
DEPARTMENT OF STATISTICS

University of Wisconsin

1300 University Avenue

Madison, WI 53706

TECHNICAL REPORT NO. 1144

July 28, 2008

A Phylogenetic Mixture Model for the Evolution of Gene

Expression1

Kevin H. Eng

Department of Statistics

Department of Biostatistics and Medical Informatics

University of Wisconsin, Madison
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Department of Statistics

Department of Biostatistics and Medical Informatics

University of Wisconsin, Madison

1This work was supported by NSF grants DMS 0604572(GW) and DMS 0804597 (SK); a PhRMA Foun-

dation Research Starter Grant (SK); NIH grants HG03747 (SK) and EY09946(GW) and ONR Grant N0014-

06-0095 (GW).



July 28, 2008

A Phylogenetic Mixture Model for the Evolution of
Gene Expression

Research Article
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Abstract

Microarray platforms are used increasingly to make comparative inferences through
genome-wide surveys of gene expression. While recent studies focus on describing
the evidence for natural selection using estimates of the within and between taxa
mutational variances, these methods do not often explicitly or flexibly account for
predicted non-independence due to phylogenetic associations between measurements.
In the interest of parsing the effects of selection, we introduce a mixture model for the
comparative analysis of variation in gene expression across multiple taxa. This class
of models isolates the phylogenetic signal from the non-phylogenetic and the heritable
signal from the non-heritable while measuring the proper amount of correction. As a
result, the mixture model resolves outstanding differences between existing models and
relates different ways to estimate the across taxa variance. We investigate by simulation
and application the feasibility and utility of estimation of the required parameters. We
illustrate the estimation with a gene duplication family data set, discussing previously
proposed estimates for testing selection hypotheses and proposing improvements.

Keywords: gene expression, mixture model, natural selection, phylogenetic correc-
tion.
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1 Introduction

The availability of gene expression data en masse admits a genomic resolution comparative
expression experiment which measures many homologous gene transcripts simultaneously
across many taxa in the interest of determining which genes are likely to undergo selective
forces (Rifkin et al., 2003; Nuzhdin et al., 2004; Whitehead and Crawford, 2006a). Through
such an experiment the investigator may determine the relative strengths of neutral drift
and natural selection forces on gene expression traits (Fay and Wittkopp, 2007) at the single
gene level while isolating whole groups of genes which act together and which might have
a common evolutionary history. These investigators propose the use of the variance within
and between taxa to determine the strength and form of hypothesized selection forces. The
expression of each gene is a single, continuously-valued trait, and, as in the usual comparative
experiment, the analysis is potentially obfuscated by the evolutionary dependence common
to the taxa.

To account for this dependence, we may examine the structured form of the phylogenetic
covariance matrix defined between taxa. The investigator typically considers the evolution-
ary relationship evidenced by a phylogenetic tree estimated from some other characters, but
for model based comparative analyses we wish to translate these trees to covariance matrices.
Under the assumption of a Brownian motion process underlying the historical evolution of
the trait, we may construct a phylogenetic covariance from a known tree (Felsenstein, 1988).
For general phylogenetic covariance matrices, Martins and Housworth (2002) suggested an
eigenvector decomposition to identify variance with specific tree shapes. In Corrada Bravo
et al. (2008), we developed a new algorithm for estimating a tree and its matching Brownian
motion covariance directly from observed continuous-trait data. As opposed to methods like
neighbor-joining (Saitou, 1987), this method globally optimizes a projection criterion over
all possible tree topologies using proven, efficient methods for combinatorial optimization.
For expression from gene duplication families, Gu (2004) and Oakley et al. (2005) both re-
parameterize the mutational rates on each branch of a known tree covariance allowing it to
better fit the phylogeny information. Of particular note, the addition of an error compo-
nent allows these covariances to extend to a model for the entire experiment with a single
covariance matrix (Ives et al., 2007).

Practically, linear models model both dependence and error by implicitly assuming a co-
variance structure which decomposes the observed or experimental variance. Such decompo-
sitions are especially desirable since they correspond to known structures in the experiment.
Lynch (1991) defines a mixed effects model across multiple traits, capturing the phylogenetic
structure in a relationship matrix G and covariance between traits as a series of single pa-
rameter variance components. While adapting Lynch’s model for biological replicate data,
Christman et al. (1997) extend a memetic, due to Cheverud et al. (1985), where the trait
value (T) is separated into a phylogenetic component (P), a specific value (S) and a random
error component (E), namely T=P+S+E. This decomposition leads the authors to conclude
that Lynch’s model isolates heritable effects (P+S) from noise (E) but fails to separate them
from one another (P from S). Housworth et al. (2004) reformulate Lynch’s model to address
this deficiency by emphasizing a parameter which indirectly estimates the degree of phylo-
genetic signal in the sample. More recently, Guo et al. (2006) fit three types of Bayesian
flavored mixed effects models each parameterizing an increasing amount of phylogenetic
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signal, finding that modeling the degree of signal present yields better models.
The importance of determining the amount of phylogenetic signal in a sample cannot

be understated. If there is a phylogenetic signal, the comparative analysis ought to find
and remove the extra variation. If no signal can be detected, then corrective methods will
overzealously bias the final estimates. Permutation tests at the level of tree estimation offer
a way of testing for the presence of a signal or not (Blomberg et al., 2003). Pagel (1999)
introduced λ as a measure of the strength of the signal and developed a likelihood ratio
test for its presence. Similarly, Housworth et al. (2004) adopted h2 as a measure of the
strength of the heritable signal in the data. In both cases, a continuous estimate carries
more information than a dichotomous hypothesis test and should it indicate a strong signal,
we ought to apply an appropriate phylogenetic correction.

Our goal in this paper is to integrate a framework for studying selection forces into
phylogenetic, variance-decomposing models in a gene expression context. With respect to
tests of selection, Rifkin et al. (2003) proposed the use of the estimated mean squares to model
expected variation between and within taxa. In this framework, evidence of deviation from
expectation under neutrality is evidence of the effect of natural selection. Nuzhdin et al.
(2004) revised this idea using nested random effects in an ANOVA model and proposing
the numerator and denominator of the standard, uncorrected F-ratio to be estimates of
the between and within taxa variance. In particular, they give forms of the tests which
distinguish between purifying and adaptive selection. Whitehead and Crawford (2006a)
continue the use of plain mean square estimates, adding a test for stabilizing selection.

In this article, we present a mixture model for the covariance in order to resolve predeces-
sor models’ inability to separate phylogenetic effects from non-phylogenetic ones clearly and
to resolve the exclusion of consideration for the structured dependence in the testing frame-
works of Nuzhdin et al. (2004) and Whitehead and Crawford (2006a). In such a model, the
necessary degree of correction is freely estimated so the investigator may draw inferences on
parameters un-confounded by dependence. We discuss the convergence of existing models by
demonstrating the relationships between their assumptions on the covariance; the mixture
formulation covers a continuum of models set between independent contrasts and the class
of phylogenetic mixed effects models. We describe the main assumptions and implications of
the model from the practical analysis point of view, illustrating its effect with a simulation
study and demonstrating its use in the study of gene duplication families in Saccharomyces
cerevisiae (Oakley et al., 2005).

