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This dissertation presents a collection of computational techniques for the analysis of data where

relationships between objects can be expressed through a graph. Data of this type can be found in

many and diverse settings, including genomic and epidemiological applications, web search, social

networking and decision making. Although taking relationships into account makes analysis of

this type of data more challenging, the graph structure of these relationships can be used to make

this analysis viable. In this dissertation, we implement a number of techniques for analyzing this

type of data using well-known and tested computational tools. Furthermore, we explore these

techniques over a wide array of biological and decision making applications.

In Part I, we present a method for estimating tree-structured covariance matrices directly from

observed continuous data. Tree-structured covariance matrices encode probabilistic relationships

between objects that can be described by rooted trees. In this case, we directly estimate graph

structure from observed data under a specific probabilistic model.

Part II presents a methodology for graph-based prediction where a predictive model is esti-

mated over data where relationships between objects are encoded by a known graph. We make

extensive use of Regularized Kernel Estimation (Lu et al., 2005), a framework for estimating a

positive semidefinite kernel from noisy, incomplete and inconsistent distance data. In this case, the

graph structure of the data is used to define a distance from which a kernel matrix is estimated.
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Finally, in Part III, we present techniques for efficiently evaluating aggregate queries of a par-

ticular type over views defining a large number of database records. The main assumption is that

this view is the result of a stylized join over a number of much smaller tables, and is described by

a graph. We make use of this graph structure to reduce the cost of single query evaluation and to

cache intermediate results in a query workload setting. This framework was designed in part to

address scalable probabilistic inference in relational databases.

Grace Wahba and Raghu Ramakrishnan
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ABSTRACT

This dissertation presents a collection of computational techniques for the analysis of data

where relationships between objects can be expressed through a graph. Data of this type can

be found in many and diverse settings, including genomic and epidemiological applications, web

search, social networking and decision making. Although taking relationships into account makes

analysis of this type of data more challenging, the graph structure of these relationships can be

used to make this analysis viable. In this dissertation, we implement a number of techniques for

analyzing this type of data using well-known and tested computational tools. Furthermore, we

explore these techniques over a wide array of biological and decision making applications.

In Part I, we present a method for estimating tree-structured covariance matrices directly from

observed continuous data. Tree-structured covariance matrices encode probabilistic relationships

between objects that can be described by rooted trees. In this case, we directly estimate graph

structure from observed data under a specific probabilistic model.

Part II presents a methodology for graph-based prediction where a predictive model is esti-

mated over data where relationships between objects are encoded by a known graph. We make

extensive use of Regularized Kernel Estimation (Lu et al., 2005), a framework for estimating a

positive semidefinite kernel from noisy, incomplete and inconsistent distance data. In this case, the

graph structure of the data is used to define a distance from which a kernel matrix is estimated.

Finally, in Part III, we present techniques for efficiently evaluating aggregate queries of a par-

ticular type over views defining a large number of database records. The main assumption is that

this view is the result of a stylized join over a number of much smaller tables, and is described by

a graph. We make use of this graph structure to reduce the cost of single query evaluation and to
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cache intermediate results in a query workload setting. This framework was designed in part to

address scalable probabilistic inference in relational databases.
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Chapter 1

Introduction

This dissertation presents a collection of computational techniques for the analysis of data

where relationships between objects can be expressed through a graph1. Data of this type can

be found in many and diverse settings, including genomic and epidemiological applications, web

search, social networking and decision making. Although taking relationships into account makes

analysis of this type of data more challenging, the graph structure of these relationships can be

used to make this analysis viable. In this dissertation, we implement a number of techniques for

analyzing this type of data using well-known and tested computational tools. Furthermore, we

explore these techniques over a wide array of biological and decision making applications.

Data analysis comprises a large continuum, including querying, prediction and estimation. Pre-

sented in this dissertation are methods for the analysis of graph based data in each of these broad

areas. In Part I, we present a method for estimating tree-structured covariance matrices directly

from observed continuous data. Tree-structured covariance matrices encode probabilistic relation-

ships between objects that can be described by rooted trees. In this case, we directly estimate graph

structure from observed data under a specific probabilistic model. We use our methods in a case

study analyzing gene expression from yeast gene families. We are able to verify existing results on

the presence of phylogenetic influence in expression under a number of experimental conditions,

as well as presenting evidence that estimating tree-structured covariance matrices directly from

1Throughout this dissertation, we use the standard definition of a graph as a tuple G = (V,E), where V is a set of
nodes, usually representing data objects, and E a set of edges, representing relationships between data objects. Edges
are usually associated with a real number, further quantifying the relationship between objects.
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the observed gene expression can guide investigators in their modelling choices for phylogenetic

comparative analysis (Chapter 2).

Part II presents a methodology for graph-based prediction where a predictive model is esti-

mated over data where relationships between objects are encoded by a known graph. In one case,

we make use of graph structure encoding familial relationships to extend previously-used semi-

parametric models of eye disease risk (Chapter 3). In the other, we address a protein prediction

task using only graph structure, that is, there are no other features describing the data beyond the

relationships encoded by a given graph (Chapter 4). In both cases, we make use of Regularized

Kernel Estimation (Lu et al., 2005), a framework for estimating a positive semidefinite kernel from

noisy, incomplete and inconsistent distance data. The graph structure of the data is used to define

a distance from which a kernel matrix is estimated.

Finally, in Part III we present techniques for efficiently evaluating stylized aggregate queries

over views defining a large set of database records. Our main assumption is that this view is the

result of a stylized join over a number of much smaller tables, and that this operation is described

by a graph (Chapter 5). We make use of this graph structure to reduce the cost of single query eval-

uation (Chapter 6) and to cache intermediate results in a query workload setting (Chapter 7). This

framework was designed in part to address scalable probabilistic inference in relational databases.

The remainder of this introductory chapter provides further detail on each of the computa-

tional techniques described above and concludes with some general remarks regarding the work

presented in this dissertation.

1.1 Estimating Tree-Structured Covariance Matrices

We present a novel method for estimating tree-structured covariance matrices directly from

observed continuous data. A representation of these classes of matrices as linear combinations

of rank-one matrices indicating object partitions is used to formulate estimation as instances of

well-studied numerical optimization problems.

In particular, we present estimation based on projection where the covariance estimate is the

nearest tree-structured covariance matrix to an observed sample covariance matrix. The problem is
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posed as a linear or quadratic mixed-integer program (MIP) where a setting of its integer variables

specifies a set of tree topologies for the structured covariance matrix. We solve these problems

to optimality using efficient and robust existing MIP solvers. We also show that the least squares

distance method of Fitch and Margoliash (1967) can be formulated as a quadratic MIP and thus

solved exactly using existing, robust branch-and-bound MIP solvers.

1.1.1 Application to phylogenetic analysis of gene expression data

Our motivation for this method is the discovery of phylogenetic structure directly from gene

expression data. Recent studies have adapted traditional phylogenetic comparative analysis meth-

ods to expression data (Fay and Wittkopp, 2007; Gu, 2004; Oakley et al., 2005; Rifkin et al., 2003;

Whitehead and Crawford, 2006). Typically, these methods estimate a phylogenetic tree from ge-

nomic sequence data and then perform analysis of expression data using a covariance matrix con-

structed from the sequence-derived tree to correct for the lack of independence in phylogenetically

related taxa. Given recent results on the sensitivity of sequence-derived trees to the genomic region

chosen to build them, we propose a stable method for deriving tree-structured covariance matrices

directly from gene expression as an exploratory step that can guide investigators in their modelling

choices for these types of comparative analysis.

We present a case-study in phylogenetic analysis of expression in yeast gene families. Our

method is able to corroborate the presence of phylogenetic structure in the response of expression

in certain gene families under particular experimental conditions. On the other hand, when used in

conjunction with transcription factor occupancy data, our methods show that alternative modelling

choices should be considered when creating sequence-derived trees for this comparative analysis.

1.1.2 Contributions

The contributions of this work are the following:

1. defines a representation for tree-structured covariance matrices that make formulating esti-

mation problems as numerical optimization problems possible;
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2. defines a class of estimation problems based on projection to the set of tree-structured co-

variance matrices of an observed sample covariance matrix;

3. shows that projection-based estimation for problems with known tree topology are instances

of linear or quadratic optimization programs depending on the projection norm used;

4. shows that projection-based estimation for problems with unknown tree-topology can be cast

as linear or quadratic mixed integer programs depending on the projection norm used;

5. shows how this method can be successfully used to guide investigators carrying out phylo-

genetic comparative analysis by presenting a case study using an existing yeast gene-family

analysis data set.

1.2 Graph-Based Prediction

We look at the Regularized Kernel Estimation (RKE) framework of Lu et al. (2005) as a

methodology for building predictive models of graph-based data. RKE is a robust method for

estimating dissimilarity measures between objects from noisy, incomplete, inconsistent and repe-

titious dissimilarity data. It is particularly useful in a setting where object classification is desired

but objects do not easily admit description by fixed length feature vectors. Instead, there is access

to a source of noisy, and possibly incomplete dissimilarity information between objects given by a

graph.

RKE estimates a symmetric positive semidefinite kernel matrix K that induces a real squared

distance admitting of an inner product. K is the solution to an optimization problem with semidefi-

nite constraints that trades-off fit of the observed dissimilarity data and a penalty on the complexity

of K of the form λrketrace(K), for positive regularization parameter λrke.

The RKE framework also provides the newbie method for embedding new objects into a low

dimensional space induced by an RKE kernel K estimated from a training set of objects. The

embedding is given as the solution of an optimization problem with semidefinite and second-order

cone constraints. This method requires setting the dimensionality of the embedding space as a

parameter.
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1.2.1 Extending Smoothing Spline ANOVA Models with Pedigree Data

We present a novel method for incorporating pedigree data into smoothing spline ANOVA

(SS-ANOVA) models. By expressing pedigree data as a positive semidefinite kernel matrix, the

SS-ANOVA model is able to estimate a function over the sum of reproducing kernel Hilbert spaces:

one or more representing information from environmental and/or genetic covariates for each sub-

ject and another representing pedigree relationships.

We propose a number of methods for creating positive semidefinite kernels from pedigree in-

formation, including the use of Regularized Kernel Estimation (RKE).

We present results on pigmentary abnormalities (PA) in the Beaver Dam Eye Study. Pigmentary

abnormalities are a precursor to age-related macular degeneration (AMD), a leading cause of vision

loss in the western world for people 60 years or older. A number of recent results have shown

strong linkage between two genes (complement factor H, CFH and the ARMS2 gene) and AMD.

Furthermore, known environmental risk factors have been identified for both AMD and PA. Further

studies have shown that there is a familial component to both AMD and PA.

All of these results make combining these sources of information into a predictive model com-

pelling. We have access to all three of this type of data, genetic marker data for the two genes,

environmental risk factors, and familial pedigrees. Our goal is to extend existing SS-ANOVA

models for PA with this data.

Our methodology both corroborates known facts about the epidemiology of this disease and

reveals surprising results regarding the predictive ability of models that only include components

for genetic markers and familial effects. In particular, it shows that a SS-ANOVA model containing

terms for only genetic marker and familial components has the same predictive ability of an SS-

ANOVA model containing terms for genetic markers and environmental covariates.

1.2.2 Protein Classification by Regularized Kernel Estimation

A setting where RKE can be especially useful is the classification of protein sequence data

where measures of dissimilarity are easily obtained, but feature vector representations are difficult

to obtain or justify. Some sources of dissimilarity in this case, such as BLAST (Altschul et al.,
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1990), require setting a number of parameters that makes the resulting dissimilarities possibly

inexact, inconsistent and noisy. The RKE method is robust to the type of noisy and incomplete

data that arises in this setting.

We show how RKE can be used to successfully classify proteins in two different tasks using

two very different sources of dissimilarity information. In the first, alignment of protein sequence

data is used to generate dissimilarities (Section 4.3.1), while in the second, transcription factor

occupancy data from the promoter region of genes is used (Section 4.3.2).

1.2.3 Tuning Procedures

This dissertation also presents results on methods for choosing values of the regularization pa-

rameter λrke of the RKE problem. We show the CV2 method for selecting regularization parameter

values in clustering and visualization applications. We also describe a method for combining RKE

with Support Vector Machines for object classification based on dissimilarity data. Based on an

empirical study we make two main observations: 1) for clustering applications, the performance

of estimated kernels is similar for large ranges of regularization parameters, suggesting that coarse

tuning methods might be sufficient in these cases, and 2) the opposite holds for some classification

applications, where good performance is highly dependent on the RKE regularization parameter.

This suggests the need for methods that jointly tune regularization parameters in both the RKE and

classification optimization problems (Appendix A, and Chapter 8).

To address this tuning problem in the classification setting for RKE, we analyze and compare a

number of tuning methods for Support Vector Machines (SVMs). We hope that these methods can

be extended to address the RKE tuning problem efficiently. These methods are based on bounding

or approximating the Leave-One-Out estimate of misclassification rate. However, the cost of using

these methods varies considerably. We show under which conditions are these methods equiva-

lent, and thus provide a way of determining if the additional cost of using a particular method is

admissible (Appendix B).
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1.2.4 Contributions

The contributions of this work are the following:

1. extends Smoothing-Spline ANOVA models to include terms encoding relationships of graph-

based data;

2. shows how this extension can be used in an eye disease risk modelling task where pedigree

data encodes familial relationships between subjects;

3. shows how the Regularized Kernel Estimation framework can be used to classify proteins in

two different tasks using diverse dissimilarity measures;

4. shows the apparent insensitivity of RKE for clustering tasks to the value of its regularization

parameter;

5. also shows the apparent sensitivity of RKE to values of its regularization parameter when

used in classification tasks;

6. characterizes and compares a number of adaptive tuning methods for Support Vector Ma-

chines.

1.3 MPF Aggregate Database Queries and Probabilistic Inference

Recent proposals for managing uncertain information require the evaluation of probability mea-

sures defined over a large number of discrete random variables. This document presents MPF

(Marginalize a Product Function) queries, a broad class of relational aggregate queries capable of

expressing this probabilistic inference task. By optimizing query evaluation in the MPF setting we

provide direct support for scalable probabilistic inference in database systems. Further, looking

beyond probabilistic inference, we define MPF queries in a general form that is useful for Decision

Support, and demonstrate this aspect through several illustrative queries.

The MPF setting is based on the observation that functions over discrete domains are naturally

represented as relations where an attribute (the value, or measure, of the function) is determined by
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the remaining attributes (the inputs, or dimensions, to the function) via a Functional Dependency

(FD). We define these Functional Relations, and present an extended Relational Algebra to operate

on them. A view V can then be created in terms of a stylized join of a set of ‘local’ functional

relations such that V defines a joint function over the union of the domains of the ‘local’ functions.

