performance.

We use two testbeds for our experiments. The first is
the decision support schema of Figure 1 for which we create
a number of instances at random. The Contracts, Ware-
houses and Transporters relations were populated according
to a Scale parameter, whereas Location and CTdeals were
populated according to Density parameters. The cardinali-
ties and domain sizes in Table 1 correspond to Scale = 100,
Density(CTDeals) = 100% and Density(Location) = 20%.
These are default settings unless specified otherwise. Non-
key attributes in Contracts and Warehouses, compound keys
in Location and CTdeals and all measure attributes are pop-
ulated uniformly at random.

The second testbed consists of three variants of the Schema
in Figure 6: a) a star view exactly like Figure 6, b) a lin-
ear view where the variable connecting all tables is removed,
and c) a ‘multistar’ schema where instead of a single common
variable there are multiple common variables each connect-
ing to a distinct set of three tables in the linear part. The
number of tables N = 5, all variables have domain size 10
and all functional relations are complete. Measure attributes
are populated uniformly at random from the interval [0, 1].

This section is organized as follows. First, in Section 5.1
we test the benefit of nonlinear evaluation of MPF queries
and the linearity condition of Section 4.2. We will see that
nonlinear evaluation performs better than linear evaluation
except when linear plans are admissible as given by the lin-
earity condition. In Section 5.2 shows how the extension
of the Variable Elimination algorithm given in Section 4.4
benefits evaluation. We will see that VE+ with the degree
heuristic finds the optimal CS+ plan, while never finding a
plan that is worse than VE. Section 5.3 illustrates the effect
of elimination heuristics for Variable Elimination. We will
see that schema characteristics are the main determinant
of performance of each heuristic. However, we will also see
that VE+ is robust to heuristic choice and is able to find
near-optimal plans for all three heuristics we have defined.
Finally, Section 5.4 tests the trade-off between optimization
complexity and plan quality in each of the algorithms pre-
sented. We will see that all algorithms proposed produce
better quality plans than existing systems while, in some
cases, not adding significant optimization time. Further-
more, we will also see that schema characteristics are the
main determinants of both quality and planning time for
these algorithms.

5.1 Nonlinear Evaluation
Section 4.2 showed the benefit of nonlinear plans for MPF

query evaluation. The experiment in Figure 7 illustrates how
the plan linearity condition is applied. On our first testbed
we run two queries:

Q1:select cid, SUM(inv) from invest group by cid;
Q2:select tid, SUM(inv) from invest group by tid;

We plot evaluation time as the Density(CTdeals) param-
eter is increased. For Q1, we see that as density increases
nonlinear plans execute faster, whereas for Q2, a linear plan
is optimal for all densities. Since the nonlinear version of
CS+ also considers linear plans, the Q2 running times for
both plans coincide. For Q1, we have that σcid = 1000
and σ̂cid = 5000, so the inequality in Eq. 1 does not hold,

0

15

30

45

0 25 50 75 100

CTDeals Density

Q
1

 R
u

n
n

in
g

 T
im

e
 (

s
e
c
s
)

Linear CS+

Nonlinear CS+

0

10

20

30

0 25 50 75 100

CTDeals Density

Q
2

 R
u

n
n

in
g

 T
im

e
 (

s
e
c
s
)

Linear CS+

Nonlinear CS+

Figure 7: Plan Linearity Experiment

0

2

4

6

8

0 25 50 75 100

DB Scale

Q
1

 R
u

n
n

in
g

 T
im

e
 (

s
e
c
s
)

Nonlinear CS+

VE(deg)

VE(deg) Extended

0

10

20

30

0 25 50 75 100

DB Scale

Q
2

 R
u

n
n

in
g

 T
im

e
 (

s
e
c
s
)

Nonlinear CS+

VE(deg)

VE(deg) Extended

0

4

8

12

16

0 25 50 75 100

DB Scale

Q
3

 R
u

n
n

in
g

 T
im

e
 (

S
e
c
s
)

Nonlinear CS+

VE(deg)

VE(deg) Extended

Figure 8: VE Extended Space Experiment

whereas for Q2, we have σtid = σ̂tid = 500 which makes
the inequality hold showing the applicability of the linearity
condition.