2 Methods

2.1 Models for the Structured Variance Among Taxa

We wish to consider existing models for the covariance matrix defined between taxa, so
that we may study how they reflect the phylogenetic tree-structured signal and how they
measure both the specific variance and the error in the observed data. In an independent
contrasts framework (Felsenstein, 1985), suppose V0 is a tree-structured, phylogenetic matrix
(Felsenstein, 1988) representing a true phylogenetic history among T taxa. Since the true
structure may be confounded by other processes, we can consider extending this covariance
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to the structured form proposed in Pagel (1999) and Freckleton et al. (2002). These studies
introduce λ as a measure of the strength of phylogenetic correlation, or as a measure of
the “loss of history,” which induces a covariance matrix V(λ). In defining V(λ) to be a
phylogenetic covariance matrix whose off-diagonals are multiplied by λ, the authors implicitly
assume that opposing the phylogenetic structure V0 is a specific, non-phylogenetic structure
Λ0:

V(λ) = [λJT + (1− λ)IT ] ◦ V0

= λV0 + (1− λ)Λ0. (1)

Here, JT is a T × T matrix of ones, IT is the identity matrix of the same dimension and
◦ is the element-wise (Hadamard) product. We define Λ0 to be the diagonal matrix with
the same main diagonal as V0 and will assume that 0 ≤ λ ≤ 1. Even though Pagel (1999)
admitted an interpretation for λ > 1, restricting its range preserves its interpretation as the
proportion of signal attributable to phylogeny.

For each gene, g = 1, . . . , G, suppose we measure N = RT many individuals from
t = 1, . . . , T many taxa with r = 1, . . . , R balanced replicates. That is, for each observation
vector Ygr = (Ygr1, . . . , YgrT )′, we measure the homologous transcript once in each taxa and
assume that E(Ygr) = µg. Freckleton et al.’s model (2002) assumes that this vector has
variance

V ar(Ygr) = τ 2V (λ)

= τ 2λV0 + τ 2(1− λ)Λ0. (2)

Freckleton et al. (2002) did not make explicit use of this additive relationship between λ and
V0, but this sum makes clear that hidden inside V(λ) is a decomposition of the observed
signal into a phylogenetic and non-phylogenetic component. While this partition is desirable,
it lacks a sense of error due to measurements or within the taxa in the sample.

When the taxa span species, the within taxa error is typically assumed to be negligible
relative to the across taxa error. Ives et al. (2007), however, observe that this error component
may include error due to populations and measurement. For gene expression microarray
studies, the sampling error induced having only a few samples may be of some concern.
Further, one might argue for the interpretation of the within taxa error as a rate of mutation
(Guo et al., 2006; Rifkin et al., 2003; Whitehead and Crawford, 2006a).

An alternative way to model the covariance, a linear mixed model (Lynch, 1991; Hous-
worth et al., 2004; Guo et al., 2006), induces a covariance by assuming that there ought to
be a random component for the heritable portion of the signal bgr independent of the com-
ponent for error egr. As Christman et al. (1997) observed, this decomposition only isolates
the error component from the signal of interest. But, if we substitute the form of Pagel’s
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matrix V(λ) for the variance of bgr, we obtain the following decomposition.

V ar(Ygr) = V ar(bgr) + V ar(egr) (3)

= τ 2V (λ) + σ2IT (4)

= τ 2λV0 + τ 2(1− λ)Λ0 + σ2IT (5)

=
τ 2λ

τ 2 + σ2
(τ 2 + σ2)V0 +

τ 2(1− λ)

τ 2 + σ2
(τ 2 + σ2)Λ0 +

σ2

τ 2 + σ2
(τ 2 + σ2)IT (6)

= p1(κV0) + p2(κΛ0) + p3(κIT ), (7)

where the first part is a phylogenetic component, the second a non-phylogenetic component
and the third an error component for p1 + p2 + p3 = 1. This implies that utilizing Pagel’s
construction (1999) of V(λ) results in a model which delivers precisely Christman et al.’s
(1997) desired decomposition into a phylogenetic component (P), a taxon specific one (S)
and a random error part (E). Here, λ controls the relative strength of P versus S. This form
of the variance naturally suggests the mixture model as the combination of these two forms
(one which models only P versus S and another which separates only P+S from E).

2.2 A Phylogenetic Mixture Model

Suppose that the gene expression measurement Ygr = µg + Zgr may be decomposed into a
fixed mean µg and a random part Zgr which follows a phylogenetic mixture distribution. For
some probability densities, fV0(z), fΛ0(z), fIT (z), the mixture density is given by

fmix(Zgr) = p1fV0(Zgr) + p2fΛ0(Zgr) + p3fIT (Zgr), (8)

where p1 + p2 + p3 = 1. That is, the mixture model is defined by the weighted average of
the three densities. From the arguments in Felsenstein (1973) it is natural to assume that a
pure phylogenetic history component follows a Brownian motion process and thus we assume
that fV0(z) is a normal density. Likewise, the non-phylogenetic component, fΛ0(z), may be
assumed normal and, for tractability, one tends to assume error distributions, fIT (z), are
also normal. We assume, therefore, that

N (0, κV0),N (0, κΛ0),N (0, κIT ) (9)

are the distributions of the independent components. It is important to note that the
marginal density fmix(z) is not a normal density, but since each of the components are
mean zero and normal, the mixture may be similar to the multivariate normal marginal
density of a mixed effects model (Lynch, 1991; Martins and Hansen, 1997; Guo et al., 2006).
Further, we believe that this mixture model is a reasonable generating model both for the
data structure we described in section 2.1 and for the gene family case study we will present
in section 3.3.

In a mixture model, the mixing proportions p1, p2, p3, and the scaling constant κ are
commonly estimated by the application of an Expectation Maximization (EM) algorithm
(Dempster et al., 1977). Having done so, we can retrieve the original parameters by trans-
forming the estimates into λ, σ2, τ 2. The required steps are laid out in Appendix A. Since
µg is a fixed effect separate from the mixture, its estimation is trivial.
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These component distributions represent particular archetypical scenarios. If the data
show phylogenetic signal (a particular type of non-independence) then we believe that they
come from the fV0(z) component. If the data were independent but not identically distributed
(each has is own specific variance) then fΛ0(z) is the correct model. If the taxa were truly
independent, identically distributed noise then fIT (z) takes precedence. Mixing proportions
p1, p2, p3 represent the relative strengths or relative probability of each component.