MPF queries are a type of aggregate query that computes view V ’s joint function value in arbitrary

subsets of its domain:

select Vars, Agg(V[f]) from V group by Vars.

We optimize the evaluation of MPF queries by extending existing database optimization tech-

niques for aggregate queries to the MPF setting. In particular, we show how a modification to the

algorithm of Chaudhuri and Shim (1994, 1996) for optimizing aggregate queries yields significant

gains over evaluation of single MPF queries in current systems. We also extend existing proba-

bilistic inference techniques such as Variable Elimination, Junction Trees and Belief Propagation

to develop novel optimization techniques for single MPF queries, or expected workloads of MPF

queries. To the best of our knowledge, we present the first approaches to probabilistic inference

that provide scalability and cost-based query evaluation. We present an empirical evaluation of

these optimization techniques in a modified PostgreSQL system (Chapter 6).

1.3.1 Optimization of MPF Queries

Like usual aggregate queries over views, there are two options for evaluating an MPF query:

1) the relation defined by view V is materialized, and queries are evaluated directly on the ma-

terialized view; or, 2) each query is rewritten using V ’s definition and then evaluated, so that

constructing the relation defined by V is an intermediate step. The first approach requires that the

materialized view is updated as base relations change. In the latter, the problem of view mainte-

nance is avoided, but this approach is prohibitive if computing V ’s relation is too expensive. The

rewriting option is likely to be appropriate for answering individual queries, and variations of the

former might be appropriate if we have knowledge of the anticipated query workload. In this dis-

sertation, we apply the query rewrite approach to the problem of evaluating single MPF queries
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(Chapter 6), and a variant of the view materialization approach to the problem of evaluating ex-

pected MPF query workloads (Chapter 7).

Chaudhuri and Shim (1994, 1996) define an algorithm for optimizing aggregate query evalua-

tion based on pushing aggregate operations inside join trees. We present and evaluate an extension

of their algorithm and show that it yields significant gains over evaluation of MPF queries in ex-

isting systems (see Section 6.5). We also present and evaluate the Variable Elimination (VE) tech-

nique (Zhang and Poole, 1996) from the literature on optimizing probabilistic inference and show

similar gains over existing systems. Additionally, we present extensions to VE based on ideas in

the Chaudhuri and Shim algorithm that yield better plans than traditional VE. Finally, we extend

these techniques in the context of view materialization to evaluate expected MPF query workloads

(Chapter 7).

1.3.2 Contributions

The contributions of this work are the following:

1. introduces MPF queries, which significantly generalize the relational framework introduced

by Wong (2001) for probabilistic models. With this generalized class of queries, probabilistic

inference can be expressed as a query evaluation problem in a relational setting. MPF queries

are also motivated by decision support applications;

2. extends the optimization algorithm of Chaudhuri and Shim for aggregate queries to the MPF

setting, taking advantage of the semantics of functional relations and the extended algebra

over these relations. This extension produces better quality plans for MPF queries than those

given by the procedure in Chaudhuri and Shim (1994, 1996);

3. builds on the connection to probabilistic inference and extend existing inference techniques

to develop novel optimization techniques for MPF queries. Even for the restricted class of

MPF queries that correspond to probabilistic inference, to the best of our knowledge this is

the first approach that addresses scalability and cost-based plan selection;

4. further extends these techniques to efficiently evaluate expected workloads of MPF queries;
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5. implements our optimization techniques in a modified PostgreSQL system, and presents an

empirical evaluation that demonstrates significant performance improvement.

Finally, we remark that the techniques introduced so far apply to the problem of scaling exact

probabilistic inference. This is required in settings where results are composed with other func-

tions that are not monotonic with respect to likelihood, including systems that compute expected

risk or utility. In these settings approximate probability values are not sufficient. However, for

other systems where only relative likelihood suffices, e.g., ranking in information extraction, ap-

proximate inference procedures (Wainwright and Jordan, 2003; Weiss, 2000; Yedidia et al., 2002)

are sufficient and may be more efficient. We address some preliminary ideas in this direction in

Chapter 9.

1.4 General Remarks

There are two general themes that, for the most part, characterize the work presented in this

dissertation. First, existing computational tools are used in novel ways to address the problems de-

fined. In estimating tree-structured covariance matrices we make use of robust existing solvers for

linear and quadratic, continuous and mixed integer programming. Once an amenable representa-

tion for this class of matrices was defined, existing solvers were easily used to carry out estimation.

In the Regularized Kernel Estimation framework, existing semidefinite solvers are used. Finally,

in evaluating MPF queries, we make extensive use of existing query optimization techniques while

adapting them to our specific setting.

The other general theme is that problems are defined over real-world applications and tested

on real data sets. These include yeast gene expression data, data from a large epidemiological

study of eye disease and protein dissimilarity measures. In the case of MPF queries, we present a

real-world-viable decision making and probabilistic inference applications.

A by-product of this dissertation is a set of programs that have general impact beyond the

techniques implemented in this dissertation. For example, an interface to the CPLEX optimiza-

tion engine (Ilog, SA, 2003) is now publicly available for the R statistical computing framework (R
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Development Core Team, 2007) as a result of the work on tree-structured covariance matrices (Cor-

rada Bravo, 2008). An interface to R was also created for the CSDP semidefinite solver (Borchers,

1999), which will be made available in the near future along with an R package implementing

the RKE framework used for this work. The implementation of MPF query evaluation required

extending the optimization engine of the PostgreSQL database management system to evaluate

general aggregate queries more efficiently, beyond the MPF setting. These extensions will be

made available to the PostgreSQL system in the near future.

The dissertation concludes with two chapters on extensions of the work presented in the first

seven chapters. Chapter 8 sketches an extension to the RKE framework where a trade-off between a

regression objective and distance fit is optimized directly. It also shows a general methodology for

deriving leave-one-out approximations adaptive tuning criteria for estimates obtained by solving

linear semidefinite programs. Chapter 9 discusses further future work.
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Chapter 2

Estimating Tree-Structured Covariance Matrices via Mixed-Integer
Programming with an Application to Phylogenetic Analysis of
Gene Expression

2.1 Introduction

Recent studies have adapted existing techniques in population genetics to perform evolutionary

analysis of gene expression (Fay and Wittkopp, 2007; Gu, 2004; Oakley et al., 2005; Rifkin et al.,

2003; Whitehead and Crawford, 2006). In particular, corrections for evolutionary dependence

between taxa, e.g. species or strains, are used in regression (generalized least squares) or other

likelihood models. These phylogenetic corrections are a well accepted methodology in phenotypic

modeling (Felsenstein et al., 2004), since, without them, statistical analysis is subject to increased

false positive rates and decreased power for hypothesis tests. These corrections take the form of a

covariance matrix corresponding to a random diffusion process along a phylogenetic tree.

These studies assume that the single phylogenetic tree structure underlying the data is known,

normally derived from DNA or amino acid sequence data. While this assumption might be valid

for the analysis of coarse traits–beak size in birds, for example–as previously used in compara-

tive phylogenetic studies, it might prove too restrictive when carrying out similar analysis at the

genomic level taking into account recent findings of high variability in tree topology and branch

length estimates contingent on the genomic region used to estimate the phylogeny (Frazer et al.,

2004; Habib et al., 2007; Yalcin et al., 2004). If we are interested in a particular group of genes,

given that they are spread throughout the genome, it makes more sense to develop a covariance

estimate appropriate to those genes. We present a principled way of estimating tree-structured
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covariance matrices directly from sample covariances of observed gene expression data. As an

exploratory step, this can help investigators circumvent issues that arise from estimating a global

phylogeny from sequence in an independent previous step.

In this chapter, we formulate the problem of estimating a tree-structured covariance matrix as

mixed-integer programs (MIP) (Bertsimas and Weismantel, 2005; Wolsey and Nemhauser, 1999).

In particular, we look at projection problems that estimate the nearest matrix in the structured

class to the observed sample covariance. These problems lead to linear or quadratic mixed integer

programs for which algorithms for global solutions are well-known and reliable production code

exists. The formulation of these problems hinges on a representation of tree-structured covariance

matrices as a linear expansion of outer products of indicator vectors specifying nested partitions of

objects.

The chapter is organized as follows: in Section 2.2 we formulate the representation of tree

structured covariance matrices and give some results regarding the space of such matrices; Sec-

tion 2.4 shows how to define the constraints that ensure matrices are tree-structured as constraints

in mixed-integer programs (MIPs); projection problems are specifically addressed in Section 2.4.3;

we present our results on a case-study on phylogenetic analysis of expression in yeast gene fam-

ilies in Section 3.5; a discussion, including related work, follows in Section 3.7. Appendix 2.9

presents simulation results on estimating the tree topology from observed data that show that show

how our MIP-based method compares favorably to the the well-known Neighbor-Joining(Saitou,

1987) method using distances computed from the observed covariances.

2.2 Tree-Structured Covariance Matrices

Our object of study are covariance matrices of diffusion processes defined over trees (Cavalli-

Sforza and Edwards, 1967; Felsenstein et al., 2004). Usually, a Brownian motion assumption is

made on the diffusion process where steps are independent and normally distributed with mean

zero. However, covariance matrices of diffusion process with independent steps, mean zero and

finite variance will also have the structure we are studying here. We do not make any normality

assumptions on the diffusion process and, accordingly, fit covariance matrices by minimizing a
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projection objective instead of maximizing a likelihood function. Thus, for a tree T defined for

p objects, our assumption is that the observed data are realizations of a random variable Y ∈ Rp

with Cov(Y ) = B, where B is a tree-structured covariance matrix defined by T .

Figure 2.1 shows a tree with 4 leaves, corresponding to a diffusion process for 4 objects. A

rooted tree defines a set of nested partitions of objects such that each node in the tree (both interior

and leaves) corresponds to a subset of these objects. In our example, the lower branch exiting the

root corresponds to subset {1, 2}. The root of the tree corresponds to the set of all objects and each

leaf corresponds to singleton sets. The subset corresponding to an interior node is the union of the

non-overlapping subsets of that node’s children. Edges are labeled with real numbers indicating

tree branch lengths.

1

2

3

4

a12

a1

a2

a34

a3

a4

(a)

B =





a12 + a1 a12 0 0
a12 a12 + a2 0 0
0 0 a34 + a3 a34

0 0 a34 a4





(b)

Figure 2.1 A schematic example of a phylogenetic tree and corresponding covariance matrix.
The root is the leftmost node, while leaves are the rightmost nodes. Branch lengths are arbitrary

nonnegative real numbers.

Denoting B = Cov(Y ), entry Bij is the sum of branch lengths for the path starting at the

root and ending at the last common ancestor of leaves i and j. In our example, B12 = a12 is the

length of the branch from the root to the node above leaves 1 and 2. For leaf i, Bii is the sum of

the branch lengths of the path from root to leaf. The covariance matrix B for our example tree is
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given in Figure 2.1(b). If we swap the positions of labels 3 and 4 in our example tree such that

label 3 is the topmost label and construct a covariance matrix accordingly we recover the same

matrix B as before. In fact, any tree that specifies this particular set of nested partitions generates

the same covariance matrix. All trees that define the same set of nested partitions are said to be

of the same topology, and we say that covariance matrices that are generated from trees with the

same topology belong to the same class. However, a tree that specifies a different set of nested

partitions generates a different class of covariance matrices. For example, Figure 2.2 shows a tree

that defines a different set of nested partitions and the matrix it generates.

1
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4

a1

a234

a2

a34

a3

a4

(a)
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a1 0 0 0
0 a234 + a2 a234 a234

0 a234 a234 + a34 + a3 a34

0 a234 a34 a234 + a34 + a4





(b)

Figure 2.2 An example phylogenetic tree with different topology and corresponding covariance
matrix.

2.2.1 Representing Tree-Structured Covariance Matrices

Let d =
[
a12 a1 a2 a34 a3 a4

]T
be a column vector containing the branch lengths of the

tree in Figure 2.1. We can write B =
∑6

k=1 dkM
k where Mk is a matrix such that Mk

i,j = 1 if

objects i and j co-occur in the subset corresponding to the node where branch k ends. For the

branch with length a12
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M1 =


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 . (2.1)

Furthermore, we can use indicator vectors to specify the Mk matrices in the linear expansion

for B as rank-one matrices vk. For example, letting v1 =
[
1 1 0 0

]T
, we get

M1 = v1v
T
1 =


1

1

0

0


[
1 1 0 0

]
. (2.2)

Thus, using vectors vk we can write B =
∑6

k=1 dkvkv
T
k and defining matrices V =[

v1 v2 . . . v6

]
and D = diag(d), we can equivalently write

B = V DV T . (2.3)

For Figure 2.1, the expansion is given by

V =


1 1 0 1 0 0 0

1 1 0 0 1 0 0

1 0 1 0 0 1 0

1 0 1 0 0 0 1

 , and D = diag(
[
0 a12 a34 a1 a2 a3 a4

]T
). (2.4)

Since the basis matrix V in Equation (2.3) is determined by the nested partitions defined by

the corresponding tree topology, all matrices of the same class are generated by linear expansions

of a corresponding matrix V with branch lengths specified in the diagonal matrix D. On the other

hand, a distinct basis matrix V corresponds to each distinct tree topology. Matrices spanned by

the set of matrices V that correspond to valid partitions correspond to tree-structured covariance

matrices. We now characterize this set of valid V matrices by defining a partition property, and

give a representation theorem for tree-structured covariance matrices based on this property.
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Definition 2.1 (Partition Property) A basis matrix V of size p-by-2(p− 1) with entries in {0, 1}

and unique columns has the partition property for trees of size p if it satisfies the following condi-

tions:

• V contains the unit vector e = (1, 1, . . . , 1)T ∈ Rp as a column

• For every column w in V with more than one non-zero entry, it contains columns u and v such that

u+ v = w.

A matrix V with the partition property can be constructed by starting with the column e ∈ Rp and

splitting it into two nonzero columns u and v with u + v = e. These form the next two columns

of V . The remaining columns of V are generated by splitting previously unsplit existing columns

recursively into the sum of two nonzero columns, until we finally obtain columns with a single

nonzero. It is easy to see that the total number of splits is p − 1, with two columns generated at

each split. It follows that V does not contain the the zero column, and contains all p vectors that

contain p−1 zero terms and a single entry of 1. For example, the V matrix in Equation (2.4) would

be constructed by starting with column 1, splitting into columns 2 and 3, and then splitting each

recursively to obtain the remaining four columns.

