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Abstract

We present a novel method for estimating tree-structured covariance matrices directly from
observed continuous data. A representation of these classes of matrices as linear combinations
of rank-one matrices indicating object partitions is used to formulate estimation as instances of
well-studied numerical optimization problems.

In particular, we present estimation based on projection where the covariance estimate is
the nearest tree-structured covariance matrix to an observed sample covariance matrix. The
problem is posed as a linear or quadratic mixed-integer program (MIP) where a setting of the
integer variables in the MIP specifies a set of tree topologies of the structured covariance matrix.
We solve these problems to optimality using efficient and robust existing MIP solvers. We also
show that the least squares distance method of Fitch and Margoliash (1967) can be formulated as
a quadratic MIP and thus solved exactly using existing, robust branch-and-bound MIP solvers.

Our motivation for this method is the discovery of phylogenetic structure directly from
gene expression data. Recent studies have adapted traditional phylogenetic comparative anal-
ysis methods to expression data. Typically, these methods first estimate a phylogenetic tree
from genomic sequence data and subsequently analyze expression data. A covariance matrix
constructed from the sequence-derived tree is used to correct for the lack of independence in phy-
logenetically related taxa. However, recent results have shown that the hierarchical structure of
sequence-derived tree estimates are highly sensitive to the genomic region chosen to build them.
To circumvent this difficulty, we propose a stable method for deriving tree-structured covariance
matrices directly from gene expression as an exploratory step that can guide investigators in
their modelling choices for these types of comparative analysis.

We present a case study in phylogenetic analysis of expression in yeast gene families. Our
method is able to corroborate the presence of phylogenetic structure in the response of expression
in a subset of the gene families under particular experimental conditions. Additionally, when
used in conjunction with transcription factor occupancy data, our methods show that alternative
modelling choices should be considered when creating sequence-derived trees for this comparative
analysis.

*Corresponding Author, hcorrada@cs.wisc.edu



1 Introduction

Recent studies have adapted existing techniques in population genetics to perform evolutionary
analysis of gene expression (Fay and Wittkopp, 2007; Gu, 2004; Oakley et al., 2005; Rifkin et al.,
2003; Whitehead and Crawford, 2006). In particular, corrections for evolutionary dependence
between taxa, e.g. species or strains, are used in regression (generalized least squares) or other
likelihood models. These phylogenetic corrections are well accepted methodologies in phenotypic
modeling (Felsenstein et al., 2004), since, without them, statistical analysis is subject to increased
false positive rates and decreased power for hypothesis tests. These corrections take the form of a
covariance matrix corresponding to a random diffusion process along a phylogenetic tree.

Evolutionary studies of gene expression so far assume that the single phylogenetic tree structure
underlying the data is known and typically derived from DNA or amino acid sequence data. While
this assumption might be valid for the analysis of coarse traits—beak size in birds, for example—
as in traditional comparative phylogenetic studies, it might prove too restrictive when carrying
out similar analysis at the genomic level. Especially, taking into account recent findings of high
variability in tree topology and branch length estimates contingent on the genomic region used
to estimate the phylogeny (Frazer et al., 2004; Habib et al., 2007; Yalcin et al., 2004). If we
are interested in a particular group of genes, given that they are spread throughout the genome,
it makes more sense to develop a covariance estimate appropriate to those genes. We present a
principled way of estimating tree-structured covariance matrices directly from sample covariances
of observed gene expression data. As an exploratory step, this can help investigators circumvent
issues that arise from estimating a global phylogeny from sequence data in an independent previous
step.

In this paper, we formulate the problem of estimating a tree-structured covariance matrix as
mixed-integer programs (MIP) (Bertsimas and Weismantel, 2005; Wolsey and Nemhauser, 1999).
In particular, we look at projection problems that estimate the nearest matrix in the structured
class to the observed sample covariance. These problems lead to linear or quadratic mixed integer
programs for which algorithms for global solutions are well known and reliable production codes
exist. The formulation of these problems hinges on a representation of a tree-structured covariance
matrix as a linear expansion of outer products of indicator vectors that specify nested partitions of
objects.

The paper is organized as follows. In Section 2.1 we formulate the representation of tree-
structured covariance matrices and give some results regarding the space of such matrices. Sec-
tion 2.5 shows how to define the constraints that ensure matrices are tree-structured as constraints
in mixed-integer programs (MIPs). Projection problems are specifically addressed in Section 2.5.3.
We present our results on a case study on phylogenetic analysis of expression in yeast gene families
in Section 3. A discussion, including related work, follows in Section 4. Appendix A presents sim-
ulation results on estimating the tree topology from observed data that show how our MIP-based
method compares favorably to the the well-known Neighbor-Joining method (Saitou, 1987) using
distances computed from the observed covariances. Finally, Appendices B and C contain running
times and implementation details respectively of the MIP solver used in the experimental results
of Section 3.



2 Materials and Methods

2.1 Tree-Structured Covariance Matrices

Our objects of study are covariance matrices of diffusion processes defined over trees (Cavalli-
Sforza and Edwards, 1967; Felsenstein et al., 2004). Usually, a Brownian motion assumption is
made on the diffusion process where steps are independent and normally distributed with mean
zero. However, covariance matrices of diffusion processes with independent steps, mean zero and
finite variance will also have the structure we are studying here. We do not make any normality
assumptions on the diffusion process and, accordingly, fit covariance matrices by minimizing a
projection objective instead of maximizing a likelihood function. Thus, for a tree 7 defined over
p objects, our assumption is that the observed data are realizations of a random variable Y € R?
with Cov(Y') = B, where B is a tree-structured covariance matrix defined by 7.