In estimating the parameters from this mixture model, we obtain estimates of the de-
composed, “marginal” covariance whose parameters have important connotations:

V ar(Ygr) = τ 2λV0 + τ 2(1− λ)Λ0 + σ2IT . (10)

If λ is the strength of phylogenetic signal in the data, τ 2 scales the variance of the signal
and is commonly called the taxa specific variance. Likewise the error variance is σ2. Since
V0 is scaled by it, λ represents a degree of correction to the observed covariance. If λ = 1
then the correction is strong whereas if λ = 0 there is no correction for dependence.

Recalling that our goal is to model the correlated signal in the data, a different type of
analysis would fit each component model separately and use a likelihood ratio test to choose
between them (this is the original proposal in Freckleton et al. (2002)). But, the authors
noted in their empirical survey of the available studies that comparative studies tend to
lack the sample size that generates sufficient power to make clear decisions. While Martins
and Hansen (1997) charged that these models may generally lack the power to make the
decision between a phylogenetic and non-phylogenetic analysis, Freckleton et al.’s (2002)
counterargument holds: because we propose to estimate λ rather than to test for λ = 1 or
λ = 0, in this model, λ admits a continuum of possible corrections and controls the type of
analysis by attempting to find the optimal amount of correction. Even if we do not reach
optimal power, we get as good a guess as the data allows with respect to the degree of
correction. Similarly, the permutation test in Blomberg et al. (2003), the model selection
procedure in Oakley et al. (2005) or the Bayesian model selection problem in Guo et al.
(2006) all choose only one among many candidate models.

Per Freckleton et al. (2002)’s argument, this desirable property derives from the transfor-
mative interpretation of V(λ). In practice, we do not have to choose between extremes since
they may be chosen for us: one can observe, from the form of the covariances, that when
λ = 1 our variance and the variance of the original class of mixed effects models agree and
when λ = 0 we have a properly scaled form of an uncorrected, non-phylogenetic analysis.

λ = 1 τ 2V0 + σ2IT , (Phylogenetic)
0 < λ < 1 τ 2V(λ) + σ2IT ,
λ = 0 τ 2Λ0 + σ2IT . (Non-phylogenetic)

(11)

An alternative measurement for the strength of signal was proposed in Housworth et al.
(2004) to reparameterize the model by Lynch (1991). The phylogenetic heritability, h2, is
defined in our model as the proportion, h2 = τ2

τ2+σ2 , interpreting σ2 as Lynch’s or Housworth’s
nonheritable variance or Christman et al.’s (1997) error variance. It follows that the mixture
variance can be written as,

V ar(Ygr) ∝ h2 [λV0 + (1− λ)Λ0] + (1− h2)IT , (12)
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where ∝ indicates “proportional to” the total variation, τ 2 +σ2. By their observation, when
h2 = 1, Housworth et al.’s (2004) mixed effects model is identical to Felsenstein’s (1985)
phylogenetic independent contrasts method (i.e., a model where there is only phylogenetic
signal). In our model, h2 is close to 1 when σ2 is close to zero. So, as σ2 decreases our
marginal covariance becomes increasingly close to the covariance assumed in the independent
contrasts method (V0) provided λ is large; h2 remains a measure of the strength of the
heritable variance part versus the non-heritable part.

2.3 Covariance Transformations

In addition to an interpretation as a decomposition of the variance, we give the following
transformative re-interpretation of Freckleton et al.’s (2002) model. They originally call λ a
measure of how closely the trait follows the Brownian motion process, so that for λ small, the
Brownian motion assumption may be violated. We argue that every value of λ corresponds
to a particular covariance matrix which could have been generated by a particular Brownian
motion history. If true, the utility in λ comes from indexing which process is the best fit for
the expression trait data.

If we consider the tree implied by the covariance matrix, V(λ), since λ shrinks the off
diagonal entries, it shrinks the ancestral branches of the tree corresponding to V0 while fixing
the total branch length. When λ = 0, every off diagonal is exactly zero and this covariance
matrix corresponds to the independent “star tree” configuration with total branch lengths
the same as the total branch lengths in V0. When λ = 1, the covariance is identically V0.
For 0 < λ < 1, the covariance corresponds to some tree with ancestral branches shrunk
towards the root, assuming a Brownian motion process. Thus, λ helps our model find, for
the expression trait, the best covariance corresponding to a Brownian motion tree between
V0 and the star tree Λ0. A graphical representation appears in Figure 1.

Here there are trees for the phylogenetic (λ > 0) and non-phylogenetic (λ = 0) cases. The
dotted segments represent variation attributable to σ2, the independent variation common to
all taxa, accordingly they all have the same length. τ 2 controls variation in the branched part
of the diagram, and, even in the non-phylogenetic case, it isolates the independent variation
specific to each taxa. If we think about the position of the ancestor nodes as mobile, λ
controls the relative size of the branch between the last split and all ancestors versus the
splits higher up the tree.

[Figure 1 about here.]

This is an adaptation of the figure from Housworth et al. (2004) who wrote that h2 sepa-
rates two components as the phylogenetic mixed model “envisions extant taxon phenotypes
to be the result of a linear combination of gradually accumulated evolutionary changes oc-
curring along a true species phylogeny and short-lived evolutionary changes ... occurring in
each taxon independently and not passed on between ancestor and descendent taxa” (pp
85).

Since V0 is assumed estimated from the sequence data, of issue is how the tree implied
by the expression process relates to the phylogenetic tree. Since the parametrization by λ
only changes the branch lengths and not the topology of the tree, we might infer that the
differences between the expression tree and the phylogeny depend on the comparisons of the
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rates of trait mutation along different parts of the tree and their relation to the observed
sequence divergence. That is, if we know that the tree defines a short nearest-ancestor-to-leaf
evolutionary time, but we observe strongly independent expression signal between taxa, we
might conclude that the rate on those branches, σ2, is very large. In particular, σ2 and τ 2 are
interpretable as estimates of the gene-specific constraints inherent in some function which
relates variation within taxa and between taxa as discussed in Whitehead and Crawford
(2006b). This idea will be highlighted in the next section.

We give some consideration to the form of V0 which is generally assumed to be a known,
given, tree-structured matrix estimated from separate characters. While we generally focus
on the Brownian motion interpretation for this model (see Felsenstein (1988) on the link
between trees and Brownian motion covariances), within the greater framework of statistical
linear models, it is relatively simple to extend this formulation to Lynch’s (1991) relationship
matrix G, a functional covariance suggested in Martins and Hansen’s (1997) PGLS method,
or indeed any method that relies on placing phylogenetic structure into a covariance term.
In each of these cases, the form and estimation of the mixture model remains the same; one
only needs to change the given V0. It is a little less clear what it means to shrink the off
diagonals of the matrix in these cases.