Theorem 2.2 (Tree Covariance Representation) A matrix B is a tree-structured covariance ma-

trix if and only if B = V DV T where D is a diagonal matrix with positive entries, and basis matrix

V satisfies the partition property.

Proof. The proof is trivial. Assume B is a tree-structured covariance matrix, then construct matrix

V using the method above starting from the root, splitting each vector according to the nested

partitions at each node. By construction, V will satisfy the partition property and by placing branch

lengths in diagonal matrixD we will haveB = V DV T . On the other hand, letB = V DV T withD

diagonal and V satisfying the partition property. Then construct a tree by the reverse construction:

starting at the root and vector e ∈ Rp, create a nested partition from the vectors u and v such that

u + v = e which must exist since V has the partition property. Define branch lengths from D

correspondingly, and continue this construction recursively. B will then be the covariance matrix

defined by the resulting tree and therefore be tree-structured.
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2.2.2 Characteristics of the Set of Tree-Structured Covariance Matrices

We now state some facts about the set of tree-structured covariance matrices which we make

use of in our estimation procedures.

Proposition 2.3 The set of tree-structured covariance matrices B = V DV T generated by a single

basis matrix V is convex.

Proof. Let d1 and d2 be the branch length vectors of tree-structured covariance matrices B1 =

V diag(d1)V T and B2 = V diag(d2)V T . Let θ ∈ [0, 1], then B = θB1 + (1− θ)B2 = V diag(θd1 +

(1− θ)d2)V T . So, B is a tree of the same structure with branch lengths given by θd1 + (1− θ)d2.

We will use this fact to express estimation problems for trees of fixed topology as convex

optimization problems. However, estimation of general tree-structured covariance matrices is not

so simple, as the set of all tree-structured covariance matrices is not convex in general. We can see

that this is true in the case p = 3 by considering the following example. Defining

V1 =


0 0 1 1

0 1 0 1

1 0 0 0

 , V2 =


0 0 1 0

0 1 0 1

1 0 0 1

 ,

we see that V1 and V2 both have the partition property. Therefore by Theorem 2.2, the matrices

B1 = V1diag(d1)V T
1 and B2 = V2diag(d2)V T

2 are both tree-structured covariance matrices when

d1 and d2 contain all positive entries. If B is a convex combination of B1 and B2, we will have

B12 6= 0 and B23 6= 0 but B13 = 0. It is not possible to identify a matrix V with the partition

property such that B = V DV T , since any such V may contain only a single column apart from

the three “unit” columns (1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T , and none of the possible candidates

for this additional column (namely, (1, 1, 0)T , (1, 0, 1)T , and (0, 1, 1)T ) can produce the required

nonzero pattern for B. This example can be extended trivially to successively higher dimensions p

by expanding V1 and V2 appropriately.
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2.3 Fixed Topology Projection Problems

In this section, we address the problem of estimating a tree-structured covariance matrix from

a known tree topology by minimizing the distance to an observed sample covariance matrix. That

is, given a sample covariance matrix S and a basis matrix V , we find the nearest tree-structured co-

variance matrix in norm ‖·‖. We will look at problems using Frobenius norm, ‖B‖F =
√∑

ij B
2
ij ,

and sum-absolute-value (sav) norm, ‖B‖sav =
∑

ij |Bij|.

As stated above, the set of covariance matrices corresponding to trees of a particular topology is

convex. Since projection problems have convex objective functions, they are convex optimization

problems for any norm ‖ · ‖. While our emphasis in this work is optimization over the non-convex

set of all tree-structured covariance matrices, it is illustrative to show the convex optimization prob-

lem formulations for projection in Frobenius and sum-absolute-value norm with fixed-topologies.

For Frobenius norm, given a covariance matrix S, the nearest tree covariance B in the class

determined by basis matrix V is given by the branch length vector that solves the problem

min
d∈R2(p−1)

‖S − V diag(d)V T‖2
F (2.5)

s.t. d ≥ 0. (2.6)

We can simplify this to the following equivalent quadratic problem:

min
d∈R2(p−1)

dTQd− 2cTd (2.7)

s.t. d ≥ 0, (2.8)

where Q = (V TV )◦ (V TV ) and c = diag(V TSV ) with ◦ denoting element-wise (Hadamard) ma-

trix multiplication. For sav norm, the branch lengths d corresponding to the nearest tree-structured

matrix in the proper class are given by the solution to the following problem:

min
d∈R2(p−1)

‖S − V diag(d)V T‖sav (2.9)

s.t. d ≥ 0. (2.10)
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Letting s ∈ Rp(p+1)/2 be the vectorization of symmetric matrix S, we can we can rewrite this as

the following linear problem:

min
d∈R2(p−1)

p,q∈Rp(p+1)/2

eT (p+ q) (2.11)

s.t.
[
H I −I

]
d

p

q

 = s (2.12)

d ≥ 0, p ≥ 0, q ≥ 0 (2.13)

where the row of H corresponding to Sij is V·i ◦ V·j and e is the unit vector of the appropriate

length.

2.4 Solving Estimation by Projection for Unknown Tree Topologies using
Mixed-Integer Programming

The non-convexity of the set of tree-structured covariance matrices requires estimation proce-

dures that handle the combinatorial nature of optimization over this set. We choose to model these

problems as mixed-integer programs (MIPs). In particular, we make use of the fact that algorithms

for mixed-integer linear and quadratic programs are well-understood and robust production code

exists for their solution.

2.4.1 Mixed-Integer Programming

Mixed-integer programs (MIPs) place integrality constraints on some of the problem variables.

The general statement of a MIP is:

min
x∈Rn

f0(x) (2.14a)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m (2.14b)

xj ∈ Z, j = 1, 2, . . . , t, (2.14c)

for some t ≤ n. The functions gi are constraint functions and f0 is the objective function, and Z

is the set of integers. When f0 and gi, i = 1, . . . ,m, are linear we have a mixed-integer linear
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program (MILP), and when f0 is quadratic and gi, i = 1, . . . ,m, are linear, we have mixed-integer

quadratic program (MIQP). We will see that projection problems for tree-structured covariance

matrices are MILPs for sav norm and MIQPs for Frobenius norm.

Although the problem (2.14) is intractable in general, many practical instances can be solved,

and algorithms for finding solutions have been the subject of intense research for 50 years (see for

example (Wolsey and Nemhauser, 1999)). Current state-of-the-art software combines two method-

ologies: branch-and-bound and branch-and-cut. Branch-and-bound is based on construction of a

tree1 of relaxations of the problem (2.14), where each node of the tree contains a subproblem in

which some of the integer variables xj are allowed to take non-integer values (but may be confined

to some range). A node is a child of another node in the tree if there is exactly one component xj

that is fixed at an integer value in the current node but that is a continuous variable in the parent

node. In the root node of the tree, all integer variables are relaxed and allowed to take non-integer

values, while at the leaf nodes, all integer variables xj , j = 1, 2, . . . , t are fixed at certain values.

Each node of the tree is therefore a continuous linear program (with real variables), so it can be

“evaluated” using the simplex method, usually by modifying the solution of its parent node. The

optimal objective at a node gives a lower bound on the optimal objectives of any of its descen-

dants, since the descendants have fewer degrees of freedom (that is, a more restricted feasible set).

Hence, if this lower bound is worse than the best integer solution found to date, this node and all

its descendants can be “pruned” from the tree; it is not necessary to evaluate them as they can-

not contain the solution of (2.14). The branch-and-bound algorithm traverses this tree judiciously,

avoiding evaluation of large parts of the tree that are determined not to contain the optimal solution.

Cutting planes are used to enhance the speed of this process. These are additional constraints

that exclude from the feasible set those values of x that are determined not to be optimal. Cuts can

be valid for the whole tree, or just at a certain node and its descendants.

The branching strategy which determines the order in which the search tree is traversed, and

the cutting planes used to derive upper bounds, can have a significant effect on the efficiency of the

1The tree referred to in this paragraph is a tree of related relaxations of the MIP, not a phylogenetic tree.
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MIP solver for particular problems. In Appendix 2.7, we provide details regarding the parameters

chosen in our MIP solver for the projection problems we address here.

2.4.2 Mixed-Integer Constraints for Tree Topology

Every tree-structured covariance matrix satisfies the following properties derived from the lin-

ear expansion in Equation (2.3):

• Bij ≥ 0 ∀i, j, since all entries in V and d are nonnegative.

• Bii ≥ Bij ∀i, j, since V has the partition property, every component of d that is added to an

off-diagonal entry is added to the corresponding diagonal entries along with the component

of d corresponding to the column in V with a single non-zero entry for the corresponding

leaves.

• Bij ≥ min(Bik, Bjk) ∀i 6= j 6= k, since V has the partition property, for every three off-

diagonal entry there is one entry that has at least one fewer component of d added in than

the other two components.

Since every tree-structured covariance matrix can be expressed as B = V DV T according to

Theorem 2.2, it is also positive semidefinite (this follows from V DV T =
∑

i diviv
T
i being the

sum of positive semidefinite matrices). Also, the three properties above follow from the expansion

B = V DV T , therefore any matrix that satisfies these properties is also positive semidefinite, and as

such, we need not add semidefiniteness constraints in the optimization problems below. Therefore,

we can solve estimation problems for unknown tree topologies by constraining covariance matrices

to satisfy the above properties. However, the third constraint is not convex, and we use integrality

constraints to model it.
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We can rewrite the third constraint for each distinct triplet i > j > k as a disjunction of three

constraints:

Bij ≥ Bik = Bjk (2.15a)

Bik ≥ Bij = Bjk (2.15b)

Bjk ≥ Bij = Bik. (2.15c)

A standard way of modeling disjunctions is to use {0, 1} variables in the optimization prob-

lem (Bertsimas and Weismantel, 2005). In our case we can use two integer variables ρijk1, ρijk2,

under the constraint that ρijk1 + ρijk2 ≤ 1, that is, they can both be 0, or, strictly one of the two

is allowed to take the value 1. With these binary variables we can write the constraints above in a

way such that the constraint corresponding to the nonzero-valued binary variable must be satisfied.

For example, constraint (2.15a) is transformed to:

Bij ≥ Bik − (1− ρijk1)M

Bik ≥ Bjk − (1− ρijk1)M

Bjk ≥ Bik − (1− ρijk1)M,

where M is a very large positive constant. Constraints (2.15b) and (2.15c) are transformed simi-

larly, yielding the full set of mixed-integer constraints in Table 2.1. When ρijk1 = 1, these con-

straints imply that constraint 2.15a is satisfied. However, since ρijk1 = 1 we must have ρijk2 = 0

which implies that constraints 2.15b and 2.15c need not be satisfied for a solution to be feasible.

When ρijk1 = ρijk2 = 0, then constraint 2.15c must be satisfied.

2.4.3 Projection Problems

Let S be a sample covariance matrix, the nearest tree structured covariance matrix in norm ‖ · ‖

to S is given by the solution of the mixed-integer problem:

min
B∈Sp

‖S −B‖ (2.17)

s.t. constraints 2.16a-2.16m hold for B. (2.18)
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Table 2.1 Mixed integer constraints defining tree-structured covariance matrices

Bij ≥ 0 ∀i, j (2.16a)

Bii ≥ Bij ∀i 6= j (2.16b)

Bij ≥ Bik − (1− ρijk1)M (2.16c)

Bik ≥ Bjk − (1− ρijk1)M (2.16d)

Bjk ≥ Bik − (1− ρijk1)M (2.16e)

Bik ≥ Bij − (1− ρijk2)M (2.16f)

Bij ≥ Bjk − (1− ρijk2)M (2.16g)

Bjk ≥ Bij − (1− ρijk2)M (2.16h)

Bjk ≥ Bij − (ρijk11 + ρijk2)M (2.16i)

Bij ≥ Bik − (ρijk11 + ρijk2)M (2.16j)

Bik ≥ Bij − (ρijk11 + ρijk2)M (2.16k)

ρijk1 + ρijk2 ≤ 1 (2.16l)

ρijk1, ρijk2 ∈ {0, 1} ∀ i > j > k (2.16m)
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For Frobenius norm ‖ · ‖F , the problem reduces to a mixed-integer quadratic program. Let

s2 be the vectorization of symmetric matrix S such that ‖S‖F = ‖s2‖2, then the nearest tree-

structured covariance matrix in Frobenius norm to matrix S is given by the corresponding matrix

representation of solution b̂ of the following mixed integer quadratic program:

min
b∈Rp(p+1)/2,ρ∈Rp̄

1
2
bT b− sT2 b (2.19)

s.t. constraints 2.16a-2.16m hold for B, (2.20)

where p̄ = p!
(p−3)!

.

We can similarly find the nearest tree structured covariance matrix in sum-absolute-value (sav)

norm. Let s1 be the vectorization of symmetric matrix S such that ‖S‖sav = ‖s1‖1, then the nearest

tree covariance in sum-absolute-value norm is given by the corresponding matrix representation of

solution b̂ of the following mixed integer linear program:

min
b∈Rp(p+1)/2,ρ∈Rp̄

‖s1 − b‖1

s.t. constraints 2.16a-2.16m hold for B

2.5 A Case Study in Gene Family Analysis of Yeast Gene Expression

We applied our methods to the analysis of gene expression in Saccharomyces cerevisiae gene

families as presented in Oakley et al. (2005) 2. Following the methodology of Gu et al. (2002), the

yeast genome is partitioned into gene families using an amino acid sequence similarity heuristic.

The largest 10 of the resulting families are used in this analysis with family sizes ranging from

p = 7 to p = 18 genes. Names and sizes for the gene families used in the analysis are given in

Table 2.3 of Appendix 2.8. We refer to Oakley et al. (2005) for further details.

The gene expression data is from 19 cDNA microarray time course experiments. Each time

point in the series is the log2 ratio of expression at the given time point to expression at the base line

under varying experimental conditions. To make our results comparable to the analysis in Oakley

2All data for this analysis was retrieved from "http://www.lifesci.ucsb.edu/eemb/labs/oakley/pubs/
MBE2005data/"
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et al. (2005), we do not model correlation between measurements at different time points. How-

ever, refer to Oakley et al. (2005) and Gu (2004) for a discussion regarding this violation of the

independence assumption among measurements.

The analysis in Oakley et al. (2005) proceeded as follows:

1. Phylogenetic trees were derived for each family from DNA sequence using Maximum Like-

lihood methods. In particular, an alignment of amino acid sequences from the entire gene

coding region was used to derive a DNA sequence alignment which was then used to esti-

mate a phylogenetic tree. As stated by the authors (Oakley et al., 2005), this is one of many

possible choices, including for example, flanking upstream non-coding regions that could

have a significant role in expression regulation.