Figure 1 shows a tree with four leaves, corresponding to a diffusion process for four objects. A
rooted tree defines a set of nested partitions of objects such that each node in the tree (both interior
and leaves) corresponds to a subset of these objects. In our example, the lower branch exiting the
root corresponds to subset {1,2}. The root of the tree corresponds to the set of all objects while
each leaf node corresponds to a singleton set. The subset corresponding to an interior node is the
union of the non-overlapping subsets of that node’s children. Edges are labeled with nonnegative
real numbers indicating tree branch lengths.
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Figure 1: A schematic example of a phylogenetic tree and corresponding covariance matrix. The
root is the leftmost node, while leaves are the rightmost nodes. Branch lengths are arbitrary
nonnegative real numbers.

Denoting B = Cov(Y), entry B;; is the sum of branch lengths for the path starting at the root
and ending at the last common ancestor of leaves ¢ and j. In our example, Bio = ajo is the length
of the branch from the root to the node above leaves 1 and 2. For leaf 7, B;; is the sum of the
branch lengths of the path from root to leaf. The covariance matrix B for our example tree is given
in Figure 1(b). If we swap the positions of labels 3 and 4 in our example tree such that label 3 is
the topmost label and construct a covariance matrix accordingly we recover the same covariance



matrix B. In fact, any tree that specifies this particular set of nested partitions and branch lengths
generates the same covariance matrix. All trees that define the same set of nested partitions are
said to be of the same topology, and we say that covariance matrices that are generated from trees
with the same topology belong to the same class. However, a tree topology that specifies a different
set of nested partitions generates a different class of covariance matrices. For example, Figure 2
shows a tree that defines a different set of nested partitions and the matrix it generates.
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Figure 2: An example phylogenetic tree with different topology and corresponding covariance
matrix.

2.2 Representing Tree-Structured Covariance Matrices

Let d = [alg a4 a1 as as a4]T be a column vector containing the branch lengths of the tree
in Figure 1. We can write B = 22:1 dpM* where MP¥ is a matrix such that Mi”fj = 1 if objects @
and j co-occur in the subset corresponding to the node where branch k£ ends. For the branch with
length aq2, we have

M =

S O = =
S O = =
o O O O

o O O

0

Furthermore, we can use indicator vectors vy to specify the M* matrices in the linear expansion
of B as outer products of vy with itself. For example, letting v; = [1 10 O]T, we get

M' =] = 1 1 0 0.

S O ==



Thus, using vectors vy we can write B = 22:1 dkvkvg and defining matrices V = [vl vy ... 1)6]
and D = diag(d), we can equivalently write

B=VDVT. (1)
For Figure 1, the complete expansion is given by
11010 00
11001 00 . T
V= Lo10010l D= dlag([O ala as34 a1 a2 as a4] ). (2)
101 0001

Since the basis matrix V' in Equation (1) is determined by the nested partitions defined by
the corresponding tree topology, all covariance matrices of the same class are generated by linear
expansions of a corresponding matrix V with branch lengths specified in the diagonal matrix D.
On the other hand, a distinct basis matrix V corresponds to each distinct tree topology. Matrices
spanned by the set of matrices V' that correspond to valid partitions are tree-structured covariance
matrices. We now characterize this set of valid V' matrices by defining a partition property, and
give a representation theorem for tree-structured covariance matrices based on this property.

Definition 1 (Partition Property) A basis matriz V of size p-by-(2p — 1) with entries in {0,1}
and unique columns has the partition property for trees of size p if it satisfies the following condi-
tions:

e V contains the vector of all ones e = (1,1,..., l)T € RP as a column, and

o for every column w in V with more than one non-zero entry, it contains columns u and v
such that u+v = w.

A matrix V with the partition property can be constructed by starting with the column e € RP and
splitting it into two nonzero columns u and v with u + v = e. These form the next two columns of
V. The remaining columns of V' are generated by splitting previously unsplit columns recursively
into the sum of two nonzero columns, until we finally obtain columns with a single nonzero. It is
easy to see that the total number of splits is p — 1, with two columns generated at each split. It
follows that V' does not contain the the zero column, and contains all p vectors that contain p — 1
zero terms and a single entry of 1. For example, the V' matrix in Equation (2) can be constructed
by starting with column 1, splitting into columns 2 and 3, and then splitting each recursively to
obtain the remaining four columns.

Theorem 2 (Tree Covariance Representation) A matriz B is a tree-structured covariance
matriz if and only if B = VDVT where D is a diagonal matriz with nonnegative entries and
the basis matrix V' has the partition property.

Proof Assume B is a tree-structured covariance matrix, then construct matrix V' using the method
above starting from the root, splitting each vector according to the nested partitions at each node.
By construction, V will satisfy the partition property and by placing branch lengths in diagonal
matrix D we will have B = VDV”. On the other hand, let B = VDVT with D diagonal and V/
having the partition property. Then construct a tree by the reverse construction: starting at the
root and vector e € RP, create a nested partition from the vectors u and v such that u+v = e which
must exist since V' has the partition property. Define branch lengths from D correspondingly, and
continue this construction recursively. B will then be the covariance matrix defined by the resulting
tree and therefore be tree-structured. |



2.3 Characteristics of the Set of Tree-Structured Covariance Matrices

We now state some facts about the set of tree-structured covariance matrices which we make use
of in our estimation procedures.

Proposition 3 The set of tree-structured covariance matrices B = VDV generated by a single
basis matriz V is convexz.