5.2 Extended Variable Elimination Space
Section 4.4 showed how to extend the VE plan space closer

to that of nonlinear CS+. Figure 8 compares the resulting
plan quality for CS+ and VE with the degree heuristic with
and without the space extension. We ran the following three
queries as the Scale parameter is increased:

Q1:select cid, SUM(inv) from invest group by cid;
Q2:select sid, SUM(inv) from invest group by sid;
Q3:select wid, SUM(inv) from invest group by wid;

For Q1, the degree heuristic produced the optimal CS+
nonlinear plan without the VE extension. For Q2, the degree
heuristic produced a suboptimal plan, but with the space
extension we obtain the optimal plan. Q3 is a different case
where we have that the degree heuristic is not able to find
the optimal plan even with the extended space. The VE+
extension to VE guarantees that we find a plan no worse
than the plan obtained by VE without the extension; this is
reflected in the results shown here.

5.3 Elimination Heuristics
We now show experimental results on the effect of ordering

heuristic on plan quality for Variable Elimination. Using our
first testbed, we run two queries and plot their running time
as a function of the Scale parameter:

0

10

20

30

0 25 50 75 100

DB Scale

Q
1

 R
u

n
n

in
g

 T
im

e
 (

s
e
c
s
)

VE(deg)

VE(width)

VE(elim_cost)

0

5

10

15

20

0 25 50 75 100

DB Scale

Q
2

 R
u

n
n

in
g

 T
im

e
 (

s
e
c
s
)

VE(deg)

VE(width)

VE(elim_cost)

Figure 9: Ordering Heuristics Experiment

Table 2: Ordering Heuristics Experiment Result
Ordering star multistar linear

Nonlinear CS+ 429.62 363.02 21.23
VE(deg) 240225.15 843.84 34.57
VE(deg) ext. 429.62 363.02 21.23
VE(width) 705.03 593.43 34.57
VE(width) ext. 429.62 363.02 21.23
VE(elim cost) 1045.44 936.34 73.78
VE(elim cost) ext. 429.62 363.02 21.23
VE(deg & width) 950.44 843.84 34.57
VE(deg & width) ext. 429.62 363.02 21.23
VE(deg & elim cost) 240225.15 843.84 34.57
VE(deg & elim cost) ext. 429.62 363.02 21.23

Q1:select cid, SUM(inv) from invest group by cid;
Q2:select pid, SUM(inv) from invest group by pid;

For Q1, the width heuristic yields a plan worse than both
degree and elimination cost. Interestingly, width can be seen
as an estimate of elimination cost, whereas degree seeks to
minimize join operands, or, equivalently, minimize the cost
of future variable eliminations. For Q2, all heuristics derived
the same plan.

Table 2 summarizes another experiment on order heuris-
tics using our second testbed. A query on the first variable
in the linear section was run on each schema. For each of
the degree, width and elimination cost heuristics described
in Section 4.6 we ran both the original VE algorithm and its
extended space version described in Section 4.4. We imple-
ment the elimination cost heuristic using an overestimate:
we fix a linear join ordering and allow choice of access paths
and join operator algorithms. We also include results for
combinations of the degree and width and degree and elim-
ination cost heuristics2. We report the cost of the plan se-
lected by the nonlinear CS+ algorithm, which is optimal in
the plan space considered.