2. Based on the resulting trees, gene expression data was analyzed using Maximum Likeli-

hood methods under a Brownian diffusion process under two families of models: a phy-

logenetic class, where the covariance of the diffusion process has a tree structure, and a

non-phylogenetic class where the covariance of the diffusion process is diagonal. The AIC

score of the resulting ML estimate is used to classify each gene family-experiment pair as

evolving under a phylogenetic or non-phylogenetic model.

For each gene family and experiment we have a matrix Ygi of size ni-by-p where ni is the num-

ber of time points in the ith experiment and p is the gene family size. We partition the experiments

of each gene family into two disjoints sets P = {1, . . . , l} and NP = {l + 1, . . . , 19} where l is

the number of experiments classified as phylogenetic in Oakley et al. (2005). This partition yields

two matrices of measurements for each gene family YgP =
[
Y T
g1 · · · Y T

gl

]T
and similarly for

YgNP , obtained by concatenating the measurement matrices of experiments in the corresponding

set. The idea of concatenating gene expression measurement matrices directly to estimate covari-

ance was sparked by the success of Stuart et al. (2003) where gene expression measurements were

concatenated directly to measure correlation between genes. Since we will treat the rows of these

two matrices as samples from distributions with EY = 0, we center each row independently to

have mean 0.
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One of the constraints in Section 2.4.2 that characterize tree-structured covariance matrices

is the nonnegativity of their entries. Therefore, to initialize our projection solvers, we first esti-

mate Maximum-Likelihood covariance matrices B+
gP and B+

gNP constrained to have nonnegative

entries from sample matrices YgP and YgNP . Treating the rows of n-by-p matrix Y as independent

samples from a multivariate normal distribution N(0, B+) the goal is to find matrix B+ that maxi-

mizes likelihood, where B+ is constrained to have nonnegative entries. Following the constrained

maximum-likelihood formulation in Vandenberghe et al. (1998), we define the following convex

determinant maximization problem

max
R∈Sp

n log detR− tr(RS) (2.21a)

s.t. Rij ≤ 0, ∀i 6= j (2.21b)

R � 0, (2.21c)

where Sp is the space of p-by-p symmetric matrices, n is the number of samples in matrix Y ,

and S = Y Y T its sample covariance matrix. The expression R � 0 denotes that R is positive

definite and we take variable R to be the inverse of the estimate B+ = R−1. By the nonpos-

itivity element-wise constraints, along with the positive definite constraint, feasible solutions to

Problem (2.21) will be members of the class of M-matrices (Horn and Johnson, 1991) which have

the property that their inverse are matrices with nonnegative entries (Theorem 2.5.3 in Horn and

Johnson (1991)). Therefore, the constraints in Problem (2.21) imply that estimate B̂+ will be the

maximum likelihood estimate with nonnegative entries.

From estimates B̂+
gP and B̂+

gNP we estimate tree-structured covariance matrices B̂gP and B̂gNP

using our MIP projection methods. To describe the strength of the hierarchical structure of these

estimated covariances we define the structural strength metric as follows:

SS(B) =
1

p

p∑
i=1

maxi 6=j Bij

Bii

. (2.22)

The term maxi 6=j Bij is the largest covariance between object i and a different object j. This is

the length of the path from the root to the immediate ancestor of leaf i in the corresponding tree.
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Therefore, the ratio in SS(B) compares the length of the path from the root to leaf i to the length

of the subpath from the root to i’s immediate ancestor. A value of SS(B) near zero means that on

average objects have zero covariance, values near one means that the tree is strongly hierarchical

where objects spend very little time taking independent steps in the diffusion process.

Under the classification of experiments as undergoing phylogenetic versus non-phylogenetic

evolution we expect that the structural strength metric should be quite different for estimated tree-

structured covariance matrices B̂gP and B̂gNP . That is, we expect that SS(B̂gP ) ≥ SS(B̂gNP) for

most gene families g. We show our results in Figure 2.3 which validate this hypothesis. We plot

SS(B̂gP ) versus SS(B̂gNP) for each gene family g. The diagonal is the area where SS(B̂gP ) =

SS(B̂gNP). We see that in fact SS(B̂gP ) > SS(B̂gNP) for all gene families g except the Hexose

Transport Family.

We next look at the resulting tree for the ABC (ATP-binding cassette) Transporters gene family

(see Jungwirth and Kuchler (2006) for a short literature review). In particular, the eight genes

included in this group are members of the subfamily conferring pleiotropic drug resistance (PDR)

and are all located in the plasma membrane. A number of transcription factors have been found

for the PDR subfamily, including the PDR3 factor considered one of the master regulators of the

PDR network (Delaveau et al., 1994). Figure 2.4 shows the tree estimated by the MIP projection

method for this family along with the sequence-derived tree reported by Oakley et al. (2005). We

can notice topological differences between the two trees, in particular, the subtree in Figure 2.4(a)

containing genes YOR328W, YDR406W, YOR153W and YDR011W.

In order to elucidate this topological difference, we turn to the characteristics of the promoter

(regulatory) regions of the genes and asked whether transcription factor (TF) binding site contents

of the upstream regions could account for this difference. We compiled a list of known yeast

transcription factor binding site consensus sequences using Gasch et al. (2004) and the Promoter

Database of Saccharomyces cerevisiae (SCPD) (http://rulai.cshl.edu/SCPD/). Then, we

generated a transcription factor binding site occurrence vector for each gene by simply counting

the number of occurrences of each consensus sequence in the 1000 base pairs upstream of the

coding region. Putting these profiles together we obtained a 8-by-128 matrix where rows represent
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Figure 2.3 Comparison of structural strengths for tree-structured covariance estimates B̂gP and
B̂gNP for projection under sav (a) and Frobenius (b) norms. Each point represents a gene family.

The x-axis is SS(B̂gNP). We can see that for all, except the Hexose Transport gene family,
SS(B̂gP ) > SS(B̂gNP ). Only eight families are shown since the Putative Helicases and

Permeases families did not have any experiments classified as phylogenetic.

Estimated Tree for ABC Transporters Gene Family

YDR011W

YNR070W

YPL058C

YOR328W

YDR406W

YOR153W

YIL013C

YOR011W

(a)

Sequence−derived Tree for ABC Transporters Gene Family

YDR011W

YNR070W

YPL058C

YOR328W

YDR406W

YOR153W

YIL013C

YOR011W

(b)

Figure 2.4 (a) shows the tree estimated by the MIP projection method using Frobenius norm for
the ABC Transporters gene family. (b) shows the sequence-derived tree reported by Oakley et al.

(2005) for the ABC Transporters gene family. The red tips correspond to genes YOR328W,
YDR406W, YOR153W and YDR011W which form a subtree in (a) but not in (b).
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the 8 genes in the ABC Transporters gene family and columns represent 128 transcription factors.

Inspection of this matrix once the rows are permuted to follow the hierarchy in the tree estimated

by the MIP projection method (Figure 2.4(a)) immediately revealed that the presence or absence

of the PDR3 transcription factor binding site in the flanking upstream region may account for the

topological difference apparent in the two estimated trees. Table 2.2 shows the number of times

the motif for the PDR3 factor was detected in the upstream region of each gene.

Table 2.2 Number of occurrences of the PDR3 transcription factor motif in the 1000 bp upstream
region for each gene in the ABC Transporters family. Colors match those of Figure 2.4.

gene Occurrences of PDR3

1 YOR011W 0

2 YIL013C 0

3 YPL058C 0

4 YNR070W 0

5 YDR406W 3

6 YOR328W 4

7 YDR011W 6

8 YOR153W 9

It is known (Delaveau et al., 1994) that the four genes in Table 2.2 with multiple PDR3 binding

sites are, as opposed to the other four genes, targets of this transcription factor which controls the

multi-drug resistance phenomenon. The structure of the subtree in Figure 2.4(a) corresponding to

the PDR3 target genes essentially follows the frequency of PDR3 occurrences. On the other hand,

the structure of subtree for the non-PDR3 target genes follows that of the sequence-derived tree

of Figure 2.4(b). Namely, pairs (YOR011W,YIL013C) and (YPL058C,YNR070W) are near each

other in both the sequence-derived and the MIP-derived trees. Therefore, after taking into account

the initial split characterized by the presence of the PDR3 transcription factor, the MIP estimated

tree (Figure 2.4(a)) is similar to the sequence-derived tree (Figure 2.4(b)).
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We reiterate the observation of Oakley et al. (2005) that the choice of sequence region to create

the reference phylogenetic trees in use in their analysis plays a crucial role and results could vary

accordingly. From our methods we have found evidence that using upstream sequence flanking

the coding region might yield a tree that is better suited to explore the influence of evolution in

gene expression for this particular gene family. We believe that finding a good estimate for tree-

structured covariance matrices directly from expression measurements can help investigators guide

their choices for downstream comparative analysis like that of Oakley et al. (2005).

Appendices 2.7 and 2.8 detail implementation choices and running times of our implementation

of the mixed-integer estimation procedure.

2.6 Discussion

The issues we hope to address by estimating tree-structured covariance matrices directly from

observed sample covariances from gene expression data can be illustrated using the work of White-

head and Crawford (2006) who characterize evolution patterns of the expression of 329 genes

in five strains of the Fundulus heteroclitus fish. One of their analyses uses generalized least

squares regression of gene expression on habitat temperature using a tree-structured covariance

matrix for correction. This structured covariance matrix is derived from a phylogeny constructed

from five microsatellite markers (short repeating strings) which are random characters expected

to not be influenced by selection and to evolve at the same base rate as the whole genome. The

tree is constructed with the greedy neighbor-joining algorithm (Saitou, 1987) from Cavalli-Sforza

and Edward’s (CSE) chord distances between the five microsatellite markers. We reproduce this

microsatellite-derived tree in Figure 2.5(a). The neighbor-joining algorithm is a greedy algorithm

susceptible to generating different solutions depending on how the algorithm is implemented. For

example, the implementation of this algorithm in the ape R package 3 yields a different tree (Fig-

ure 2.5(b)) given the CSE distances. For the purpose of generalized least squares, and therefore

3Version 1.10-2. We thank Dr. Andrew Whitehead for providing the distance data through personal communica-
tion.
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the evolutionary statements asserted as a result, this difference in topology can be significant. Con-

sidering this instability of the resulting neighbor-joining tree and the importance it plays in the

authors’ analyses, we posit that deriving tree-structured covariance matrices directly from the ex-

pression data can guide investigators in comparing sequence-derived phylogenetic trees for use in

subsequent comparative analysis.

Microsatellite−derived tree

CT

GA

ME

NC

NJU

0.05 0.04 0.03 0.02 0.01 0

(a)

Microsatellite−derived tree from
second neighbor−joining implementation

CT

GA

ME

NC

NJU

0.08 0.06 0.04 0.02 0

(b)

Figure 2.5 Microsatellite-derived trees built by two implementations of the neighbor-joining
algorithm from Cavalli-Sforza and Edward’s chord distances. Figure 2.5(a) is the tree reported

in Whitehead and Crawford (2006), and Figure 2.5(b) was obtained by the ape R package.

To address these shortcomings and motivated by what we think is a problem of genomic reso-

lution as described in the Introduction, we have described a method for estimating tree-structured

covariance matrices directly from observed sample covariance matrices by projection methods. We

showed that projection problems for known topologies are linear or quadratic programs depend-

ing on the approximation norm used. For unknown topology problems, we proposed and evalu-

ated a mixed-integer formulation which can be solved to optimality by existing branch-and-bound

solvers.
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The work of McCullagh (2006) on tree structured covariance matrices is the closest to our

work. He proposes the minimax projection to estimate the tree-structure of a given sample covari-

ance matrix. Given this structure, likelihood is maximized as in Anderson (1973). The minimax

projection is independent of the estimation problem being solved as opposed to our MIP method

which minimizes the estimation objective while finding tree structure simultaneously. Further-

more, the MIP solver guarantees optimality upon completion, at the cost of longer execution in

difficult cases where the optimal trees in many tree topologies have similar objective values.

Rifkin et al. (2003) use expression directly to estimate phylogenetic structure, but use a distance-

based method using the number of pairwise differentially expressed genes as the source of dis-

tances. They observe that for the resulting distance matrix the neighbor joining tree-building algo-

rithm (Saitou, 1987) produces a tree estimate that matches the sequence derived tree for a subgroup

of Drosophila.

Using the MIP formulation to model tree-structured matrix constraints, we can also address

the need to solve existing tree estimation problems exactly. In particular, the least squares method

of Fitch and Margoliash (1967) estimates a tree that minimizes the least-squares deviation of the

distance between objects in the tree and a given distance matrix D. However, from a covari-

ance matrix B we can compute squared distances between objects using the linear expression

D2
ij = Bii + Bjj − 2Bij , which implies that the least squares distance-deviance objective is a

quadratic function of the entries of covariance matrix B. Therefore, using the MIP formulation of

Section 2.4 and the quadratic least squares distance-deviance objective we can express the least-

squares method of Fitch and Margoliash (1967) as a MIQP. Therefore, generic branch-and-bound

solvers of quadratic MIPs fill the gap observed in Felsenstein et al. (2004) which states that no

branch-and-bound method to solve the least-squares problem exactly has been proposed.

Along the same line, MIPs have been used to solve phylogeny estimation problems for haplo-

type data Brown and Harrower (2006); Huang et al. (2005); Sridhar et al. (2008); Wang and Xu

(2003). The observed data from the tree leaves in this case is haplotype variation represented as

sequences of ones and zeros. Although our MIP formulation is related, the data in our case is
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assumed to be observations from a diffusion process along a tree, suitable for continuous traits like

gene expression.

We can place the problem of estimating tree-structured covariance matrices in the broader con-

text of structured covariance matrix estimation (Anderson, 1973; Li et al., 1999; Schulz, 1997).

The work of Anderson (1973) is especially relevant since an iterative procedure is used to fit

matrices, or matrix inverses, which can be expressed as linear combinations of known symmet-

ric matrices. For known topologies, this method solves likelihood maximization problems where a

normality assumption is made on the diffusion process underlying the data. However, for unknown

topologies, maximum likelihood problems require that we extend our computational methods to,

for example, determinant maximization problems. Solving these and similar types of nonlinear

MIPs is an active area of research in the optimization community (Lee, 2007). In recent years, the

problem of structured covariance matrix estimation has been mainly addressed in its application to

sparse Gaussian Graphical Models (Banerjee and Natsoulis, 2006; Chaudhuri et al., 2007; Drton

and Richardson, 2003, 2004; Yuan and Lin, 2007). In this instance, sparsity in the inverse covari-

ance matrix induces a set of conditional independence properties that can be encoded as a sparse

graph (not necessarily a tree).