2.4 Testing Selection Hypotheses

Following Rifkin et al. (2003), Nuzhdin et al. (2004) and Whitehead and Crawford (2006a),
we consider the evidence in favor of natural selection forces characterized by the variance
within and between taxa. The exact definition is situational: the first article uses estimates
of the expected mean squared error for the variance within taxa and the mutational variance
scaled by time for the variance between taxa. The second uses the variance of a nesting
factor (species) and the nested factor (line). The last uses the variance among the population
means and the variance within populations. The variance models follow in standard variance
component notation,

V ar(Ygr) = σ2
errorIT (Rifkin et al. 2003) (13)

= σ2
speciesIT + σ2

line (species)IT (Nuzhdin et al. 2004) (14)

= σ2
pop.IT + σ2

individual (pop.)IT (Whitehead and Crawford 2006) (15)

In all cases, the intuitive interpretation is that the estimate of between taxa variance is the
numerator and the within taxa variance is the denominator of the ANOVA F-test of interest.
We call this mean square estimation for variance based (mutational variance/rate) testing.
In noting that none of the ANOVA based methods take into account V0 or Λ0 (they all
use some form of IT ), we wish to emphasize that none of the three techniques accounts for
phylogeny in the estimation of the mutational variances. (Rifkin et al.’s method (2003) uses
estimated distances in the computation of expected mean squares, but this is not the same.)
In order to apply the ANOVA estimates, we must believe that the data are independent and
identically distributed across taxa.

Since each method tries to derive the variance component under neutral drift, the hy-
pothesis that a gene’s expression divergence is explainable by neutral drift alone makes a
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natural null hypothesis. Then, deviations from the null hypothesis are deviations from neu-
tral drift and alternative hypotheses indicate evidence for natural selection. Each method
has a different interpretation for the evidence of a particular type of natural selection. For
their mutation-drift test, Rifkin et al. (2003) only observe that rejected hypotheses show
evidence of selection. Nuzhdin et al. (2004) identify genes with both variance estimates low
as undergoing stabilizing selection; genes with low F-ratios may be undergoing balancing
selection; genes with large F-ratios may undergo adaptive divergence. Whitehead and Craw-
ford (2006a) add the constraint that genes undergoing adaptive divergence ought to favor a
particular direction, i.e., correlate with an additional environmental covariate. (Whitehead
and Crawford (2006a) actually propose an “Inverse-F” test, but note that this is the same
as considering the lower tail of the usual F-test. The term may be an anachronism, without
the inverse form, one would need two sets of statistical tables to conduct two tailed tests. It
is sufficient to consider a “two tailed” F-test.)

In our phylogenetic corrective parametrization, recall that the marginal variance is given
by (10). Then, τ 2 is the analog of the gene specific between taxa variance (“numerator of
the F-ratio”) and σ2 is the analog of the gene specific within taxa variance (“denominator of
the F-ratio”). Since σ2 is interpreted as the rate of mutation in the expression trait (Rifkin
et al., 2003; Nuzhdin et al., 2004; Whitehead and Crawford, 2006a), the relative sizes of
τ 2 and σ2 imply different evolutionary scenarios. When τ 2 = σ2, the signal is consistent
with a Brownian motion process evolving along the given tree, representing the neutral drift
null hypothesis. If we conclude that τ 2 < σ2, the observed dependence is consistent with
slower than expected variation (less expression divergence) suggesting that the gene may
be undergoing balancing selection. Similarly, τ 2 > σ2 favors directional selection since the
observed divergence is larger than expectation (we relax the requirement that the residuals
must also show correlation with environmental covariates, i.e., a that they show a particular
direction as well). If τ 2 and σ2 are both “small” then we conclude that there is evidence of
purifying or stabilizing selection.

In the following sections, we attempt to demonstrate that the naive mean square estimate
does not behave exactly as required in the mixture framework. Whitehead and Crawford
(2006b) observed that the ANOVA method tries to approximate the function that relates
within and between taxa variance. Such a function depends on gene-specific constraints and
divergence times, but a standard ANOVA estimate ignores the latter.

3 Results

3.1 The Need for Corrections

We construct the following simulation study to illustrate the cost of failing to correct a
phylogenetic signal and the effect on the statistical evolutionary hypotheses posited above.
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Suppose we have the following phylogeny structure encoded in a covariance matrix:

V0 =


5 4 3 1 0
4 7 3 1 0
3 3 7 1 0
1 1 1 5 0
0 0 0 0 8

 .

[Figure 2 about here.]

Under the mixture model proposed above, we define the selection hypotheses in the table
below and draw a simulation dataset. We construct an artificial array of 350 genes (50 per
hypothesis) and an artificial experiment where each gene is measured 500 times (5 taxa in
V0 above, 100 individuals). λ is generated by sampling a Uniform(0,1) random variable once
for each of the 350 genes.

Hypothesis τ 2 σ2 Number Plot Color
of Genes

Neutral Drift 1.00 1.00 50 black
Balancing Selection, Weak 1.00 5.00 50 light red
Balancing Selection, Strong 1.00 10.00 50 dark red
Directional Selection, Weak 5.00 1.00 50 light blue
Directional Selection, Strong 10.00 1.00 50 dark blue
Stabilizing Selection, Weak 0.10 0.10 50 light green
Stabilizing Selection, Strong 0.05 0.05 50 dark green

350 genes total

The mean square approach generates estimates from the following nested ANOVA table.
The proper reference for these estimates is the F-distribution with 4 and 95 degrees of
freedom.

Source df
Taxa 5-1 = 4
Individual (Taxa) 100-5 = 95
Error 499-99 = 400

The resulting “idealized” data is analyzed in Figure 3 which plots the logged values of τ 2

and σ2 under the scenarios tabled above. The seven versions of the variance based hypotheses
are color coded: the black points represent a neutral drift null scenario, the two shades of
blue are genes undergoing strong and weak directional selection; two shades of red, balancing
selection and two shades of green, stabilizing selection. Two grey lines indicate the 0.05 two-
sided thresholds for the F-ratio test. Points above the upper threshold are declared to show
evidence of directional selection. For the sake of argument, we omit the condition that genes
undergoing directional selection need to correlate with an environmental covariate. Points
below the lower threshold show evidence of balancing selection. We do not implement the
corresponding stabilizing selection test.

[Figure 3 about here.]
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The top two panels illustrate the same data when V0 captures the true correlation between
taxa. The true τ 2 and σ2 is the same for every gene in the same group, so the spread of
points represents sampling variability (and to some extent the effect of λ). The plot on the
left (3a) shows the ANOVA estimates and on the right (3b) shows the estimates from the
mixture model. Intuitively, both variance estimation procedures partition the total observed
variance into within and between taxa parts. Since we assume the mixture model is the true
generating model, we can see that the ANOVA estimates tend to over estimate σ2 and make
up for the excess by increasing the variance in the estimate of τ 2. In a joint bias-variance
tradeoff, the ANOVA estimate trades low variance in the σ2 estimate for bias and higher
overall error in the τ 2 estimate.

The left hand plots (panels 3a and 3c) employ the mean square estimates for the between
and within taxa variances. In plot 3a, since all the groups of genes in each class of hypotheses
are centered about the identity line, it is clear that choosing genes using their F-ratio is not
specific for the directional alternative or the balancing alternative; some genes from each
group fall above or below the corresponding threshold. This pattern holds even in the lower
left plot (3c) where we assume the data really are independent and identically distributed.