We see that for the star schema, the width heuristic per-
forms best. This is not surprising since the degree heuristic
will select the common variable first since after joining all
of its corresponding tables, all but the query variable can
be eliminated and the resulting relation is small (10 tuples).
This requires joining all base tables, thus no Group By op-
timization is done. However, we see that by combining the
degree and width heuristics we are able to produce a much
better plan than degree but only slightly worse than width.
The elimination cost heuristic performs better than the de-
gree heuristic, but due to its overestimate, does not perform
as well as the width heuristic. The difference in performance
lessens as maximum variable connectivity drops.

2Combinations are implemented by normalizing each esti-
mate and multiplying the normalized values

Table 3: Random Heuristic Experiment Result
Schema VE(rand) VE(rand) ext.

star 30830.42± 1470.78 770.78± 5.60
multistar 11730.35± 298.86 4559.58± 149.03
linear 72.04± 0.29 51.78± 0.36

Linear View

0.00

0.05

0.10

0.15

0.20

0.25

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Estimated Plan Cost (log)

P
la

n
n

in
g

 T
im

e
 (

s
e
c
s
)

Star View

0.00

0.20

0.40

0.60

0.80

1.00

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08

Estimated Plan Cost (log)

P
la

n
n

in
g

 T
im

e
 (

s
e
c
s
)

Multistar View

0.00

0.05

0.10

0.15

0.20

0.25

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

Estimated Plan Cost (log)

P
la

n
n

in
g

 T
im

e
 (

s
e
c
s
)

CS

Linear CS+

Nonlinear CS+

VE(deg)

VE(deg) ext.

VE(width)

VE(width) ext

VE(elim cost)

VE(elim cost) ext.

Figure 10: Optimization Time Tradeoff Experiment

Interestingly, for all schemas, the extended VE algorithm
with any heuristic produces optimal plans. This might indi-
cate that the choice of elimination ordering becomes irrele-
vant when the extended version of VE is used. To study this
phenomenon we implemented a heuristic that selects vari-
ables to eliminate at random. We ran the same query ten
times using the random heuristic with and without the space
extension. Table 3 reports the result. The cost displayed is
the mean of the 10 runs and an estimated 95% confidence
interval around the mean. We see that the minimum cost
is not within the confidence interval in either case, which
suggests that elimination ordering is still significant in the
extended plan space version of VE.

5.4 Optimization Cost
The following experiment illustrates the trade-off between

plan quality and optimization time of the algorithms. For
each view in our second testbed (with N = 7), we query all
variables in the linear part. In Figure 10 we plot the average
estimated cost of evaluating the query against the average
time required to derive the execution plan. Points closer to
the origin are best.

We first note significant gains provided by the algorithms
proposed here compared to the CS algorithm. Next we note
that nonlinear plans provide gains of around one order of
magnitude compared to linear plans. Variable Elimination
with the degree heuristic performs better when maximum
variable connectivity is low, but still achieves quality plans
when considering the extended space. The width and elimi-
nation cost heuristics are not affected by maximum variable
connectivity indicating that their performance is controlled
by average connectivity. Finally we note the lower optimiza-
tion time, in general, for VE compared to nonlinear CS+.

6. CONCLUSION AND FUTURE WORK
We introduced the MPF class of queries, showed its value

in a variety of settings, and presented optimization tech-
niques to evaluate them. We are currently working on opti-
mization techniques for anticipated workloads of MPF que-
ries.

Our work is an early step in synthesizing powerful ideas
from database query evaluation and probabilistic inference.
A number of models have recently been proposed for defin-
ing probability distributions over relational domains, e.g.,
Plate Models [2], PRMs [10], DAPER [13], and MLNs [20].
Applying MPF query optimization to directly support in-
ference in such settings is a promising and valuable next
step.

Theoretical properties of MPF queries, for example, the
complexity of deciding containment, are intriguing. While
general results for arbitrary aggregate queries exist, we think
that the MPF setting specifies a constrained class of queries
that might allow for interesting and useful results.

Acknowledgements
This work was partially supported by an NSF Medium ITR
grant ITR IIS-0326328, the NSF Cybertrust project, and a
Ford Pre-Doctoral Fellowship from the National Academies.