Proof Let di and ds be the branch length vectors of tree-structured covariance matrices B; =
Vdiag(d,)VT and By = Vdiag(ds)V7T. Let 6 € [0,1], then B = By + (1 —0)By = Vdiag(fd; + (1 —
0)d2)VT. So, B is a tree of the same structure with branch lengths given by 0d; + (1 — 0)dy. W

We will use this fact to express estimation problems for trees of fixed topology as convex
optimization problems. However, estimation of general tree-structured covariance matrices is not
so simple, as the set of all tree-structured covariance matrices is not convex in general. We can see
that this is true in the case p = 3 by considering the following example. Defining

00111 00101
Vi=10 1 0 1 1], Vo=10 1 0 1 1},
1 0 0 01 1 00 11

we see that V7 and V5 both have the partition property. Therefore by Theorem 2, the matrices
By = Vidiag(d,)V{l and By = Vadiag(ds)Vy are both tree-structured covariance matrices when
di and dy contain nonnegative entries. If B is a convex combination of By and Bs, we will have
Bis # 0 and Bsg # 0 but Byg = 0. It is not possible to identify a matrix V with the partition
property such that B = VDV, since any such V may contain only a single column apart from
the three “unit” columns (1,0,0), (0,1,0)”, and (0,0,1)”, and none of the possible candidates
for this additional column (namely, (1,1,0)%, (1,0,1)7, and (0,1,1)T) can produce the required
nonzero pattern for B. This example can be extended trivially to successively higher dimensions p
by expanding V7 and V5 appropriately.

2.4 Fixed Topology Projection Problems

In this section, we address the problem of estimating a tree-structured covariance matrix from a
known tree topology by minimizing the distance to an observed sample covariance matrix. That
is, given a sample covariance matrix S and a basis matrix V', we find the nearest tree-structured

covariance matrix in norm |[|-[|. We will look at problems using Frobenius norm, ||B|[r = 4/>_;; ij,

and sum-absolute-value (sav) norm, | Bllsav = >_;; |Bijl-

As stated above, the set of covariance matrices corresponding to trees of a particular topology
is convex. Since projection problems have convex objective functions, they are convex optimization
problems for any norm ||-||]. While our emphasis in this paper is optimization over the non-convex set
of all tree-structured covariance matrices, it is illustrative to show the convex optimization problem
formulations for projection in Frobenius and sum-absolute-value norm with fixed-topologies.

For Frobenius norm, given a covariance matrix S, the nearest tree-structured covariance matrix
B in the class determined by basis matrix V' is given by the branch length vector that solves the
problem

. - . T2
Sin |5~ Vdiag(d)V7 7

s.t. d>0.



We can simplify this to the following equivalent quadratic problem:
min  dT'Qd —2¢'d
deR?p—1
s.t. d>0,

where Q = (VIV)o(VTV) and ¢ = diag(VT SV) with o denoting element-wise (Hadamard) matrix
multiplication. For sav norm, the branch lengths d corresponding to the nearest tree-structured
matrix in the proper class are given by the solution to the following problem:

. - . T
,Shin 1S — Vdiag(d)V" [[sav

s.t. d>0.

Letting s € RP(PT1)/2 be the vectorization of symmetric matrix S, we can we can rewrite this as
the following linear problem:

: T
o e (p+4q)
p,geRP(P+1)/2

where the row of H corresponding to S;; is V; o V,; and e is the vector of all ones of appropriate
length.

2.5 Solving Estimation by Projection for Unknown Tree Topologies using Mixed-
Integer Programming

The non-convexity of the set of tree-structured covariance matrices requires estimation procedures
that handle the combinatorial nature of optimization over this set. We model these problems as
mixed-integer programs (MIPs). In particular, we make use of the fact that algorithms for mixed-
integer linear and quadratic programs are well understood and that robust production codes for
solving them are available.

2.5.1 Mixed-Integer Programming

Mixed-integer programs (MIPs) place integrality constraints on some of the problem variables. The
general statement of a MIP is:

min fo(z) (3a)

st gi(x) <0, i=1,2,...,m (3b)

xj €L, j=1,2,...,t, (3c)

for some ¢ < n. The functions g; are (smooth) constraint functions and fy is the objective function
(also assumed to be smooth), and Z is the set of integers. When fy and g¢;, i = 1,...,m, are linear,
we have a mixed-integer linear program (MILP), and when fj is quadratic and g¢;, i = 1,...,m, are

linear, we have a mixed-integer quadratic program (MIQP). We will see that projection problems



for tree-structured covariance matrices are MILPs for the sav norm and MIQPs for the Frobenius
norm.

Although the problem (3) is intractable in general, many practical instances can be solved, and
algorithms for finding solutions have been the subject of intense research for 50 years (see for exam-
ple Wolsey and Nemhauser (1999)). Current state-of-the-art software combines two methodologies:
branch-and-bound and branch-and-cut. Branch-and-bound is based on construction of a tree! of
relaxations of the problem (3), where each node of the tree contains a subproblem in which some of
the integer variables x; are allowed to take non-integer values (but may be confined to some range).
A node is a child of another node in the tree if there is exactly one component x; that is fixed at an
integer value in the current node but that is a continuous variable in the parent node. In the root
node of the tree, all integer variables are relaxed and allowed to take non-integer values, while at the
leaf nodes, all integer variables x;, j = 1,2,...,t are fixed at certain values. Each node of the tree
is therefore a continuous linear program (with real variables), so it can be “evaluated” using the
simplex method, usually by modifying the solution of its parent node. The optimal objective at a
node gives a lower bound on the optimal objectives of any of its descendants, since the descendants
have fewer degrees of freedom (that is, a more restricted feasible set). Hence, if this lower bound is
worse than the best integer feasible solution found to date, this node and all its descendants can be
“pruned” from the tree; it is not necessary to evaluate them as they cannot contain the solution of
(3). The branch-and-bound algorithm traverses this tree judiciously, avoiding evaluation of large
parts of the tree that are determined not to contain the optimal solution.