Although we presented a descriptive metric of structural strength in our estimates in Sec-

tion 3.5, future work will concentrate on leveraging these methods in principled hypothesis testing

frameworks that better assess the presence of hierarchical structure in observed data. We expect

that the resulting methods are likely to impact how evolutionary analysis of gene expression traits

is conducted.

2.7 Implementation Details

In this work we used CPLEX 9.0 (Ilog, SA, 2003) to solve the mixed-integer programs de-

scribed above. This solver allows the user to specify a number of options to control the behavior of

the branch-and-cut algorithm. Some of the options that we found to be very useful to solve these

projection problems are the following:
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1. MIP EMPHASIS: The default behavior in CPLEX is to balance the traversal of the search tree

to both tighten the lower bound of the optimum and find integer-feasible solutions. Since

the set of tree-structured covariance matrices is non-empty, we know there exists an integer-

feasible solution. Therefore, we specify that the emphasis should be solely in tightening the

lower bound.

2. VARSEL and NODESEL: These parameters determine the order in which the search tree is

traversed. VARSEL determines which variables are branched on while NODESEL determines

the order in which nodes in the search tree are explored. We set VARSEL to strong branching

so that a small number of branches are explored quickly before deciding which one to take.

We set NODESEL to best estimate where an estimate of the optimum value for integer-feasible

solutions under this node is used to determine order.

3. DISJCUTS and FLOWCOVERS: These parameters controls how often disjunctive and flowcover

cutting planes are generated. We set both to generate aggressively.

4. PROBE Probing is a preprocessing step where the logical implications of setting binary vari-

ables to 1 or 0 are explored. We set this parameter to the maximum level of probing.

The determinant maximization Problem (2.21) using the SDPT3 Tütüncü et al. (2003) semidef-

inite programming solver. Except for this problem, all experiments and analyses were carried

out in R (R Development Core Team, 2007), and many utilities of the ape package (Paradis

et al., 2004) were used. CPLEX was used through an interface to R written by the authors

available at http://cran.r-project.org/web/packages/Rcplex/. An R package includ-

ing the MI projection solvers will be made available by the authors. Since CPLEX is propri-

etary software, our published code will also allow the of Rsymphony interface (http://cran.

r-project.org/web/packages/Rsymphony/index.html) to the SYMPHONY MILP solver

(http://www.coin-or.org/SYMPHONY/).

2.8 Running Times in Gene Family Analysis



37

family p norm class n time gap

ABC Transporters 8 sav phy 13 0.49

ABC Transporters 8 sav nonphy 148 0.66

ABC Transporters 8 sav all 161 0.26

ABC Transporters 8 fro phy 13 2.01

ABC Transporters 8 fro nonphy 148 0.70

ABC Transporters 8 fro all 161 0.72

ADP Ribosylation 7 sav phy 44 0.17

ADP Ribosylation 7 sav nonphy 100 0.02

ADP Ribosylation 7 sav all 144 0.07

ADP Ribosylation 7 fro phy 44 0.05

ADP Ribosylation 7 fro nonphy 100 0.09

ADP Ribosylation 7 fro all 144 0.33

Alpha Glucosidases 6 sav phy 20 0.02

Alpha Glucosidases 6 sav nonphy 148 0.02

Alpha Glucosidases 6 sav all 168 0.00

Alpha Glucosidases 6 fro phy 20 0.11

Alpha Glucosidases 6 fro nonphy 148 0.01

Alpha Glucosidases 6 fro all 168 0.01

DUP 10 sav phy 15 112.21

DUP 10 sav nonphy 106 27.81

DUP 10 sav all 121 19.91

DUP 10 fro phy 15 34.86

DUP 10 fro nonphy 106 294.61

DUP 10 fro all 121 600.02 0.29%

GTP Binding 11 sav phy 9 22.92

GTP Binding 11 sav nonphy 152 55.05
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GTP Binding 11 sav all 161 63.36

GTP Binding 11 fro phy 9 20.93

GTP Binding 11 fro nonphy 152 600.02 0.55%

GTP Binding 11 fro all 161 106.19

HSP DnaK 10 sav phy 61 31.71

HSP DnaK 10 sav nonphy 75 81.72

HSP DnaK 10 sav all 136 26.49

HSP DnaK 10 fro phy 61 21.60

HSP DnaK 10 fro nonphy 75 412.33

HSP DnaK 10 fro all 136 34.45

Hexose Transport 18 sav phy 96 600.05 75.89%

Hexose Transport 18 sav nonphy 12 600.02 68.78%

Hexose Transport 18 sav all 108 600.02 76.78%

Hexose Transport 18 fro phy 96 600.04 2.64%

Hexose Transport 18 fro nonphy 12 600.08 7.39%

Hexose Transport 18 fro all 108 600.11 4.93%

Kinases 7 sav phy 31 0.65

Kinases 7 sav nonphy 100 0.08

Kinases 7 sav all 131 0.09

Kinases 7 fro phy 31 1.04

Kinases 7 fro nonphy 100 0.81

Kinases 7 fro all 131 0.81

Permeases 17 sav nonphy 97 600.04 76.92%

Permeases 17 sav all 97 600.06 76.92%

Permeases 17 fro nonphy 97 600.01 4.49%

Permeases 17 fro all 97 600.03 4.49%

Putative Helicases 11 sav nonphy 96 481.55

Putative Helicases 11 sav all 96 481.50
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Putative Helicases 11 fro nonphy 96 600.01 0.42%

Putative Helicases 11 fro all 96 600.02 0.42%

Table 2.3: Run times for gene family analysis tree fitting.

Each row corresponds to the MIP approximation problem for

the given family and approximation norm. p is the size of the

gene family, n is the number of replicates in the data matrix,

and class indicates which class of experiments are included

in the data matrix. Time reported is CPU user time in sec-

onds. For those MIPs reaching the 10 minute time limit, we

report the relative optimality gap of the returned solution.

2.9 Simulation Study: Comparing MIP Projection Methods and Neighbor-
Joining

An alternative method to estimate a tree-structured covariance matrix from an observed sample

covariance is to use a distance-matrix method such as the Neighbor-Joining (NJ) algorithm (Saitou,

1987) as follows: given sample covariance B, create a distance matrix D such that Dij = Bii +

Bjj−2Bij , and use the NJ algorithm to estimate a tree and its corresponding tree-structured covari-

ance matrix. In this simulation, we compare how close to the correct tree structure is the estimated

tree-structured covariance matrix when using this NJ-based method against using our MIP-based

projection methods. We measure how close the structure of estimated tree-structured matrix Bj
i

is to the true structure of matrix Bi by using the tree topological distance defined by Penny and

Hendy (1985) which essentially counts the number of mismatched nested partitions defined by the

trees.

The simulation setting was the following: 1) we first generated 10 {T1, . . . , T10} trees with 10

leaves each at random using the rtree function of the R ape library (Paradis et al., 2004), which

gives 10 associated tree-structured covariance matrices {B1, . . . , B10} of size 10-by-10; 2) from

each tree-structured covariance matrixBi we draw 10 sample covariances randomly {B1
i , . . . , B

10
i }
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using a Wishart distribution with mean Bi and the desired degrees of freedom df , this corresponds

to the sample covariance matrix of a sample with df observations from a multivariate normal ran-

dom variable distributed asN(0, Bi), note that the resulting sample covariances are not necessarily

tree-structured; from each sample covariance matrix Bj
i we estimate a tree-structured covariance

matrix B̂j
i and record its topological distance to the true matrix Bi. In Figure 2.6 we report the

mean topological distance of the resulting 100 estimates as a function of the degrees of freedom

df , or number of observations. The values of the x-axis are defined to satisfy df = 10× 2x, so for

x = 0 there are 10 observations in each sample and so on.

We can see that the method based on NJ is unable to recover the correct structure even for

large numbers of observations. On the other hand the MIP-based method is able to converge to

the correct structure for both loss functions when the sample size is 16 times the number of taxa.

Although the topological distances even for smaller sample sizes are not too large, this simulation

also illustrates that, as expected, having a large number of replicates is better for this method. This

observation is partly the reason for concatenating different experiments in the yeast gene-family

analysis of Section 3.5.
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Mean topological distance, NJ vs. MIP
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Figure 2.6 Mean topological distance between estimated and true tree-structured covariance
matrices.
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Chapter 3

Extending Smoothing Spline ANOVA Models with Pedigree Data
and its Application to Eye-Disease Prediction

3.1 Introduction

Smoothing Spline ANOVA (SS-ANOVA) models (Gu, 2002; Lin et al., 2000; Wahba et al.,

1995; Xiang and Wahba, 1996) have a successful history in modeling eye disease risk. In particular,

the SS-ANOVA model of pigmentary abnormalities (PA) in Lin et al. (2000) was able to show an

interesting nonlinear protective effect of high total serum cholesterol for a cohort of subjects in the

Beaver Dam Eye Study (BDES). We replicate those findings in Figure 3.1.1

More recently, genome-wide association studies have been able to link variation in a number

of genomic regions to the risk of developing age-related macular degeneration (AMD), a leading

cause of blindness and visual disability (Klein et al., 2004). Since pigmentary abnormalities are

a precursor to the development of AMD, we want to make use of this genetic data to extend the

SS-ANOVA model for pigmentary abnormality risk. For example, by extending the SS-ANOVA

model of Lin et al. (2000) with a marker in the ARMS2 gene region, we were able to see that the

protective effect of cholesterol disappears in subjects which have the risky variant of this allele

(Figure 3.2).

Beyond genetic and environmental effects, we want to extend the SS-ANOVA for pigmentary

abnormalities with familial effects. Pedigrees (see Section 3.2) have been ascertained for a large

number of subjects of the BDES. We will make use of these pedigrees to include a term to the SS-

ANOVA model for familial effects. The main thrust of this chapter is how to incorporate pedigree

1We give details regarding this model in Section 3.5.
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Figure 3.1 Probability from smoothing spline logistic regression model. The x-axis of each plot
is cholesterol, each line is for a value of systolic blood pressure, each plot fixes body mass index
and age to the shown values. hist = 0, horm = 0, smoke = 0 (see Table 3.1 for an explanation

of model terms).
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Figure 3.2 Probability for smoothing spline logistic regression model including marker from
ARMS2 gene. The x-axis of each plot is cholesterol, each line is for a value of systolic blood

pressure. bmi is fixed at the data median, with horm=0, hist=0 and smoke=0. Each age level is the
midpoint in each range of the four age groups (see Table 3.1 for an explanation of model terms).
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data into SS-ANOVA models. In fact, we present a general method that is able to incorporate

arbitrary relationships that are encoded by a graph into SS-ANOVA models, from which a measure

of the relative importance of graph relationships in a predictive model can be retrieved.

The goal of this chapter is to estimate models of log-odds of pigmentary abnormality risk (see

Section 3.3) of the form

f(ti) = µ+ g1(ti) + g2(ti) + h(z(ti)),

where g1 is a term that includes only genetic marker data, g2 is a term containing only environ-

mental covariate data and h is a smooth function over a space encoding relationships given by a

graph, where each subject may be thought of being represented by a “pseudo-attribute” z(ti) (see

Section 3.4). In the remainder of the chapter we will refer to these model terms as S (for SNP), C

(for covariates) and P for pedigrees; so a model containing all three components will be referred

to as S+C+P. In particular, we use models where the g1 component is an additive linear model, and

g2 is built from cubic splines2.

An SS-ANOVA model is defined over the tensor sum of multiple reproducing kernel Hilbert

spaces (RKHS). It is estimated as the solution of a penalized likelihood problem with an addi-

tive penalty including a term for each RKHS in the ANOVA decomposition (Section 3.3), each

weighted by a coefficient. These coefficients are treated as tunable hyper-parameters, which, when

tuned using the GACV criterion, for example, can be interpreted as relative weights for the impor-

tance of each model component (S,C or P depending on the model). Our main tool in extending

SS-ANOVA models with pedigree data is the Regularized Kernel Estimation framework of Lu et al.

(2005). More complex models involving interactions between these three sources of information

are possible but beyond the scope of this work.

The chapter is organized as follows: Section 3.2 defines pedigrees which encode the familial

relationships we want to include in the SS-ANOVA model, which is itself discussed in Section 3.3.

The methodology used to extend the SS-ANOVA model with pedigree data is given in Section 3.4.

2See Section 3.5 for further model details
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Results on the extensions of the pigmentary abnormalities model for the BDES are given in Sec-

tion 3.5, while simulation results are given in Section 3.6. We conclude with a discussion of future

work in Section 3.7.

3.2 Pedigrees

A pedigree is an acyclic graph representing a set of genealogical relationships, where each node

corresponds to a member of the family. The graph has an arc from each parent to an offspring, so

that each node, except nodes for founders which have no incoming arcs, have two arcs, one for its

father and one for its mother, in addition to arcs to its offspring. Figure 3.3 shows an example of a

pedigree.

To capture genetic relationships between pedigree members, we use the well-known kinship

coefficient ϕ of Malécot (1948) to define a pedigree dissimilarity measure. The kinship coefficient

between individuals i and j in the pedigree is defined as the probability that a randomly selected

pair of alleles, one from each individual, is identical by descent, that is, they are derived from a

common ancestor. For a parent-offspring pair, ϕij = 1/4 since there is a 50% chance that the allele

inherited from the parent is chosen at random for the offspring, and a 50% chance that the same

allele is chosen at random for the parent.

Definition 3.1 (Pedigree Dissimilarity) The pedigree dissimilarity between individuals i and j is

defined as dij = − log2(2ϕij), where ϕ is Malecot’s kinship coefficient.

This dissimilarity is also the degree of relationship between pedigree members i and j (Thomas,

2004). Another dissimilarity based on the kinship coefficient can be defined as 1− 2ϕ. However,

since we use Radial Basis Function kernels, defined by an exponential decay with respect to the

pedigree dissimilarities, including the exponential decay in ϕ resulted in overly-diffused kernels

(Section 3.4).

In studies such as the BDES, not all family members are subjects of the study, therefore, the

graphs we will use to represent pedigrees in our models only include nodes for subjects rather

than the entire pedigree. For example, Figure 3.4 shows the relationship graph for five BDES
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Figure 3.3 Example pedigree from the Beaver Dam Eye Study. Red nodes are subjects with
reported pigmentary abnormalities, blue nodes are subjects reported as not having pigmentary
abnormalities. Circles are females, rectangles are males. The cohort used in our experiments

includes only blue and red circles, that is, females that have been tested for pigmentary
abnormalities.
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subjects from the pedigree in Figure 3.3. Edge labels are the pedigree dissimilarities derived from

the kinship coefficient, and dotted lines indicate unrelated pairs.