In addition to problems with the hypothesis tests, the estimates of σ2 and τ 2 appear
over-estimated when we do not account for the dependence structure. In Figure 3a and
3c, the neutral drift cluster and the stabilizing selection clusters (which are and should be
centered on the identity line), appear biased much farther up the identity line than they
should.

Contrast these observations with the estimates from with the mixture model (Panel 3b).
The plot shows what we would ideally like to see: all the genes clearly separate based on the
true values of their parameters. The effects are clearly separated implying that there are a
sufficient number of replicates to identify all the effects. Note that this scenario represents
artificially ideal conditions: a large number of observations, good separation, each gene class
has the same true parameter. The point is that the mean square estimates do not behave as
expected, even under this optimal setting. In practice, we might expect each gene to have a
different set of parameters (τ 2 and σ2) and the groups to overlap significantly. Furthermore,
the proportion of genes undergoing natural selection may alter the plot significantly. That
is, we do not expect to see nicely separated groups in practice, the actual form depends on
the proportion of genes under each type of selection and their relative strengths.

We noted previously that Housworth et al. (2004) observe that the small number of
replicates available in comparative experiments may not reach the statistical power necessary
to make strong inferences. For gene expression data, we observe elsewhere (Eng et al., 2008)
that a per gene analysis may also suffer from low power, but propose that clustered analyses
may use similar genes to generate additional power. That is, if we believe that several genes
act in concert and are willing to draw selection inferences on a whole group (i.e., a each
member of a group undergoes the same selection force versus a single gene under a unique
force) then we may employ genes as identical replicates in order to increase the power of the
test.
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3.2 Calibration problem

As we discussed in the methods section, the mixture model relies on a V0 matrix that captures
the phylogenetic relationship between the taxa. Additionally, tests of selection hypotheses
require a model that preserves the relationship between τ 2 and σ2. Since estimates of the
phylogenetic tree are typically obtained from sequence information (or similar independent
sources), there is no reason to believe that it is of the appropriate scale for expression level
data. If the given covariance structure is scaled too small then estimates of τ 2 will be
artificially large; likewise if the given covariance is too large, τ 2 will be too small.

One simple correction is to add an additional scale factor to the mixture. Suppose
instead of (V0,Λ0), the true generating covariance had components Va = aV0 and Λa = aΛ0

for a > 0.

V ar(Ygr) = p1(κVa) + p2(κΛa) + p3(κIT )

= p1(κaV0) + p2(κaΛ0) + p3(κIT ) (16)

= p1(κ1V0) + p2(κ1Λ0) + p3(κ2IT )

Keeping in mind that the mixture-based EM algorithm will estimate the scales of the indi-
vidual components (κ1, κ2), we can obtain an identifiable estimate for all the parameters,
separating the effect of a and τ 2. Details of this EM algorithm are available in Appendix B.

We need to emphasize that the mixture assumption, made in section 2.2, is necessary to
obtain an identifiable estimate of a. Had we assumed a marginal mixed effects model (Lynch,
1991; Martins and Hansen, 1997; Guo et al., 2006) with the same variance (Equation 5), the
scale parameter and the variance would only be estimable as aτ 2. Practically, the investigator
would have to assume some value of a in order to conduct selection tests, but this would
create an uncorrectable bias in the testing framework.

Figure 4 summarizes the scaling problem and this correction using the same set of seven
hypotheses from the previous section. For these plots, we assume that we know V0, the
same as in the last section, but that data are generated from scaled versions of V0. In the
left panels (4a and 4d), the true V1/100 = V0/100 is 100 times smaller than the given V0.
In the middle (4b and 4e), the scale is correct. In the right panels (4c and 4f), the true
V100 = 100V0 is 100 times larger than the given V0.

The top row of Figure 4 demonstrates the effect of the wrong sized covariance by fitting
the mixture with V0 given. Notice that estimates are drawn uniformly downwards in panel
4a but pushed upwards in panel 4c. For reference panel 4b is the same plot from Figure 3b.
Fewer points appear in the latter plot since estimates may be unobtainable when this scaling
is too far off. The bottom row of Figure 4 shows the effect of estimating nuisance scale a for
large and small true values.

[Figure 4 about here.]

It makes sense that the procedure fails for a very small, since this case corresponds to the
scenario where the heritable component is weak, i.e., there is very little signal. At present,
this case can be identified by observing an unusually large proportion of genes for which
λ = 0 since very small a forces λ to shrink even if the signal is present.

12



Oakley et al. (2005) anticipated this problem in constructing their various model types:
in one model the known covariance structure enters in assuming a is a unit rate, in another,
different scalings of the branch lengths correspond to a different value for a. It is useful at
this point to observe that λ = 0 corresponds to Oakley’s class of “non-phylogenetic” models
and λ = 1 to the “pure-phylogenetic” models. Also, the need for a common scale appears in
the methodological notes in Rifkin et al. (2003) as an estimate of the common mutational
variance. These interpretations lead to the idea that if a is a common mutational rate, it
is natural to think of τ 2 > 1 or σ2 > 1 indicating a higher mutational rate between and
within taxa versus a rate common to all genes (likewise τ 2 < 1 and σ2 < 1 indicate slower
mutational rates).

3.3 Saccharomyces Data Example

The application of phylogenetic techniques to gene duplication families in the yeast Sac-
charomyces cerevisiae supposes that individual genes’ sequences are linked to a common
ancestor sequence, the target of a duplication event, and that the expression level of the
descendent sequences is itself a trait subject to evolutionary forces (Gu, 2004; Oakley et al.,
2005). In such an analysis, the members of these families constitute the taxa of interest and
the models developed in Gu (2004) and Oakley et al. (2005) test how well a sequence derived
covariance matrix matches the predicted history of the expression trait. Since there is good
reason to expect a phylogenetic structure between the genes, we will re-analyze the data set
presented in Oakley et al. (2005) to illustrate the mixture model.

Using Gu’s procedure (2004) for searching the proteome to identify 10 large gene fami-
lies (between 7 and 18 genes each), Oakley et al. (2005) process expression arrays from 19
experiments from the Stanford Microarray Database (http://genome-www5.stanford.edu)
and compute maximum likelihood phylogenetic trees for each family. Each experiment rep-
resents a different experimental condition, so we may draw inferences about the evidence of
selection under particular conditions. There are 19 experiments each of which contains some
of the 10 gene families for a total of 169 family specific measurements. Each experiment is
a separate dataset where g corresponds to a gene family, t a single transcript in the gene
family and r an array in the experiment. The data are analyzed are available from the
supplementary materials from Oakley et al. (2005) (http://www.lifesci.ucsb.edu/eemb/
labs/oakley/pubs/MBE2005data/).