Cutting planes are used to enhance the speed of this process. These are additional constraints
that exclude from the feasible set those values of x that are determined not to be optimal. Cuts
can be valid for the whole tree, or just at a certain node and its descendants.

The branching strategy which determines the order in which the search tree is traversed, and
the method of construction of cutting planes, can have significant effects on the efficiency of the
MIP solver for particular problems. In Appendix C, we provide details regarding the parameters
chosen in our MIP solver for the projection problems we address here.

2.5.2 Mixed-Integer Constraints for Tree Topology

Every tree-structured covariance matrix satisfies the following properties derived from the linear
expansion in Equation (1):

1. B;j > 0 for all ¢ and j, since all entries in V' and d are nonnegative.

2. B;; > B;j for all @ and j, since V' has the partition property, every component of d that
is added to an off-diagonal entry is added to the corresponding diagonal entries along with
the component of d corresponding to the column in V with a single non-zero entry for the
corresponding leaves.

3. B;; > min(Bj, Bji) for all i, j, and k, with i # j # k. Since V' has the partition property, then
for every three off-diagonal entries there is one entry that has at least one fewer component
of d added in than the other two components.

Since every tree-structured covariance matrix can be expressed as B = VDV according to The-
orem 2, it is also positive semidefinite, since VDV7T = > div,-v;[ is the sum of positive semidefinite
matrices. Also, the three properties above follow from the expansion B = VDVT, therefore any

!The tree referred to in this paragraph is a tree of related relaxations of the MIP, not a phylogenetic tree.



matrix that satisfies these properties is also positive semidefinite, so we need not add semidefinite-
ness constraints in the optimization problems below. Therefore, we can solve estimation problems
for unknown tree topologies by constraining covariance matrices to satisfy the above properties.
However, the third constraint is not convex, so we use integrality constraints to model it.

We begin by rewriting this third constraint for each distinct triplet ¢ > j > k as a disjunction
of three constraints:

Bij > sz = Bj (43)
Bir = Bij = By, (4b)
Bjk: > Bij = sz (40)

This can be derived by noting that the third property above holds for all orderings of the given i,
j, and k thus preventing any one of the values B;;, Bjx, Bji from being strictly smaller than the
other two values, leading to a tie for the smallest value.

A standard way of modeling disjunctions is to use {0,1} variables in the optimization prob-
lem (Bertsimas and Weismantel, 2005). In our case we can use two integer variables p;jr1 and p;jr2,
under the constraint that p;;r1 + psjk2 < 1, that is, they can both be 0, or, strictly one of the two
is allowed to take the value 1. With these binary variables we can write the constraints (4) in a
way that the constraint corresponding to the nonzero-valued binary variable must be satisfied. For
example, constraint (4a) is transformed to:

Bij > Bip — (1 — pijr1) M
Bir, > Bji, — (1 — pije1) M
Bjr, > Bip — (1 — pijr1) M,

where M is a very large positive constant. Constraints (4b) and (4c) are transformed similarly,
yielding the full set of mixed-integer constraints in Table 1. When p;;z1 = 1, these constraints imply
that constraint 4a is satisfied. However, since p;jx1 = 1 we must have p;jr2 = 0 which implies that
constraints 4b and 4c need not be satisfied for a solution to be feasible. When p;jx1 = pijr2 = 0,
then constraint 4c must be satisfied.

2.5.3 Projection Problems

Let S be a sample covariance matrix, the nearest tree structured covariance matrix in norm || - ||
to S is given by the solution of the mixed-integer problem:

min S — Bl
BesP

s.t. constraints 5a-5m hold for B.

For Frobenius norm | - ||, the problem reduces to a mixed-integer quadratic program. Let
s9 be the vectorization of symmetric matrix S such that ||S||p = ||s2]|2, then the nearest tree-
structured covariance matrix in Frobenius norm to matrix S is given by the corresponding matrix
representation of solution b of the following mixed integer quadratic program:

min i %bTb —s1b
beRP(P+1)/2 HcRP
s.t. constraints ba-5m hold for B,



Table 1: Mixed integer constraints defining tree-structured covariance matrices

B;j >0 Vi,j (5a)

Bii > Bij Yi#j (5b)

Bij > B, — (1 — pijia) M (5¢)

B, > Bji — (1 — pijn) M (5d)

Bjr > Bix, — (1 — pijre1) M (5e)

Bir > Bij — (1 — pijra) M (5)

Bij > Bji, — (1 — pijr2) M (5g)

Bji = Bij — (1 — pijk2) M (5h)

Bji, > Bij — (pijkn1 + pijr2) M (51)

Bij > Bix — (pijk11 + pijr2) M (5)

Bir, > Bij — (pijr11 + pijk2) M (5k)

Pijk1 + pijk2 < 1 (51)
pijki, Pijk2 € {0,1} Vi > j > k. (5m)

where p = (1%?;)!.
We can similarly find the nearest tree structured covariance matrix in sum-absolute-value (sav)
norm. Let s1 be the vectorization of symmetric matrix S such that ||.S||squ = ||$1]|1, then the nearest

tree-structured covariance matrix in sum-absolute-value norm is given by the corresponding matrix
representation of solution b of the following mixed integer linear program:

min - ||81 - b||1
beRP(P+1)/2 pcRP

s.t. constraints 5a-5m hold for B

3 Results: A Case Study in Gene Family Analysis of Yeast Gene
Expression

We applied our methods to the analysis of gene expression in Saccharomyces cerevisiae gene families
as presented in Oakley et al. (2005) 2. Following the methodology of Gu et al. (2002), the yeast
genome is partitioned into gene families using an amino acid sequence similarity heuristic. The
largest 10 of the resulting families are used in this analysis with family sizes ranging from p = 7 to
p = 18 genes. Names and sizes for the gene families used in the analysis are given in Table 3 of
Appendix B. We refer to Oakley et al. (2005) for further details.