26
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3

1
3

2

Figure 3.4 Relationship graph for five subjects in the pedigree of Figure 3.3. Colors again
indicate presence of pigmentary abnormalities. Edge labels are the distances defined by the

kinship coefficient. Dotted edges indicate unrelated pairs.

The main thrust of our methodology is how to incorporate into predictive models these relation-

ship graphs derived from pedigrees and weighted by a pedigree dissimilarity that captures genetic

relationship. In particular, we want to use nonparametric predictive models that incorporate other

data, both genetic and environmental. In the next two Sections we will introduce the SS-ANOVA

model for Bernoulli data and propose two methods extend them using relationship graphs.

3.3 Smoothing-Spline ANOVA Models

Assume we are given a data set of environmental and/or genetic covariates for each of n sub-

jects, represented as numeric feature vectors xi, along with responses yi ∈ {0, 1}, i ∈ N =

1, . . . , n. We use the SS-ANOVA model to estimate the log-odds ratio function f(x) = log p(x)
1−p(x)

,

where p(x) = Pr(y = 1|x) (Gu, 2002; Lin et al., 2000; Wahba et al., 1995; Xiang and Wahba,
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1996). In particular, we will assume that f is in an RKHS of the formH = H0⊕H1, whereH0 is a

finite dimensional space spanned by a set of functions {φ1, . . . , φm}, andH1 is an RKHS induced

by a given kernel function k(·, ·) with the property that 〈k(x, ·), g〉H1 = g(x) for g ∈ H1, and thus,

〈k(xi, ·), k(xj, ·)〉H1 = k(xi, xj). Therefore, f has a semiparametric form given by

f(x) =
m∑
j=1

φj(x) + g(x),

where the functions φj have a parametric form and g ∈ H1. In the SS-ANOVA model, the RKHS

H1 is decomposed in a particular form we discuss below.

The SS-ANOVA estimate of f given data (xi, yi), i = 1, . . . , n, is given by the solution of the

following penalized likelihood problem:

min
f∈H

Iλ(f) =
1

n

n∑
i=1

l(yi, fi) + Jλ(f), (3.1)

where l(yi, fi) = −yif(xi) + log(1 + ef(xi)) is the negative log likelihood of (yi = 1|f(xi)) and

Jλ(f) is of the form λ‖P1f‖2
H1

, with P1f being the projection of f into RKHS H1. The penalty

term Jλ(f) penalizes the complexity of the function f using the norm of the RKHSH1 in order to

avoid over-fitting f to the training data and is parametrized by the regularization parameter λ.

By the representer theorem of Kimeldorf and Wahba (1971), the minimizer of Problem (3.1)

has a finite representation of the form

f(·) =
m∑
j=1

djφj(·) +
n∑
i=1

cik(xi, ·).

Thus, for a given value of the regularization parameter λ the minimizer fλ can be estimated by

solving the following convex nonlinear optimization problem

min
c∈Rn,d∈Rm

n∑
i=1

−yifi + log(1 + efi) + nλcTKc, (3.2)

where f = Td + Kc, Tij = φj(xi) and Kij = k(xi, xj). The fact that the optimization problem

is specified completely by the model matrix T and kernel matrix K is essential to the methods we

will use below to incorporate pedigree data to this model.
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A method for choosing the value of the regularization parameter λ that gives the estimate

fλ with best performance for unseen data in general is required. In this work, we will use the

GACV method, which is an approximation to the leave-one-out approximation of the conditional

Kullback-Leibler distance between the estimate fλ and the unknown “true” log-odds ratio f (Xiang

and Wahba, 1996). We note that the kernel function may be parametrized by a set of hyper-

parameters that may be chosen using the GACV criterion as well. For example, the Gaussian RBF

kernel

k(xi, xj) = exp{−γ‖xi − xj‖2}, (3.3)

has γ as a hyper-parameter.

In the SS-ANOVA model, the RKHS H1 is assumed to be the direct sum of multiple RKHSs,

so that the function g ∈ H1 is defined as

g(x) =
∑
α

gα(xα) +
∑
α<β

gαβ(xα, xβ) + · · ·

where {gα} and {gαβ} satisfy side conditions that generalize the standard ANOVA side con-

ditions. Functions gα encode “main effects”, gαβ encode “second order interactions” and so on.

An RKHSHα is associated with each component in this sum, along with its corresponding kernel

function kα. We can write the penalty term in (3.1) as

Jλ,θ(f) = λ

[∑
α

θ−1
α ‖Pαf‖2

Hα +
∑
αβ

θ−1
αβ‖Pαβf‖

2
Hαβ + · · ·

]
, (3.4)

where the coefficients θ are tunable hyper-parameters that allow weighting the effect of each

component’s penalty in the total penalty term. For the penalty of Equation (3.4), the kernel

function k(·, ·) associated with H1 can then be itself decomposed as k(·, ·) =
∑

α θαkα(·, ·) +∑
αβ θαβkαβ(·, ·) + · · · . The hyper-parameters to be chosen, by GACV for example, now include

λ and the coefficients θ of the ANOVA decomposition. These coefficients θ can be interpreted

as relative importance weights for each model component. Thus, in models that have genetic,

environmental and familial components, the ANOVA decomposition can be used to measure the

relative importance of each data component.
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For genetic and environmental components, standard kernel functions can be used to define the

corresponding RKHS. However, pedigree data is not represented as feature vectors for which stan-

dard kernel functions can be used. On the other hand, in order to specify the penalized likelihood

problem, only the kernel matrix is required. Therefore, we will build kernel matrices that encode

familial relationships, and use those in the estimation problem. In the next Section, we will show

two methods for defining pedigree kernels.

3.4 Representing Pedigree Data as Kernels

The requirement for a valid kernel matrix to be used in the penalized likelihood estimation

problem of Equation (3.2) is that the matrix be positive semidefinite: for any vector α ∈ Rn. This

is denoted as K � 0. We saw in the previous Section, that there is a close relationship between the

inner product of the RKHSH1 and its associated kernel function k. In fact, the kernel matrix K is

the matrix of inner products of the evaluation representers inH1 of the given data points.

A property of positive semidefinite matrices, is that they may be interpreted as the matrix of

inner products of objects in a space equipped with an inner product. Therefore, since K � 0

contains the inner products of objects in some space, we can define a distance metric over these

objects as d2
ij = Kii + Kjj − 2Kij . We make use of this connection between distances and inner

products in the Regularized Kernel Estimation framework to define a kernel based on the pedigree

dissimilarity of Definition 3.1.

3.4.1 Regularized Kernel Estimation

The Regularized Kernel Estimation (RKE) framework was introduced by Lu et al. (2005) as

a robust method for estimating dissimilarity measures between objects from noisy, incomplete,

inconsistent and repetitious dissimilarity data. The RKE framework is useful in settings where

object classification or clustering is desired but objects do not easily admit description by fixed

length feature vectors. Instead, there is access to a source of noisy and incomplete dissimilarity

information between objects.
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RKE estimates a symmetric positive semidefinite kernel matrixK which induces a real squared

distance admitting of an inner product. K is the solution to an optimization problem with semidef-

inite constraints that trades-off fit to the observed dissimilarity data and a penalty of the form

λrketrace(K) on the complexity of K, where λrke is a non-negative regularization parameter.

The solution to the RKE problem is a symmetric positive semidefinite matrix K, which has

a spectral decomposition K = ΓΛΓT , with Λ a diagonal matrix with Λii equal to the ith leading

eigenvalue of K and Γ an orthogonal matrix with eigenvectors as columns in the corresponding

order. An embedding X ∈ RN×r in r-dimensional Euclidean space can be derived from this

decomposition by setting X = Γ(:, 1 : r)Λ(1 : r)1/2, where only the r leading eigenvalues and

eigenvectors are used. A method for choosing r is required, which we discuss in Section 3.5.

RKE problem Given a training set of N objects, assume dissimilarity information is given for a

subset Ω of the
(
N
2

)
possible pairs of objects. Denote the dissimilarity between objects i and j as

dij ∈ Ω. We make the requirement that Ω satisfies a connectivity constraint: the undirected graph

consisting of objects as nodes and edges between them, such that an edge between nodes i and j is

included if dij ∈ Ω, is connected. Additionally, optional weights wij may be associated with each

dij ∈ Ω.

RKE estimates an N -by-N symmetric positive semidefinite kernel matrix K of size N , such

that, the fitted distance between objects induced byK, d̂ij = K(i, i)+K(j, j)−2K(i, j), is as close

as possible to the observed distance dij ∈ Ω. Formally, RKE solves the following optimization

problem with semidefinite constraints:

min
K�0

∑
dij∈Ω

wij|dij − d̂ij|+ λrketrace(K). (3.5)

The parameter λrke ≥ 0 is a regularization parameter that trades-off fit of the dissimilarity data, as

given by absolute deviation, and a penalty, trace(K), on the complexity of K. The trace may be

seen as a proxy for the rank of K, therefore, RKE is regularized by penalizing high dimensionality

of the space spanned by K. Note that the trace was used as a penalty function by Lanckriet et al.

(2004a).
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As in the SS-ANOVA model, a method for choosing the regularization parameter λrke is re-

quired. However, since our final goal is to build a predictive model that performs well in general,

choosing this parameter in terms of prediction performance makes sense. That is, we treat λrke as

a hyper-parameter to the kernel matrix of the SS-ANOVA problem.

Figure 3.5 shows a three-dimensional embedding derived by RKE of the relationship graph

in Figure 3.4. Notice that the x-axis is order of magnitudes larger than the other two axes and

that the unrelated edges in the relationship graph occur along this dimension. That is, the first

dimension of this RKE embedding separates the two clusters of relatives in the relationship graph.

The remaining dimensions encode the relationship distance.

Not all relationship graphs can be embedded in three-dimensional space, and thus analyzed by

inspection as in Figure 3.5. For example, Figure 3.8 shows the embedding of a larger relationship

graph that requires more than three-dimensions to embed the pedigree members uniquely. For

example, subjects coded 27 and 17 are superposed in this three dimensional embedding, with the

fourth dimension separating them.

We may consider the embedding resulting from RKE as providing a set of “pseudo”-attributes

z(i) for each subject in this pedigree space. Thus, a smooth predictive function may be estimated

in this space. In principle, we should impose a rotational invariance when defining this smooth

function since only distance information was used to create the embedding. For this purpose we

use radial basis function kernels, like the Gaussian kernel of Equation 3.3 and the Matérn kernels

of Section 3.4.3, to define this smooth pedigree predictive function.

The fact that RKE operates on inconsistent dissimilarity data, rather than distances, is signifi-

cant in this context. The pedigree dissimilarity of Definition 3.1 is not a distance since it does not

satisfy the triangle inequality for general pedigrees. In Figures 3.6 and 3.7 we show an example

where this is the case, where the dissimilarities between subjects labeled 17, 7 and 5 do not satisfy

the triangle inequality. An embedding given by RKE for this graph is shown in Figure 3.8.



55

−1000  −500     0   500  1000  1500−
0.

20
−

0.
15

−
0.

10
−

0.
05

 0
.0

0
 0

.0
5

 0
.1

0
 0

.1
5

 0
.2

0

−1.5
−1.0

−0.5
 0.0

 0.5
 1.0

 1.5

●

●

●

●

●

26

40

10

35

8

Figure 3.5 Embedding of pedigree by RKE. The x-axis of this plot is order of magnitudes larger
than the other two axes. The unrelated edges in the relationship graph occur along this dimension,

while the other two dimensions encode the relationship distance.
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Figure 3.6 A different example pedigree. We use this pedigree to show in Figure 3.7 that the
pedigree dissimilarity of Definition 3.1 is not a distance.
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Figure 3.7 A different relationship graph. The dissimilarities between nodes labeled 17, 7 and 5
show that the pedigree dissimilarity of Definition 3.1 is not a distance.
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Figure 3.8 RKE Embedding for second example graph. Subjects 27 and 17 are superimposed in
this three dimensional plot, but are separated by the fourth dimension.
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3.4.2 Graph Kernels

Since we are encoding pedigree data as a weighted graph, we can use existing methods for

defining kernels over graphs. For example, using a setting similar to Smola and Kondor (2003),

we can define a pedigree Gaussian kernel as

Kij = exp{−γd2
ij}, (3.6)

where dij is the pedigree dissimilarity of Definition 3.1, and γ is a kernel hyper-parameter to be

chosen. However, since this pedigree dissimilarity is not a distance, the kernel resulting from

applying Equation (3.6) is not positive semidefinite. In our implementation, we compute the pro-

jection under Frobenius norm of the result of Equation 3.6 to the cone of positive semidefinite

matrices. This is easily computed by setting the negative eigenvalues of the matrix to zero.

3.4.3 Matérn Kernel Family

We have so far only discussed the use of the Gaussian kernel (Equation (3.3)) as basis functions

for our nonparametric models. This kernel is a good candidate for this task since it depends only

on the distance between objects and is rotationally invariant. However, its exponential decay poses

a problem in this setting since the relationship graphs derived from pedigrees are very sparse, and

the dissimilarity measure of Definition 3.1 makes the kernel very diffuse, in that most non-zero

entries are relatively small.

The Matérn family of radial basis functions (Matern, 1986; Stein, 1999) also have the same two

appealing features of the Gaussian kernel–dependence only on distance and rotational invariance–

while providing a parametrized way of controlling exponential decay. The ν-th order Matérn

function is given by

kν(i, j) = exp{−αdij}πν(α, dij), (3.7)

where α is a tunable scale hyper-parameter and πν is a polynomial of a certain form. In the results

of Sections 3.5 and 3.6, we use the third order Matérn function:
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k3(i, j) =
1

α7
exp{−ατ}[15 + 15ατ + 6α2τ 2 + α3τ 3], (3.8)

where τ = dij . The general recursion relation for the m+ 1-th Matérn function is

km+1(i, j) =
1

α2m+1
exp{−ατ}

m+1∑
i=0

am+1,iα
iτ i, (3.9)

where am+1,0 = (2m+1)am,0, am+1,i = (2m+1)am,i+am,i−1, for i = 1, . . . ,m and am+1,m+1 = 1.

The Matérn family is defined for general positive orders but closed form expressions are available

only for integral orders.