First consider the application of an ANOVA model which assumes that the residuals
from its fit will be independent and identically distributed (iid). For each gene family in
Table 1, the maximum residual correlation between all pairs of taxa over all replicates in
all experiments demonstrates that the residuals are frequently not independent (8 out of 10
families have correlation greater than 0.50 in at least one pair of taxa) and Levene’s test for
the homogeneity of variances rejects the identically distributed assumption for 6 of the 10
families. These observations reinforce the need for an adjustment to account for the violation
of the iid assumptions.

[Table 1 about here.]

The same 10 gene families appear in Table 2 which lists the number of experiments in
which the gene family was measured, the number of these experiments which show some
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evidence of phylogenetic signal (λ > .5) and the number of experiments which may have
significant balancing or directional selection tests. The last two are defined by the same
reference F distribution for the ANOVA estimates. Note that this is not a proper test, the
reference distribution for the “corrected F” estimate is presently unclear so the table serves
as a heuristic for comparing the mixture model and ANOVA estimates.

[Table 2 about here.]

The plot in Figure 5 shows the ANOVA estimates and the mixture model corrected
estimates plotted on log scale (τ 2 is between taxa and σ2 is within taxa). As in the simulation
plots, points about the identity line favor neutral expectations and points significantly distant
from the line favor selection hypotheses. The ANOVA estimates appear to have a strong
trend where τ 2 is smaller than expected, reflecting the tendency of the ANOVA estimate to
favor σ2 at the cost of shrinking τ 2 to zero if necessary (we saw this same pattern in Figure
3). The mixture estimates are more in line with neutral expectations. We have highlighted
extreme points (ones which have large or small τ 2/σ2 ratios when properly corrected. In
the left hand plot, notice that the pattern is fairly random suggesting that the raw ANOVA
estimates will lead to incorrect inferences.

[Figure 5 about here.]

Both Gu (2004) and Oakley et al. (2005) proposed models for gene family data similar
to our decomposition into phylogenetic (V0), independent (Λ0) and iid (IT ) hypotheses, but
these models differ from ours in that they attempt to choose a single best fitting hypothesis.
To underscore the difference between the testing frameworks consider Table 3, where we list
the experiments which showed some evidence of a particular type of selection. Keeping in
mind that the test is not formal, note that the inferences possible under mutational rate
testing (with τ 2 and σ2) highlight types of selection while Oakley’s relative rate testing
picks a best fitting model. The choice between the “pure-phylogenetic distance” and “non-
phylogenetic distance” models is analogous to the choice between λ = 0 and λ = 1 assuming
σ2 = 0.

[Table 3 about here.]

Concordant with the finding in Oakley et al. (2005) that most families have a “non-
phylogenetic” model in different experimental conditions (117 of 152), a large proportion of
experiments corrected with the mixture model show weak phylogenetic signal, λ < .5 (115
of 169). This raises some questions about how to interpret the results since Whitehead and
Crawford (2006a) only defined selection scenarios for τ 2 and σ2 supposing that λ = 1. We
do find, however that the Hexose Transport gene family appears to show strong phylogenetic
signal in 8 of 14 experiments versus 12 of 14 in Oakley et al.’s analysis (2005). This family
is also strongly represented in the balancing selection list (10 of 14 experiments).

The equivalence with Oakley et al.’s models (2005) may give us some idea about how
to interpret the results taking λ into account. Under strong signal (λ = 1), the pure-
phylogenetic model in Oakley et al. (2005) agrees with the τ 2 = σ2 neutral drift hypothesis,
while the λ = 0, τ 2 = σ2 case agrees with the non-phylogenetic model. Of the latter they give
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the possible evolutionary implication: “genetic distances since last gene duplication predict
change in expression, consistent with an initial coupling during evolution of expression and
coding sequence” (pp47). We might hypothesize that this aligned evolution holds for genes
which have small λ values and further that, since τ 2 is the rate associated with V0, it
reflects the relative variance of the expression phenotype over the rate of divergence in coding
sequence while σ2 reflects the relative rate of variation after the effect of this coupling fades
in evolutionary time.

4 Discussion

The use of gene expression microarrays for studying heritable variation on a genome-wide
scale yields a fine-resolution look at the interplay between natural selection and neutral
drift. The ability for investigators to discern more subtle effects is severely limited by the
ability of the models to identify and remove extraneous non-heritable noise and confounding
non-phylogenetic signal. For these comparative gene expression studies, we have presented a
mixture model which attempts to address precisely this fault. In adapting existing models of
the phylogenetic variance for use in gene expression data, our model’s primary innovation is
the use of Pagel’s V(λ) matrix (1999) to decompose the heritable signal into phylogenetic and
non-phylogenetic components. This model readily parameterizes between and within taxa
variances and therefore provides a framework for studying evolutionary hypotheses defined
by their mutational variance. We illustrated the drawbacks of estimating relative sizes of
within and among taxa variances without a phylogenetic correction and demonstrated via
simulation that an uncorrected analysis can lead to incorrect identification of the strongest
drift/selection hypothesis. Further this model may be implemented for the analysis of data
using independent contrasts, phylogenetic generalized least squares type methods as well as
for data using likelihood based models. We close this section with a discussion of a few
outstanding points.

4.1 Signal Detection

Mechanically, the EM solution for the mixture formulation attempts to “classify” each ob-
served replicate according to the given tree structure V0, so we can rely on statistical intuition
from classification problems. If V0 is too similar to a diagonal matrix, it is too similar to
Λ0; likewise, if it is nearly the identity matrix IT , none of the three can be easily separated.
These cases are easily identified by inspection, but, as a rule of thumb, we suggest looking
carefully at V0 if all genes have estimates of λ at about 1/2 since this is a sign from the
estimation algorithm that something may be wrong. Similarly, if all genes have an estimate
of λ near 0 then the chosen V0 may be too small and the real effect of any shared history
may be negligible.

4.2 Measurements of phylogenetic signal

Freckleton et al. (2002) and Housworth et al. (2004) disagree on the interpretation of λ
and h2. Through the decomposition due to Christman et al. (1997) and the representation
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of V(λ) in this paper, we can begin to sort out their differences. Arguing by algebra, the
following are equivalent parameterizations for the partitioned variance of the trait (T).