The gene expression data is from 19 cDNA microarray time course experiments. Each time point
in the series is the log, ratio of expression at the given time point to expression at the base line
under varying experimental conditions. To make our results comparable to the analysis in Oakley
et al. (2005), we do not model correlation between measurements at different time points and refer

2All data for this analysis was retrieved from "http://www.lifesci.ucsb.edu/eemb/labs/oakley/pubs/
MBE2005data/".
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to Oakley et al. (2005) and Gu (2004) for a discussion regarding this violation of the independence
assumption among measurements.
The analysis in Oakley et al. (2005) proceeded as follows:

1. Phylogenetic trees were derived for each family from DNA sequence using Maximum Like-
lihood methods. In particular, an alignment of amino acid sequences from the entire gene
coding region was used to derive a DNA sequence alignment which was then used to estimate
a phylogenetic tree. As stated by the authors (Oakley et al., 2005), this is one of many pos-
sible choices, including for example, flanking upstream non-coding regions that could have a
significant role in expression regulation.

2. Based on the resulting trees, gene expression data was analyzed using Maximum Likelihood
methods under a Brownian diffusion process under two families of models: a phylogenetic
class, where the covariance of the diffusion process has a tree structure, and a non-phylogenetic
class where the covariance of the diffusion process is diagonal. The AIC score of the result-
ing ML estimate is used to classify each gene family-experiment pair as evolving under a
phylogenetic or non-phylogenetic model.

For each gene family and experiment we have a matrix Yy; of size n;-by-p where n; is the number
of time points in the ith experiment and p is the gene family size. We partition the experiments of
each gene family into two disjoints sets P = {1,...,l} and NP = {l{+1,...,19} where [ is the number
of experiments classified as phylogenetic in Oakley et al. (2005). This partition yields two matrices
of measurements for each gene family Y,p = [Yng YgﬂT and similarly for Y,yp, obtained
by concatenating the measurement matrices of experiments in the corresponding set. The idea of
concatenating gene expression measurement matrices directly to estimate covariance was sparked by
the success of Stuart et al. (2003) where gene expression measurements were concatenated directly
to measure correlation between genes. Since we will treat the rows of these two matrices as samples
from distributions with EY = 0, we center each row independently to have mean 0.

One of the constraints in Section 2.5.2 that characterize tree-structured covariance matrices
is the nonnegativity of their entries. Therefore, to initialize our projection solvers, we first esti-
mate Maximum-Likelihood covariance matrices B+P and B;FNP constrained to have nonnegative
entries from sample matrices Yyp and Y,np. Treating the rows of n-by-p matrix ¥ as independent
samples from a multivariate normal distribution N (0, B*) the goal is to find matrix BT that max-
imizes likelihood, where B™ is constrained to have nonnegative entries. Following the constrained
maximum-likelihood formulation in Vandenberghe et al. (1998), we define the following convex
determinant maximization problem

logdet R — t
max  nlogde R — tr(RS) (6a)
R >0, (6¢)

where SP is the space of p-by-p symmetric matrices, n is the number of samples in matrix Y,
and S = YY7 its sample covariance matrix. The expression R > 0 denotes that R is positive
definite and we take variable R to be the inverse of the estimate Bt = R~!. By the nonpositivity
element-wise constraints (6b), along with the positive definiteness constraint (6c¢), feasible solutions
to Problem (6) will be members of the class of M-matrices (Horn and Johnson, 1991) which have
the property that their inverse are matrices with nonnegative entries (Theorem 2.5.3 in Horn and
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Johnson (1991)). Therefore, the constraints in Problem (6) imply that estimate B will be the
maximum likelihood estimate with nonnegative entries.

From estimates B;P and B;NP we estimate tree-structured covariance matrices Bg p and Bg NP
using our MIP projection methods. To describe the strength of the hierarchical structure of these
estimated covariances we define the structural strength metric as follows:

SS(B) = 1 i % (7)
p=  Bi

The term max;.; B;; is the largest covariance between gene 7 and a different gene j. This is the
length of the path from the root to the immediate ancestor of leaf i in the corresponding tree.
Therefore, the ratio in SS(B) compares the length of the path from the root to leaf i to the length
of the subpath from the root to i’s immediate ancestor. A value of SS(B) near zero means that on
average objects have zero covariance, values near one means that the tree is strongly hierarchical
where objects spend very little time taking independent steps in the diffusion process.

Under the classification of experiments as undergoing phylogenetic versus non-phylogenetic
evolution we expect that the structural strength metric should be quite dlfferent for estlmated
tree-structured covariance matrices B ,p and Bg ~vp. That is, we expect that SS(Byp) > SS(Bgnp)
for most gene families g. We show our results in Figure 3 which validate this hypothesns. We plot
SS(ng) versus SS(EQNP) for each gene family g. The diagonal is the area where SS(BQP) =
SS(BQNP). We see that in fact SS(Egp) > SS(Bng) for all gene families g except the Hexose
Transport Family.