3.5 Case Study: Beaver Dam Eye Study

The Beaver Dam Eye Study (BDES) is an ongoing population-based study of age-related ocular

disorders. Subjects were a group of 4926 people aged 43-86 years at the start of the study who

lived in Beaver Dam, WI and were examined at baseline, between 1988 and 1990. A description of

the population and details of the study at baseline may be found in Klein et al. (1991). Although we

will only use data from this baseline study for our experiments, five, ten, and fifteen year follow-up

data has been obtained (Klein et al., 1997, 2002, 2007). Familial relationships of participants were

ascertained and pedigrees were constructed (Lee et al., 2004). Genetic marker data for specific

SNPs was subsequently generated for those participants included in the pedigree data.

Our goal is to use this new genetic and pedigree data to extend previous work studying the

association between pigmentary abnormalities and a number of environmental covariates in the

context of SS-ANOVA models (Lin et al., 2000). The presence of pigmentary abnormalities is

an early stage of age-related macular degeneration (AMD), which, in it’s late stages, is a leading

cause of blindness and visual disability (Klein et al., 2004). We use genetic marker data for the

Y402H region of the complement factor H (CFH) gene and for SNP rs10490924 in the LOC387715

(ARMS2) gene. Variations in these locations have been shown to significantly alter the risk of

AMD (Baird et al., 2006; Edwards et al., 2005; Fisher et al., 2005; Fritsche et al., 2008; Hageman
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et al., 2005; Haines et al., 2005; Kanda et al., 2007; Klein et al., 2005; Li et al., 2006; Magnusson

et al., 2006; Thompson et al., 2007a,b).

Extending the methodology of Lin et al. (2000), we estimate a SS-ANOVA models of the form

f(t) = µ+dSNP1,1·I(X1 = 12)+dSNP1,2·I(X1 = 22)+dSNP2,1·I(X2 = 12)+dSNP2,2·I(X2 = 22)+

f1(sysbp) + f2(chol) + f12(sysbp, chol) + dage · age + dbmi · bmi + dhorm · I1(horm)+

dhist · I2(hist) + dsmoke · I3(smoke) + h(z(t)). (3.10)

The terms in the first line of Equation (3.10) encode the effect of the two genetic markers

(SNPs). A variable for each SNP is coded according to which of three variants (11,12,22) the

subject carries for that SNP. For identifiability, the 11 level is modeled by the intercept µ for both

SNPs, while an indicator variable is added for the other two levels. This results in each level (other

than the 11 level) having its own model coefficient.

The next few terms encode the effect of the environmental covariates listed in Table 3.1. Func-

tions f1, f2 and f12 constructed from cubic splines (see Gu, 2002, for the tensor product construc-

tion of f12), and the remaining linear terms have Ij as indicator functions. Both systolic blood

pressure and cholesterol were scaled to lie in the interval [0, 1]. A model of PA of this form for

these environmental covariates was shown to report a protective effect of hormone replacement

therapy and a suggestion of a nonlinear protective effect of cholesterol (Lin et al., 2000, and Fig-

ure 3.1). The term h(z(t)) encodes familial effects and is defined by the kernels presented in

Section 3.4.

Models tested include combinations of the following components: 1) P (for pedigree) which de-

fines a function only on an RKHS encoding the pedigree data (term h(z(t)) in Equation (3.10)), 2)

S (for SNP) which includes data for the two genetic markers (terms 2 through 5 in Equation (3.10)),

and 3) C (for covariates) which includes the remaining terms in Equation (3.10) encoding environ-

mental covariates. For example, P-only refers to a model containing only a pedigree component;

S+C, to a model containing components for genetic markers and environmental covariates; and

P+S+C to a model containing components for all three data sources.
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code units description

horm yes/no current usage of hormone replacement therapy

hist yes/no history of heavy drinking

bmi kg/m2 body Mass Index

age years age at baseline

sysbp mmmHg systolic blood pressure

chol mg/dL serum cholesterol

smoke yes/no history of smoking

Table 3.1 Environmental covariates for BDES pigmentary abnormalities SS-ANOVA model
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We also compare the two methods presented for incorporating pedigree data. We refer to the

method using a kernel defined over an embedding resulting from RKE (Section 8.1) as

RKE/GAUSSIAN or RKE/MATERN according to the kernel function used over the embedding,

and to the kernel defined over the graph dissimilarities directly (Section 3.4.2), as GAUSSIAN or

MATERN accordingly. Therefore, the abbreviation P+S+C (MATERN) refers to a model contain-

ing all three data sources, where pedigree data is incorporated using the graph kernel method with

Matern third order kernel.

The penalized likelihood Problem (3.2) is solved by the quasi-Newton method implemented in

the gss R package (Gu, 2007). The RKE semidefinite Problem (8.2) is solved using the CSDP

library (Borchers, 1999) with input dissimilarities given by Definition 3.1. A number of additional

edges between unrelated individuals encoding the “infinite” dissimilarity are added randomly to

the graph. The dissimilarity encoded by these edges is arbitrarily chosen to be the sum of all

dissimilarities in the entire cohort. The number of additional edges is chosen such that each subject

has an edge to at least twenty-five other subjects in the cohort (including all relatives). The kernel

matrix obtained from RKE is then truncated to those leading eigenvalues that account for 95% of

the matrix trace to create a “pseudo”-attribute embedding. An RBF kernel is then defined over this

embedding. Pedigree dissimilarities were derived from kinship coefficients calculated using the

kinship R package (Atkinson and Therneau, 2007).

The cohort used are females subjects of the BDES for which we have full genetic marker,

covariate and pedigree data, and are from pedigrees containing two or more observations within

the cohort (n = 684). This results in 175 pedigrees in the data set, with sizes ranging from 2 to

103 subjects. More than a third of the subjects are in pedigrees with 8 or more observations.

We will use area under the ROC curve (Fawcett, 2004, referred to as AUC), to compare pre-

dictive performance of model/method combinations, and will be estimated using ten-fold cross-

validation. The cross-validation folds were created such that for every test subject in the fold, at

least one other member of their pedigree is included in the training set. In each fold, pedigree

kernels were built on all members of the pedigree in the cohort, however, hyper-parameters were

chosen for each fold independently, using GACV on the labeled data. That is, in this scenario there
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is no off-sample testing points in the sense that we have full pedigree information for all testing

points.

Table 3.2 shows the resulting mean and standard deviations of the cross-validation AUC of each

model/method combination. Figure 3.9 summarizes the same result by plotting the AUC of the best

method for each model type. We can make the following observations based on Figure 3.93:

1. the model with the highest overall mean AUC is the S+C+P model (RKE/MATERN), but

models S+C (NO/PED) and S+P (MATERN) are not statistically different (p-values: 0.753

and 0.73 respectively);

2. for pedigree-less models, the S+C model containing both markers and covariates has better

AUC than either the S-only or C-only models (p-values: 0.00250 and 0.065 respectively);

3. adding pedigree data to the C-only model did not increase AUC significantly (p-value 0.854);

4. adding pedigree data to the S-only model increased AUC significantly (p-value 0.0121);

5. the P-only (MATERN) and S-only models have AUC that is not statistically different (p-

value 0.464)

The second result states that for pedigree-less models, combining genetic markers and environ-

mental covariates yields a better model than either data source by itself. This is consistent with the

fact that pigmentary abnormality risk is associated to both the genetic markers and environmental

covariates included in the model.

Part of the first result states that model S+P performs as well as the best scoring methods is

striking. For example, it states that substituting the environmental covariates in the S+C model

with the pedigree data (S+P) yields the same predictive ability. This is surprising considering that

pedigree data strictly encodes genetic relationships. Further investigation of this result is an avenue

for future research.

For this cohort, adding pedigree data to models containing the environmental covariates did not

increase predictive ability (results 1 and 3).
3Reported p-values are for pairwise t-tests. Pedigree results refer to the best scoring method for each model type.
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Figure 3.9 AUC comparison of models. S-only is a model with only genetic markers, C-only is a
model with only environmental covariates and S+C is a model containing both data sources.

P-only is a model with only pedigree data, P+S is a model with both pedigree data and genetic
marker data, P+C is a model with both pedigree data and environmental covariates, P+S+C is a
model with all three data sources. Error bars are one standard deviation from the mean. Yellow
bars indicate models containing pedigree data. For models containing pedigrees, the best AUC

score for each model is plotted. All AUC scores are given in Table 3.2.
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The last two results are also interesting in that pedigree-only models, that is, models that in-

clude only familial effects, have the same predictive ability than the genetic marker-only model,

while adding pedigree data to the genetic marker model increases predictive ability.

3.6 Simulation Study

In the previous Section we saw that no predictive ability is gained from adding pedigree data

to the pedigree-less pigmentary abnormality SS-ANOVA model with both genetic markers and

environmental covariates (P+S+C vs. S+C). We carried out a simulation study to test that our

methods are not biased against including the pedigree term to the SS-ANOVA model.

We simulated an extremely simplified disease model where risk is determined by two genetic

markers and a single covariate. Letting X1i and X2i be indicator function for the risk alleles of the

two markers respectively, the log-odds ratio of the true model is given by

fi = µ+ 3 ∗X1i + 20 ∗X2i + 24 ∗Xi(1−Xi),

where Xi is a simulated environmental covariate drawn uniformly at random from [0,1] and inde-

pendently from the markers. The constant µ is set so that the numbers of subjects with and without

the disease are expected to be balanced.

We used the same cohort and pedigree structure from Section 3.5. The two genetic markers

were simulated using the ibdreg (Sinnwell and Schaid, 2007) R package as follows: for each

pedigree with observations in the cohort, the alleles for the founders (pedigree members without

parents in the pedigree) are drawn randomly so that the risk allele is drawn with a probability of

30%; once the founder alleles are generated, inheritance by descent is simulated in the pedigree

under an autosomal inheritance mode (Sinnwell and Schaid, 2007; Thomas, 2004); this generates

the alleles for every member of the pedigree. The two markers were generated independently.

The purpose of this simulation is to show that if only one of the two markers are included in a

model including SNPs and the covariate, adding the pedigree term to the model serves as a proxy
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for the left-out SNP. We test two models: P+S+C, of the form

fi = µ+ d1X1i + g(Xi) + hi,

where g is a nonparametric term for the covariate X constructed with a cubic spline and hi is a

pedigree term; and S+C, of the form

fi = µ+ d1X1i + g(Xi).

Under these simulation conditions, we expect that the predictive ability of the P+S+C model to be

higher than that of the S+C model.

Table 3.3 shows the result for this simulation. Area under the ROC curve for the S+P+C

(MATERN) method is significantly better than the S+C model (p-value 0.0314).

We note that this result hinges on the large relative weight given to the second genetic marker

in the true model. For lower weights, the AUC of S+C+P is similar to that of S+C. Notice also that

in this simple simulation setting the Gaussian kernel performed better than the Matérn kernel.

3.7 Discussion

Throughout our experiments and simulations we have used genetic marker data in a very sim-

ple manner by including single markers for each gene in an additive model. A more realistic model

should include multiple markers per gene and would include interaction terms between these mark-

ers. While we have data on two additional markers for each of the two genes included in our case

study (CFH and ARMS2) for a total of six markers (three per gene), we chose to use the additive

model on only two markers since, for this cohort, this model showed the same predictive ability

as models including all six markers with interaction terms (analysis not shown). Furthermore, due

to some missing entries in the genetic marker data, including multiple markers reduced the sample

size.

Along the same lines, we currently use a very simple inheritance model to define pedigree dis-

similarity. Including, for example, dissimilarities between unrelated subjects should prove advan-

tageous. A simple example would be including a spousal relationship when defining dissimilarity
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since this would be capturing some shared environmental factors. Extensions to this methodology

that include more complex marker models and multiple or more complex dissimilarity measures

are fertile grounds for future work.

Methods for including graph-based data in predictive models have been proposed recently.

They range from semi-supervised methods that regularize a predictive model by applying smooth-

ness penalties over the graph (Goldberg et al., 2007; Sindhwani et al., 2005; Zhu, 2005), to discrim-

inative graphical models (Chu et al., 2007; Getoor, 2005; Lafferty et al., 2004; Taskar et al., 2004),

and methods closer to ours which define kernels from graph relationships (Smola and Kondor,

2003; Zhu et al., 2006).

There are issues in the disease risk modelling setting with general pedigrees, where relation-

ship graphs encode relationships between a subset of a study cohort, that are usually not explicitly

addressed in the general graph-based setting. Most important is the assumption that, while graph

structure has some influence in the disease risk model, it is not necessarily an overwhelming influ-

ence. Thus, a model that produces relative weights between components of the model, one being

graph relationships, is required. That is the motivation for using the SS-ANOVA framework in

this work. While graph regularization methods have a parameter that controls the influence of the

graph structure in the predictive model, it is not directly comparable to the influence of other model

components, e.g. genetic data or environmental covariates. On the other hand, graphical model

techniques define a probabilistic model over the graph to define the predictive model. This gives

the graph relationships too much influence over the predictive model.

The relationship graphs in this setting lead to kernels that are highly diffuse in the sense that,

due to the nature of the pedigree dissimilarity, there is rapid decay as the Gaussian basis function

extends away from each subject. The use of the third order Matérn kernel function significantly

improved the predictive ability of our methods in Section 3.5 over the Gaussian kernel, since the

Matérn kernel can soften the diffusion effect. Tuning the order of the Matérn kernel could further

improve our models. Note, however, that in the simple simulation setting of Section 3.6, the faster

decay of the Gaussian kernel performed better than the slower decay of the Matérn kernel. Further
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understanding of the type of situations in which the Matérn kernel would perform better than the

Gaussian is another direction for further research.
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mean AUC std. dev.

NO-PED 0.65 0.08

GAUSSIAN 0.74 0.09

MATERN 0.72 0.07

RKE/GAUSSIAN 0.69 0.09

RKE/MATERN 0.67 0.10

Table 3.3 Mean AUC for simulation setting.
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Chapter 4

Protein Classification by Regularized Kernel Estimation

The Regularized Kernel Estimation (RKE) framework was introduced by Lu et al. (2005) as

a robust method for estimating dissimilarity measures between objects from noisy, incomplete,

inconsistent and repetitious dissimilarity data. The RKE framework is useful in settings where

object classification or clustering is desired but objects do not easily admit description by fixed

length feature vectors. Instead, there is access to a source of noisy and incomplete dissimilarity

information between objects.

RKE estimates a symmetric positive semidefinite kernel matrixK which induces a real squared

distance admitting of an inner product. K is the solution to an optimization problem with semidef-

inite constraints that trades-off fit to the observed dissimilarity data and a penalty of the form

λrketrace(K) on the complexity of K, where λrke is a non-negative regularization parameter.