Var P + Var S + Var E (Christman et al., 1997)
h2V + (1− h2)IT (Housworth et al., 2004)

τ 2V(λ) + n/a (Freckleton et al., 2002)
p1κV0 + p2κΛ0 + p3κIT (Mixture Model)

Note that in Freckleton et al.’s (2002) description, V(λ) is evaluated without decompo-
sition. In Housworth et al.’s (2004) model, V(λ) is denoted V since it has no parameterized
equivalent, and we have omitted a scale factor of τ 2 + σ2 for clarity. So, Housworth et al.’s
(2004) claim to the equivalence of h2 and λ is understandably incorrect; Freckleton et al.’s
(2002) parametrization only partitions Var P and Var S implicitly (so implicitly that the
authors argue that the utility of V(λ) derives from a transforming and not partitioning in-
terpretation, but this transformation is, in fact, also a partition), and the representation
in our model makes it explicit. However, as we observed before, Freckleton et al.’s (2002)
claim that λ measures something different than h2 is preserved even if the variance can be
partitioned since it breaks the variance not into (P+S) and E parts, but separates P from S.
Thus, in our model λ tells us about the relative strength of the tree component, and 1− h2

tells us about the relative strength of the error.
We suggest λ as a measure of the phylogenetic signal and the need for correction in the

model. Housworth et al. (2004) offers h2 the phylogenetic heritability as the same measure
but they refer to subtly different things. From above, λ separates the phylogenetic from
the non-phylogenetic (Var P from Var S) and h2 separates the heritable (Var P + Var S
from Var E). If the heritable signal of the observed data is weak then λ is less important (in
the calibration problem, we saw empirically that λ approaches zero as the heritable signal
weakens). If the signal is strong then h2 is not so discriminating and the importance of a
proper correction and therefore λ rises. It may also be observed that h2 is a one-to-one
transformation of the ratio τ 2/σ2 which means that h2 has selection inference implications.

4.3 Interpreting non-phylogenetic signal

We wish to follow up the earlier conjecture about the relationship between λ, σ2 and τ 2 when
their estimates favor the non-phylogenetic model. In the style of Gu (2004), we may write
the covariance matrix in equation (10) explicitly for a fixed V0. Suppose the ith, jth entry
of V0 is vij then the marginal covariance has the following form for components yi:

V ar(yi) = τ 2vii + σ2, (17)

Cov(yi, yj) = τ 2λvij. (18)

Since the non-phylogenetic model is characterized by Cov(yi, yj) = 0 for every off diagonal
entry, there are two scenarios: either λ = 0 or σ2 is very large. Large σ2 implies some
combination of rapid rate of expression evolution or a long evolutionary time since the last
split in the tree. When we compute the calibration factor a, we make σ2 and τ 2 comparable
absolute rates of evolution, so non-phylogenetic settings are characterized by λ = 0 alone.
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Oakley et al. (2005) had given two reasons for the over performance of non-phylogenetic
models and the under performance of the phylogenetic models. First, if the family has little
influence over physiological functions, noise might dominate the across taxa signal. Because
our decomposition allows the separation of noise from non-phylogenetic signal, genes families
for which noise is strong appear below the identity line in the right panel of Figure 5. Since
λ measures the support for phylogenetic models, we may determine which of these families
show small phylogenetic signal and which show evidence of selection. This is equivalently
the idea that an un-calibrated σ2 is very large or that the heritable signal is weak versus the
non-heritable signal. Recalling Figure 1, the non-phylogenetic scenario suggested by Oakley
et al. (2005) can be explained by lengthening the dotted segments (σ2) until they dominate
the shape of a truly phylogenetic (λ = 1) tree.

Second, the distances involved in tree building might have been poor estimates for the
true correlation among genes. This problem can be addressed using the phylogenetic minded
approach in Corrada Bravo et al. (2008) to attempt to estimate the best fitting tree for the
given expression trait. One imagines that if that tree appears very similar to the sequence
based tree then there is strong evidence that λ is not zero.

4.4 Extensions

Since this model only considers decompositions of the variance, we can augment it with the
application of standard statistical linear model theory to accommodate much more compli-
cated experiments. In time course expression experiments, this form of linear model modeled
the correlation over time (Eng et al., 2008), approximating gene associations by clustering
similar genes together. For comparison, Oakley et al. (2005) corrected for correlated ad-
jacent time points by using the first order differences, while Gu (2004) found the effect
negligible. It is not unbelievable that more complex factors like expression under various
conditions/treatments across taxa will be of interest and the model we have presented may
serve as a useful component in that analysis.

These models anticipate the use of microarray platforms to make general inferences about
the strength of evidence for natural selection forces. As described previously, mutational
variability/mean square type selection inference relies on estimating τ 2 and σ2. We have
paid less attention to the frameworks put forward in Gu (2004) and Oakley et al. (2005)
which define natural selection on the basis of a likely history parameterized in the form of
V0. This highlights the transformative role of λ, τ 2 and σ2 in the sense that they also find
a tree-structured covariance matrix consistent with observed data.

As an alternative to the Brownian model, Freckleton et al. (2002) considered the inter-
pretation that λ = 0 corresponds to a rapid or instantaneous response to selection. When
one considers the Ornstein Uhlenbeck process (Butler and King, 2004) in a setting where
selection towards some optimum trait value overpowers the random perturbation one should
see a similar independent, diagonal covariance. (In fact, one can show that the covariance
approaches the identity matrix, not Λ0, in the limit Smith et al. (2008)). Thus we could
consider that, when λ = 0, selection hypotheses refer to a very rapid reversion to the fit-
ness optima (completely non-phylogenetic). We intend to return to this alternative class of
models in a later article.

The mixture model is ideal for the gene duplication family data structure because arrays
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represent independent replications of the same experiment. In a more general experiment, we
imagine similar models that structure dependence among all observations may be developed.

One point we have left ambiguous is the proper estimation of nuisance parameter a
which we believe is common to all genes but we estimate once for each gene. This is clearly
inefficient and we intend a future statistical paper on its estimation across genes.
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Appendix A

EM Algorithm for V0 and Λ0 known for a single gene. Let Cr be the class variable
for replicate r = 1, . . . , R, taking values 1,2 and 3 for components N (µ, κV0), N (µ, κΛ0),
and N (µ, κIT ) respectively. Suppose T is the rank of V0. The algorithm stops when the
log-likelihood increases by less than 0.001. Since the estimate µ does not depend on Cr, its
estimate is µ̂ = 1

R

∑R
r=1(Z ′Z)−1Z ′Yr for design matrix Z (i.e., for balanced replicates these

are the group means).

1. E-Step

Ĉri = E(Cr = i|Yr, µ̂, κ̂(t), p̂
(t)
i ),

=
P
(
Yr − µ̂|Cr = i, κ̂(t)

)
p̂

(t)
i∑3

i′=1 P (Yr − µ̂|Cr = i′, κ̂(t)) p̂
(t)
i′

.

2. M-step

p̂
(t+1)
i =

∑
r Ĉri
R

,

κ̂(t+1) =
1

RT

R∑
r=1

[
Ĉr1(Yr − µ̂)′V−1

0 (Yr − µ̂) + Ĉr2(Yr − µ̂)′Λ−1
0 (Yr − µ̂) + Ĉr3(Yr − µ̂)′(Yr − µ̂)

]
.

The final estimates from this algorithm are converted back to the original parametrization:

τ̂ 2 = κ̂(1− p̂3),

σ̂2 = κ̂(p̂3),

λ̂ =
p̂1

1− p̂3

.