Structural strength comparison, sav norm Structural strength comparison, Frobenius norm
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Figure 3: Comparison of structural strengths for tree-structured covariance estimates Eg p and Bg NP
for projection under sav (a) and Frobenius (b) norms. Each point represents a gene family. The
x-axis is SS(Bynp). We can sce that for all, except the Hexose Transport gene family, SS(B,p) >
SS (Bg ~np). Only eight families are shown since the Putative Helicases and Permeases families did
not have any experiments classified as phylogenetic.

We next look at the resulting tree for the ABC (ATP-binding cassette) Transporters gene family
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(see Jungwirth and Kuchler (2006) for a short literature review) in more detail. In particular,
the eight genes included in this group are members of the subfamily conferring pleiotropic drug
resistance (PDR) and are all located in the plasma membrane. A number of transcription factors
have been found for the PDR subfamily, including the PDR3 factor considered one of the master
regulators of the PDR network (Delaveau et al., 1994). Figure 4 shows the tree estimated by the
MIP projection method for this family along with the sequence-derived tree reported by Oakley
et al. (2005). We can notice topological differences between the two trees, in particular, the subtree
in Figure 4(a) containing genes YOR328W, YDR406W, YOR153W and YDRO11W.

Estimated Tree for ABC Transporters Gene Family Sequence-derived Tree for ABC Transporters Gene Family
YOR011W ’7YOR011W
{YILOK’»C \—YIL013C
|:YPL058C YOR153W
‘YNRO70W EYDR4O6W

YOR328W ——YOR328W

'YDR406W YPLO58C

YOR153W {YNRO7OW
YDRO11W YDRO11W

(a) (b)

Figure 4: (a) Tree estimated by the MIP projection method using Frobenius norm for the ABC
Transporters gene family. (b) Sequence-derived tree reported by Oakley et al. (2005) for the ABC
Transporters gene family. The red tips correspond to genes YOR328W, YDR406W, YOR153W
and YDRO11W which form a subtree in (a) but not in (b).

In order to elucidate this topological difference, we turn to the characteristics of the promoter
(regulatory) regions of the genes and ask whether transcription factor (TF) binding site contents of
the upstream regions could account for this difference. We compiled a list of known yeast transcrip-
tion factor binding site consensus sequences using Gasch et al. (2004) and the Promoter Database
of Saccharomyces cerevisiae (SCPD) (http://rulai.cshl.edu/SCPD/). Then, we generated a
transcription factor binding site occurrence vector for each gene by simply counting the number
of occurrences of each consensus sequence in the 1000 base pairs upstream of the coding region.
Putting these profiles together we obtained a 8-by-128 matrix where rows represent the 8 genes in
the ABC Transporters gene family and columns represent 128 transcription factors. Inspection of
this matrix once the rows are permuted to follow the hierarchy in the tree estimated by the MIP
projection method (Figure 4(a)) immediately revealed that the presence or absence of the PDR3
transcription factor binding site in the flanking upstream region may account for the topological
difference apparent in the two estimated trees. Table 2 shows the number of times the motif for
the PDR3 factor was detected in the upstream region of each gene.

It is known (Delaveau et al., 1994) that the four genes in Table 2 with multiple PDR3 binding
sites are, as opposed to the other four genes, targets of this transcription factor which controls the
pleiotropic drug resistance phenomenon. The structure of the subtree in Figure 4(a) corresponding
to the PDR3 target genes essentially follows the frequency of PDR3 occurrences. On the other
hand, the structure of the subtree for the non-PDR3 target genes follows that of the sequence-
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Table 2: Number of occurrences of the PDR3 transcription factor motif in the 1000 bp upstream
region for each gene in the ABC Transporters family. Colors match those of Figure 4.

gene Occurrences of PDR3
YORO11W
YIL013C

YPLO0O58C

YNRO70W
YDR406W
YOR328W
YDRO11W
YOR153W

O O Ui W N
O© O = W o O oo

derived tree of Figure 4(b). Namely, pairs (YOR011W,YIL013C) and (YPL058C,YNRO70W) are
near each other in both the sequence-derived and the MIP-derived trees. Therefore, after taking
into account the initial split characterized by the presence of the PDR3 transcription factor, the
MIP estimated tree (Figure 4(a)) is similar to the sequence-derived tree (Figure 4(b)).

We reiterate the observation of Oakley et al. (2005) that the choice of sequence region to create
the reference phylogenetic trees used in their analysis plays a crucial role and results could vary
accordingly. From our methods, we have found evidence that using upstream sequence flanking
the coding region might yield a tree that is better suited to explore the influence of evolution in
gene expression for this particular gene family. We believe that finding a good estimate for tree-
structured covariance matrices directly from expression measurements can help investigators guide
their choices for downstream comparative analysis like that of Oakley et al. (2005).

Appendices C and B detail implementation choices and running times of our mixed-integer
estimation procedure.