7. REFERENCES
[1] S. Aji and R. McEliece. The generalized distributive

law. IEEE Trans. Info. Theory, 46(2):325–343, March
2000.

[2] W. L. Buntine. Operations for learning with graphical
models. J. Artif. Intell. Res. (JAIR), 2:159–225, 1994.

[3] D. Burdick, P. Deshpande, T. S. Jayram,
R. Ramakrishnan, and S. Vaithyanathan. Olap over
uncertain and imprecise data. In VLDB, pages
970–981, 2005.

[4] S. Chaudhuri and K. Shim. Including Group-By in
Query Optimization. In VLDB, pages 354–366, 1994.

[5] S. Chaudhuri and K. Shim. Optimizing queries with
aggregate views. In Proc. 5th Int’nl. Conf. on
Extending DB Technology, pages 167–182.
Springer-Verlag, 1996.

[6] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J.
Spiegelhalter. Probabilistic Networks and Expert
Systems. Springer-Verlag, New York, 1999.

[7] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, 2004.

[8] N. N. Dalvi and D. Suciu. Answering queries from
statistics and probabilistic views. In VLDB, pages
805–816, 2005.

[9] Y. E. Fattah and R. Dechter. An evaluation of
structural parameters for probabilistic reasoning:
Results on benchmark circuits. In UAI, pages
244–251, 1996.

[10] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In IJCAI,
pages 1300–1309, 1999.

[11] N. Fuhr and T. Rölleke. A probabilistic relational
algebra for the integration of information retrieval and
database systems. ACM Trans. Inf. Syst., 15(1):32–66,
1997.

[12] D. Heckerman. A tutorial on learning with bayesian
networks. Technical Report MSR-TR-95-06, Microsoft
Research, 1999.

[13] D. Heckerman, C. Meek, and D. Koller. Probabilistic
entity-relationship models, prms and plate models. In
SRL2004. ICML, August 2004.

[14] F. V. Jensen. Bayesian networks and decision graphs.
Springer-Verlag, 2001.

[15] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger.
Factor graphs and the sum-product algorithm. IEEE
Trans. Info. Theory, 47(2):498–519, 2001.

[16] J. Pearl. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann,
1988.

[17] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probabilistic data. Technical Report
2006-06-05, University of Washington, 2006.

[18] C. Ré, N. Dalvi, and D. Suciu. Query evaluation on
probabilistic databases. IEEE Data Engineering
Bulletin, 29(1):25–31, 2006.

[19] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
SIGMOD, pages 23–34, 1979.

[20] P. Singla and P. Domingos. Discriminative training of
markov logic networks. In AAAI, pages 868–873, 2005.

[21] M. Wainwright and M. Jordan. Graphical models,
exponential families and variational inference.
Technical Report 649, Department of Statistics,
University of California, Berkeley, 2003.

[22] Y. Weiss. Correctness of local probability propagation
in graphical models with loops. Neural Computation,
12:1–41, 2000.

[23] S. K. M. Wong. The relational structure of belief
networks. J. Intell. Inf. Syst., 16(2):117–148, 2001.

[24] S. K. M. Wong, C. J. Butz, and Y. Xiang. A method
for implementing a probabilistic model as a relational
database. In UAI, pages 556–564, 1995.

[25] S. K. M. Wong, D. Wu, and C. J. Butz. Probabilistic
reasoning in bayesian networks: A relational database
approach. In Canadian Conference on AI, pages
583–590, 2003.

[26] J. S. Yedidia, W. T. Freeman, and Y. Weiss.
Constructing free energy approximations and
generalized belief propagation algorithms. Technical
Report TR-2002-35, Mitsubishi Electric Research
Laboratories, 2002.

[27] N. L. Zhang and D. Poole. Exploiting causal
independence in bayesian network inference. JAIR,
5:301–328, 1996.