Appendix B

EM Algorithm for V0 and Λ0 known up to scale a for a single gene. As in appendix
A, except suppose that V0 is known up to scale constant a. The components of interest are
N (µ, κ1V0), N (µ, κ1Λ0), and N (µ, κ2IT ).
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1. E-Step

Ĉri = E(Cr = i|Yr, µ̂, κ̂1
(t), κ̂2

(t), p̂
(t)
i ),

=
P
(
Yr − µ̂|Cr = i, κ̂1

(t)κ̂2
(t)
)
p̂

(t)
i∑3

i′=1 P
(
Yr − µ̂|Cr = i′, κ̂1

(t), κ̂
(t)
2

)
p̂

(t)
i′

.

2. M-step

p̂
(t+1)
i =

∑
r Ĉri
R

,

κ̂
(t+1)
1 =

1
T

∑R
r=1

[
Ĉr1(Yr − µ̂)′V−1

0 (Yr − µ̂) + Ĉr2(Yr − µ̂)′Λ−1
0 (Yr − µ̂)

]
∑R

r=1 Ĉr1 + Ĉr2
,

κ̂
(t+1)
2 =

1
T

∑R
r=1

[
Ĉr3(Yr − µ̂)′(Yr − µ̂)

]
∑R

r=1 Ĉr3
.

Again, the final estimates from this algorithm are converted back to the original parametriza-
tion:

τ̂ 2 = κ̂2(1− p̂3),

σ̂2 = κ̂2(p̂3),

λ̂ =
p̂1

1− p̂3

,

â =
κ̂1

κ̂2

.
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Phylogenetic

σσ2λλττ2((1 −− λλ))ττ2

Non−Phylogenetic

ττ2 σσ2

Figure 1: Rate decompositions on the tree. The variance decomposition may be interpreted
as partitions of the taxa specific branch of the phylogenetic tree. Under phylogenetic λ > 0
and non-phylogenetic λ = 0 scenarios we show the decomposition of the rate of mutation on
the bottom branch of this tree. The dotted segments correspond to a common proportion
of variation attributable to σ2.
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Simulation Tree

Figure 2: Example tree for simulation study.
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(b) Proper Correction: Mixture Model; Under V0
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(c) No Correction: ANOVA; Under I0
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Figure 3: Simulation Example. Simulation under ideal settings for selection hypotheses
defined in the text with a tree-structured covariance (V0) and a non-phylogenetic covariance
(I0) shows that the ANOVA estimators do not discriminate between the hypotheses. The grey
lines identify tests of selection: the corresponding two-sided F-test thresholds at α = 0.05 for
F4,95. Panel (a) shows the ANOVA estimates of data generated under V0; Panel (b) shows
the mixture model estimates under V0 and Panel (c) illustrates that the ANOVA estimates
are inflated even under independent identically distributed characters (the primary ANOVA
assumption).
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(a) True Model V(1/100), a not estimated
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(c) True Model V(100), a not estimated

log(Within Taxa)
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(d) True Model V(1/100), a estimated

log(Within Taxa)
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(e) True Model V(1), a estimated

log(Within Taxa)
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(f) True Model V(100), a estimated
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Figure 4: Calibration Problem/Solution. Estimation of σ2 and τ 2 is sensitive to mis-
specifying the scale of the phylogenetic covariance matrix, a. When a is not accounted
for (Panels a, b, c), estimates are shrunk for a small (Panel a). When a is big, estimates are
too big (Panel c). The same ideal pattern as in Figure 3 appears in the top center (Panel
b). Simultaneously estimating a fixes the problem (Panels e, f) for all but the smallest case
(Panel d).
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Figure 5: ANOVA and mixture model estimates for data from Oakley et al. (2005). Uncor-
rected ANOVA estimates show a marked trend towards small between taxa variances (τ 2)
while corrected estimates fit more neutral expectation. The ANOVA estimates show the
same low variance pattern in the σ2 estimate as in Figure 3. Three extreme points are omit-
ted from the right hand plot to make the scales comparable. Points which appear extreme
when properly corrected are highlighted in both plots.
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Gene Family Max residual Levene’s Test
correlation (p-value)

ABC Transporters 0.40 0.0093
ADP Ribosylation 0.56 0.0751
Alpha Glucosidases 0.71 0.1139
DUP 0.84 0.3998
GTP Binding 0.51 <0.0001
HSP DnaK 0.78 <0.0001
Hexose Transport 0.93 <0.0001
Kinases 0.43 0.0001
Permeases 0.60 <0.0001
Putative Helicases 0.75 0.0626

Table 1: Diagnostics for ANOVA residuals. The ANOVA method for estimating the muta-
tional variances assumes that the residuals will be independent and identically distributed.
The maximum residual correlation between pairs of taxa over all replicates in all experiments
demonstrates that the residuals are frequently not independent (8 out of 10 have correla-
tion greater than 0.50) and Levene’s test for the homogeneity of variances shows that the
identically distributed assumption holds for only 4 of the 10 families.
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Gene Family (no. taxa) No. λ > .5 Balancing Directional
Experiments Selection Test Selection Test

ABC Transporters (8) 17 4 0 3
ADP Ribosylation (7) 17 7 0 2
Alpha Glucosidases (6) 19 4 0 1
DUP (10) 13 8 1 5
GTP Binding (11) 17 7 2 2
HSP DnaK (10) 16 1 2 4
Hexose Transport (18) 14 8 10 0
Kinases (7) 16 8 2 4
Permeases (17) 12 5 5 3
Putative Helicases (11) 11 2 3 0

Table 2: Yeast Gene Family Data. Gene family data analyzed under the mixture model. A
small number of experiments show strong phylogenetic signal (λ > .5), while the number of
experiments with ratios τ 2/σ2 large (directional) or small (balancing) are tabulated above.
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Gene Family Experiments with favoring
Balancing Selection

DUP H2O2
GTP Binding AminoAcidStarvation, CellCycleElu
HSP DnaK CellCycle15, CellCycleAlpha
Hexose Transport CellCycle15, CellCycleAlpha, CellCycleElu,

DTT2, AminoAcidStarvation, Menadione,
Diamide, NitrogenDeletion, Sorbitol, YPD

Kinases DiauxicShift, Sporulation
Permeases CellCycleElu, CellCycle28, CarbonChange,

Sorbitol, Menadione
Putative Helicases AminoAcidStarvation, CarbonChange, Menadione

Gene Family Experiments with favoring
Directional Selection*

ABC Transporters CellCycle15, CellCycle28, Diamide
ADP Ribosylation CellCycleAlpha, DiauxicShift
Alpha Glucosidases YPD
DUP DTT2, Sorbitol, Menadione, Zinc, CellCycle28
GTP Binding DTT2, H2O2
HSP DnaK DiauxicShift, DTT2, NitrogenDeletion, Sorbitol
Kinases CellCycle15, DTT, H2O2, HeatShock2
Permeases DTT2, DiauxicShift, Zinc

Table 3: Lists of experiments used in Oakley et al. (2005) with selection evidence. These
tables contain the lists of experiments which showed evidence of selection for the listed gene
family. *The directional selection test uses only the ratio of τ 2 and σ2, it does not check for
correlation with an environmental covariate.
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