4 Discussion

The issues we hope to address by estimating tree-structured covariance matrices directly from
observed sample covariances from gene expression data can be illustrated using the work of White-
head and Crawford (2006) who characterize evolution patterns of the expression of 329 genes in
five strains of the Fundulus heteroclitus fish. One of their analyses uses generalized least squares
regression of gene expression on habitat temperature using a tree-structured covariance matrix
for correction. This structured covariance matrix is derived from a phylogeny constructed from
five microsatellite markers (short repeating strings) which are random characters expected not
to be influenced by selection and to evolve at the same base rate as the whole genome. The
tree is constructed with the greedy neighbor-joining algorithm (Saitou, 1987) from Cavalli-Sforza
and Edward’s (CSE) chord distances between the five microsatellite markers. We reproduce this
microsatellite-derived tree in Figure 5(a). The neighbor-joining algorithm is a greedy algorithm
susceptible to generating different solutions depending on how the algorithm is implemented. For
example, the implementation of this algorithm in the ape R package 2 yields a different tree (Fig-
ure 5(b)) given the CSE distances. For the purpose of generalized least squares, and therefore the

3Version 1.10-2. We thank Dr. Andrew Whitehead for providing the distance data through personal communica-
tion.
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evolutionary statements asserted as a result, this difference in topology can be significant. Con-
sidering this instability of the resulting neighbor-joining tree and the importance it plays in the
authors’ analyses, we posit that deriving tree-structured covariance matrices directly from the ex-
pression data can guide investigators in comparing sequence-derived phylogenetic trees for use in
subsequent comparative analysis.

Microsatellite—derived tree from

Microsatellite—derived tree ) L .
second neighbor—joining implementation

—NC —NJU
—GA ME
—NJU L—cT
ME GA
CT —NC
T T T T T 1 T T T T 1
0.05 0.04 0.03 0.02 0.01 0 0.08 0.06 0.04 0.02 0

(a) (b)

Figure 5: Microsatellite-derived trees built by two implementations of the neighbor-joining algo-
rithm from Cavalli-Sforza and Edward’s chord distances. Figure 5(a) is the tree reported in White-
head and Crawford (2006), and Figure 5(b) was obtained by the ape R package.

To address these shortcomings and motivated by what we think is a problem of genomic reso-
lution as described in the Introduction, we have described a method for estimating tree-structured
covariance matrices directly from observed sample covariance matrices by projection methods. We
showed that projection problems for known topologies are linear or quadratic programs depending
on the approximation norm used. For unknown topology problems, we proposed and evaluated a
mixed-integer formulation which can be solved to optimality by existing branch-and-bound solvers.

The work of McCullagh (McCullagh, 2006) on tree-structured covariance matrices is the closest
to our work. He proposes the minimazx projection to estimate the structure of a given sample covari-
ance matrix. Given this structure, likelihood is maximized as in Anderson (1973). The minimaz
projection is independent of the estimation problem being solved as opposed to our MIP method
which minimizes the estimation objective while finding tree structure simultaneously. Furthermore,
the MIP solver guarantees optimality upon completion, at the cost of longer execution in difficult
cases where the optimal trees in many tree topologies have similar objective values.

Rifkin et al. (2003) use expression directly to estimate phylogenetic structure, but use a distance-
based method utilizing the number of pairwise differentially expressed genes as the source of dis-
tances. They observe that for the resulting distance matrix the neighbor joining tree-building
algorithm (Saitou, 1987) produces a tree estimate that matches the sequence derived tree for a
subgroup of Drosophila species.

Using the MIP formulation to model tree-structured matrix constraints, we can also address
the need to solve existing tree estimation problems exactly. In particular, the least squares method
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of Fitch and Margoliash (1967) estimates a tree that minimizes the least-squares deviation of the
distance between objects in the tree and a given distance matrix D. However, given a covariance
matrix B, we can compute squared distances between objects using the linear expression ij = B+
Bj; — 2B;;. This implies that the least squares distance-deviance objective is a quadratic function
of the entries of covariance matrix B. Therefore, using the MIP formulation of Section 2.5 and
the quadratic least squares distance-deviance objective, we can express the least-squares method
of Fitch and Margoliash (1967) as a MIQP. Thus, generic branch-and-bound solvers of quadratic
MIPs fill the gap observed in Felsenstein et al. (2004) which states that no branch-and-bound
method to solve the least-squares problem exactly has been proposed.

Along the same line, MIPs have been used to solve phylogeny estimation problems for haplotype
data (Brown and Harrower, 2006; Huang et al., 2005; Sridhar et al., 2008; Wang and Xu, 2003).
The observed data from the tree leaves in this case is haplotype variation represented as sequences
of ones and zeros. Although our MIP formulation is related, the data in our case is assumed to be
observations from a diffusion process along a tree, suitable for continuous traits like gene expression.

We can place the problem of estimating tree-structured covariance matrices in the broader
context of structured covariance matrix estimation (Anderson, 1973; Li et al., 1999; Schulz, 1997).
The work of Anderson (1973) is especially relevant since an iterative procedure is used to fit
matrices, or matrix inverses, which can be expressed as linear combinations of known symmetric
matrices. For known topologies, this method solves likelihood maximization problems where a
normality assumption is made on the diffusion process underlying the data. However, for unknown
topologies, maximum likelihood problems require that we extend our computational methods to,
for example, determinant maximization problems. Solving these and similar types of nonlinear
MIPs is an active area of research in the optimization community (Lee, 2007). In recent years, the
problem of structured covariance matrix estimation has been mainly addressed in its application to
sparse Gaussian Graphical Models (Banerjee and Natsoulis, 2006; Chaudhuri et al., 2007; Drton and
Richardson, 2003, 2004; Yuan and Lin, 2007). In this instance, sparsity in the inverse covariance
matrix induces a set of conditional independence properties that can be encoded as a sparse graph
(not necessarily a tree).

Although we presented a descriptive metric of structural strength in our estimates in Section 3,
future work will concentrate on leveraging these methods in principled hypothesis testing frame-
works that better assess the presence of hierarchical structure in observed data. We expect that
the resulting methods are likely to impact how evolutionary analysis of gene expression traits is
conducted.
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A Simulation Study: Comparing MIP Projection Methods and
Neighbor-Joining

An alternative method to estimate a tree-structured covariance matrix from an observed sample
covariance is to use a distance-matrix method such as the Neighbor-Joining (NJ) algorithm (Saitou,
1987) as follows: given sample covariance B, create a distance matrix D such that D;; = B+ Bj; —
2B;j, and use the NJ algorithm to estimate a tree and its corresponding tree-structured covariance
matrix. In this simulation, we compare the closeness of the correct tree structure to the estimated
tree-structured covariance matrix when using this NJ-based method against using our MIP-based
projection methods. Specifically, we measure how close the structure of estimated tree-structured
matrices are to the true structure of true matrices by using the tree topological distance defined
by Penny and Hendy (1985) which essentially counts the number of mismatched nested partitions
defined by the trees.

The simulation setting was the following: 1) we first generated 10 {73,..., 710} trees with 10
leaves each at random using the rtree function of the R ape library (Paradis et al., 2004), which
gives 10 tree-structured covariance matrices {Bji, ..., Big} of size 10-by-10; 2) from each tree-
structured covariance matrix B;, we draw 10 sample covariances randomly {Bil, ey Bilo} using a
Wishart distribution with mean B; and the desired degrees of freedom df. This corresponds to
the sample covariance matrix of a sample with df observations from a multivariate normal random
variable distributed as N(0, B;). Note that the resulting sample covariances are not necessarily tree-
structured. Then, we estimate a tree-structured covariance matrix BZJ from each sample covariance
matrix Bg and record its topological distance to the true matrix B;. In Figure 6 we report the
mean topological distance of the resulting 100 estimates as a function of the degrees of freedom df,
or number of observations. The values of the z-axis are defined to satisfy df = 10 x 2%, so for x =0
there are 10 observations in each sample and so on.

We can see that the method based on NJ is unable to recover the correct structure even for
large numbers of observations. On the other hand the MIP-based method is able to converge to
the correct structure for both loss functions when the sample size is 16 times the number of taxa.
Although the topological distances even for smaller sample sizes are not too large, this simulation
also illustrates that, as expected, having a large number of replicates is better for this method. This
observation is partly the reason for concatenating different experiments in the yeast gene-family
analysis of Section 3.

B Running Times in Gene Family Analysis

family p norm class n time gap
ABC_Transporters 8 sav phy 13 0.49
ABC_Transporters 8 sav nonphy 148 0.66
ABC_Transporters 8 sav all 161 0.26
ABC _Transporters 8 fro phy 13 2.01
ABC_Transporters 8 fro nonphy 148 0.70
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Putative_Helicases 11 sav all 96 481.50
Putative_Helicases 11 fro nonphy 96 600.01 0.42%
Putative_Helicases 11 fro all 96 600.02 0.42%

Table 3: Run times for gene family analysis tree fitting. Each
row corresponds to the MIP approximation problem for the
given family and approximation norm. p is the size of the
gene family, n is the number of replicates in the data matrix,
and class indicates which class of experiments are included in
the data matrix. Time reported is CPU user time in seconds.
For those MIPs reaching the 10 minute time limit, we report
the relative optimality gap of the returned solution.

C Implementation Details

In this paper we use CPLEX 9.0 (Ilog, 2003) to solve the mixed-integer programs described above.
This solver allows the user to specify a number of options to control the behavior of the branch-
and-cut algorithm. Some of the options that we found to be very useful to solve these projection
problems are the following:

1. MIP_EMPHASIS: The default behavior in CPLEX is to balance the traversal of the search tree
to both tighten the lower bound of the optimum and find integer-feasible solutions. Since
the set of tree-structured covariance matrices is non-empty, we know there exists an integer-
feasible solution. Therefore, we specify that the emphasis should be solely in tightening the
lower bound.

2. VARSEL and NODESEL: These parameters determine the order in which the search tree is
traversed. VARSEL determines which variables are branched on while NODESEL determines the
order in which nodes in the search tree are explored. We set VARSEL to strong branching
so that a small number of branches are explored quickly before deciding which one to take.
We set NODESEL to best estimate where an estimate of the optimum value for integer-feasible
solutions under this node is used to determine order.

3. DISJCUTS and FLOWCOVERS: These parameters controls how often disjunctive and flowcover
cutting planes are generated. We set both to generate aggressively.

4. PROBE Probing is a preprocessing step where the logical implications of setting binary variables
to 1 or 0 are explored. We set this parameter to the maximum level of probing.

The determinant maximization Problem (6) is solved using the SDPT3 Tiitiincii et al. (2003)
semidefinite programming solver. Except for this problem, all experiments and analyses were
carried out in R (R Development Core Team, 2007), and many utilities of the ape package (Par-
adis et al., 2004) were used. CPLEX was used through an interface to R written by the au-
thors available at http://cran.r-project.org/web/packages/Rcplex/. An R package includ-
ing the MIP projection solvers will be made available by the authors. Since CPLEX is propri-
etary software, our published code will also allow the use of the Rsymphony interface (http://
cran.r-project.org/web/packages/Rsymphony/index.html) to the SYMPHONY MILP solver
(http://www.coin-or.org/SYMPHONY/).
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Mean topological distance, NJ vs. MIP
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Figure 6: Mean topological distance between estimated and true tree-structured covariance matri-
ces.
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