Given an RKE kernel K estimated from a training set of objects, the RKE framework provides

the newbie method for embedding new objects into a low dimensional space spanned by K. The

embedding is given as the solution of an optimization problem with semidefinite and second-

order cone constraints which requires that the dimensionality of the embedding space is given as a

parameter.

An example of a setting where RKE is suitable is the classification of protein sequence data

where measures of dissimilarity are easily obtained, whereas feature vector representations are

difficult to obtain or justify. Some sources of dissimilarity in this case, such as BLAST (Altschul

et al., 1990), require setting a number of parameters that makes the resulting dissimilarities possibly

inexact, inconsistent and noisy. The RKE method is robust to the type of noisy and incomplete data

that arises in this setting.
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In this chapter, we will show how this framework can be successfully applied to a protein classi-

fication task, where data consists of dissimilarity data between a number of proteins: 1) a sequence

dissimilarity measure derived from BLAST (Altschul et al., 1990), 2) a dissimilarity derived from

transcription factor occupancy data in promoter regions of genes. In the first case, each protein

is labeled as belonging to one of two sub-families determined by low-level molecular structural

features. In the second case, proteins are classified by their cellular localization. Using a kernel

matrix estimated by RKE, we can successfully learn a Support Vector Machine that classifies these

proteins into their respective classes based on pseudo-data vectors obtained from the estimated

kernel matrix.

Appendix A contains results on methods for choosing values of the regularization parameter

λrke in the RKE problem. We show the CV2 method which selects regularization parameter values

in clustering and visualization applications. Based on a empirical study using a modified version of

the protein sequence data, we make the observation that similar clustering performance is achiev-

able for a range of values of the RKE regularization parameter, indicating that precise tuning in

these applications might not be required. However, based on the same empirical study we make

the observation that classification performance, in contrast to clustering, may be highly dependent

on the RKE regularization parameter. This indicates that methods that jointly tune regularization

parameters in both the RKE and classification optimization problems are required. Furthermore,

we present a simulation study that furthers demonstrate this phenomenon, where clustering is rel-

atively invariant to a large range of tuning parameter values, whereas classification must be tuned

carefully to obtain optimal prediction performance.

4.1 Regularized Kernel Estimation

The RKE framework provides a unified solution to two problems: 1) The RKE Problem esti-

mating full relative position information for a set of objects, preferably in a low dimensional space

with the purpose of visualization or further processing such as clustering or classification, and 2)
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The Newbie Problem embedding new objects in this estimated low dimensional space for the pur-

pose of determining its relative position to training objects or for classification given a classification

function over this embedding space.

RKE problem Given a training set of N objects assume dissimilarity information is given for a

subset Ω of size r of the
(
N
2

)
possible pairs of objects. Denote the dissimilarity between objects i

and j as dij ∈ Ω. We make the requirement that Ω satisfies a connectivity constraint: the undirected

graph consisting of objects as nodes and edges between them, such that an edge between nodes i

and j is included if dij ∈ Ω, is connected. Additionally, optional weights wij may be associated

with each dij ∈ Ω.

RKE estimates an N -by-N symmetric positive semidefinite kernel matrix K of size N , such

that, the fitted distance between objects induced byK, d̂ij = K(i, i)+K(j, j)−2K(i, j), is as close

as possible to the observed distance dij ∈ Ω. Formally, RKE solves the following optimization

problem with semidefinite constraints:

min
K�0

∑
dij∈Ω

wij|dij − d̂ij|+ λrketrace(K). (4.1)

The parameter λrke ≥ 0 is a regularization parameter that trades-off fit of the dissimilarity data, as

given by absolute deviation, and a penalty, trace(K), on the complexity of K. The trace may be

seen as a proxy for the rank of K, therefore RKE is regularized by penalizing high dimensionality

of the space spanned by K. Note that the trace was used as a penalty function by Lanckriet et al.

(2004a).

The Newbie Algorithm Given an RKE kernel KN estimated as above, assume that Γx contains

dissimilarity information between new object x and a subset of the N training set objects, thus,

dxj ∈ Γx where j ∈ {1, . . . , N}. Optionally, weights wxj may be associated with each dxj ∈

Γx. The kernel matrix KN is,sub-optimally, extended to embed x in the space spanned by KN .

Formally we find Kx of the form:

Kx =

 KN b

b′ c
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that solves the optimization problem:

min
c∈R b∈RN

c+
∑

dxj∈Γx
wxj|dxj − d̂xj| (4.2)

s.t b ∈ range(K) (4.3)

c− b′K†b ≥ 0, (4.4)

where b′ is the transpose of column vector b and K† is the pseudo-inverse of K. The constraints on

c and b are necessary and sufficient for Kx to be positive semidefinite. Eq. 4.2 can be formulated

as a problem with semidefinite and second-order cone constraints. The Newbie Algorithm takes as

a parameter the dimensionality of the embedding space.

4.2 Using RKE for Classification

In the setting where classification of objects is desired based on noisy dissimilarity data, we

take the approach of using solutions to the RKE problem as kernel matrices to fit a Support Vector

Machine (SVM) (Scholkopf and Smola, 2002; Vapnik, 1998). Let y = (y1, . . . , yN)′ be a labeling

of the N objects used to estimate an RKE kernel K. We find a function f of the form fλ(x) =∑N
i=1 ciK(x, i) + d where K(x, i) is the corresponding entry for an RKE kernel K for objects x

and i. For an SVM, f is the solution of the following optimization problem:

min
c∈RN ,d∈R

N∑
i=1

(1− yifi)+ + λsvmc
′Kc, (4.5)

where (τ)+ = max 0, τ is the hinge-loss function and fi =
∑N

j=1 cjK(i, j) + d where i, j are pairs

of objects in the training set.

The regularization parameter λsvm trades off fidelity to the data given by hinge loss and the

squared norm of the resulting classification function in the space induced byK. The generalization

performance of an SVM is sensitive to both the choice of kernel and regularization parameter λsvm,

thus in a joint RKE-SVM system a method for choosing both regularization parameters λrke and

λsvm is required.

An initial approach is to base tuning for RKE-SVM systems on tuning criteria for SVMs, for

example, the GACV (Wahba et al., 1999) criterion which approximates the leave-one-out (LOO)



76

error of an estimated SVM. The GACV can be shown to be equal to the Chapelle-Vapnik Support

Vector Span rule (Chapelle and Vapnik, 1999; Vapnik and Chapelle, 2000) LOO estimate under

certain conditions. Another candidate method is the ξα method (Joachims, 2000) or its GACV-like

approximation (Wahba et al., 2001). Appendix B gives a result which characterizes and compares

these adaptive tuning methods.

4.3 Protein Classification

In this Section we extend the protein clustering task introduced by Lu et al. (2005) by apply-

ing the Regularized Kernel Estimation (RKE) framework to the task of protein classification. In

addition, we present results in a second protein classification task where classes are determined

by cellular localization and dissimilarity is given by transcription factor occupancy in the gene

promoter region.

4.3.1 Classification by Structural Feature

The data set for low-level structural feature classification consists of the amino-acid sequence

of 630 members of the globin protein family. This protein family is partitioned into sub-families, α

and β-chains, according to known low-level structural features of the protein. For our experiments,

we randomly chose 100 members each of the α and β-chain sub-families, as annotated in the

SwissProt database (Gasteiger et al., 2003).

For each pair of protein sequences, we obtain a normalized global alignment score using the

Bioconductor PairSeqSim package (Gentleman et al., 2006). We sample a set of dissimilarities

from the
(

200
2

)
= 19, 900 available similarities as follows: for each object we sample the dis-

similarity with 20% of the remaining proteins chosen uniformly at random. This results in 3,994

dissimilarity measures. Given a value for λrke, we estimate a 200-by-200 kernel by solving the

RKE problem 8.2 using the DSDP5 semidefinite solver (Benson et al., 2000).

Figure 4.1 shows the result of embedding the 200 objects into the space induced by the ker-

nel estimated with log10(λrke) = 0.5. Members of the α-chain sub-family are displayed as red

crosses, while members of the β-chain family are displayed as blue circles. This two-dimensional
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embedding was obtained by projecting the kernel matrix to its two leading eigenvectors. In fact, in

Figure 4.2 we can see that the two leading eigenvectors of K dominate its eigenspectrum.

By inspecting Figure 4.1, we can see that a linear classifier can achieve perfect classification of

these proteins. To prove this, we fit an Support Vector Machine spanned by the estimated kernel

(with log10(λrke) = 0.5, for example). To reduce the complexity of the SVM spanning space,

we make the kernel rank-deficient, and in effect embedding the proteins in a low-dimensional

Euclidean space. We determine this dimensionality of embedding by using the kernel’s eigen-

spectrum: we set all eigenvalues of K smaller than 1e−8 times the largest eigenvalue to zero and

embed the data in the space spanned by the remaining eigenvectors. For log10(λrke) = 0.5, we find

that the SVM is capable of classifying the data perfectly. The regularization parameter λsvm was

chosen using the GACV approximation of misclassification rate (Wahba et al., 2001).

Figure 4.3 shows the error rate of the estimated SVM as a function of the RKE regularization

parameter λrke derived using ten-fold cross-validation. Figure 4.4 shows the dimensionality of

embedding used for each SVM as a function of the regularization parameter. We can see that reg-

ularization parameter values λrke < 102 the RKE-SVM achieves perfect prediction. Furthermore,

for values close to λrke = 1, this prediction performance can be achieved using an embedding

dimensionality much smaller than n = 200.

4.3.2 Classification by Cellular Localization

Next, we apply Regularized Kernel Estimation and SVMs to a cellular localization protein

classification task. (Lanckriet et al., 2004b). Genome-wide location profiles of 106 yeast transcrip-

tion factors have recently been generated by Lee et al. (2002). These experiments provided for

each gene1 a measure of regulatory region occupancy (log ratio of the Ip-enriched versus control

signalled averaged over three replicate experiments) for each of the 106 transcription factors. As

a measure of dissimilarity we used the cosine angle measure, commonly employed in the cluster

analysis of the gene expression data, between pairs of genome-wide location profiles.

1Specifically, each identified open reading frame (ORF)
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The task is to classify each protein as ribosomal or not, that is, is it located in the cell’s ribo-

somes or elsewhere. This classification is known for 1040 of the 6112 proteins in the data set used

in Lanckriet et al. (2004b), of which 132 (13%) are classified as positive. We created a balanced

sample of size 264 such that half of the proteins in the sample are positive and half are negative.

Thus, this includes all the ribosomal proteins and a random sample of non-ribosomal proteins.

To use RKE for this task we sampled the occupancy dissimilarities as follows: for each protein

we randomly connect 40% percent of the remaining proteins in the relationship graph. Thus, only

about 40% of the distance information is used to create the RKE kernel.

We use a transductive learning setting where the RKE kernel is created using both training and

testing data. However, for each of the cross-validation folds, the SVM is estimated only using the

kernel submatrix for the training data, and prediction performance estimated on the held-out test

set. The SVM parameter was chosen using GACV (Wahba et al., 2001). As in the previous task,

we choose the embedding dimensionality by keeping eigenvalues that are greater than 10−8 times

the biggest eigenvalue. Given a value for λrke, we estimate a 264-by-264 kernel by solving the

RKE problem 8.2 using the DSDP5 semidefinite solver (Benson et al., 2000).

Figure 4.5 shows the test set error in this task as function of the λrke regularization parameter.

We see that although a relatively wide range of parameters show similar result, there is a region

where underperformance occurs. As opposed to the previous task, this points to the need of careful

tuning when using RKE for prediction.

4.4 Discussion

We have shown how the RKE framework can be used to successfully classify proteins in two

distinct protein classification tasks. Furthermore, we have shown the generality of the RKE frame-

work where two very different dissimilarity measures are used in each task: one based on sequence

information, the other on experimental transcription factor occupancy.
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Chapter 5

MPF Queries: Decision Support and Probabilistic Inference

5.1 Introduction

Recent proposals for managing uncertain information require the evaluation of probability mea-

sures defined over a large number of discrete random variables. The next three chapters present

MPF queries, a broad class of aggregate queries capable of expressing this probabilistic inference

task. By optimizing query evaluation in the MPF (Marginalize a Product Function) setting we

provide direct support for scalable probabilistic inference in database systems. Further, looking

beyond probabilistic inference, we define MPF queries in a general form that is useful for Decision

Support, and demonstrate this aspect through several illustrative queries.

The MPF setting is based on the observation that functions over discrete domains are naturally

represented as relations where an attribute (the value, or measure, of the function) is determined by

the remaining attributes (the inputs, or dimensions, to the function) via a Functional Dependency

(FD). We define these Functional Relations, and present an extended Relational Algebra to operate

on them. A view V can then be created in terms of a stylized join of a set of ‘local’ functional

relations such that V defines a joint function over the union of the domains of the ‘local’ functions.

MPF queries are a type of aggregate query that computes view V ’s joint function value in arbitrary

subsets of its domain:

select Vars, Agg(V[f]) from V group by Vars.

In the rest of this chapter, we outline the probabilistic inference problem and explain the con-

nection to MPF query evaluation, and illustrate the value of MPF queries for decision support.
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5.1.1 Probabilistic Inference as Query Evaluation

Consider a joint probability distribution P over discrete random variables A,B,C and D (see

Section 5.3 for an example). The probabilistic inference problem is to compute values of the joint

distribution, say P (A = a,B = b, C,D), or values from conditional distributions, P (A|B =

b, C = c,D = d) for example, or values from marginal distributions, for example P (A,B). All of

these computations are derived from the joint distribution P (A,B,C,D). For example, computing

the marginal distribution P (A,B) requires summing out variables C and D from the joint.

Since our variables are discrete we can use a relation to store the joint distribution with a tuple

for each combination of values ofA,B,C andD. The summing out operation required to compute

marginal P (A,B) can then be done using an aggregate query on this relation. However, the size

of the joint relation is exponential in the number of variables, making the probabilistic inference

problem potentially expensive.

If the distribution was “factored” (see Section 5.3 for specifics) the exponential size require-

ment could be alleviated by using multiple smaller relations. Existing work addresses how to derive

suitable factorizations (Heckerman, 1999), but that is not the focus of this paper; we concentrate

on the inference task.

Given factorized storage of the probability distribution, probabilistic inference still requires,

in principle, computing the complete joint before computing marginal distributions, where recon-

struction is done by multiplying distributions together. In relational terms, inference requires re-

constructing the full joint relation using joins and then computing an aggregate query. This chapter

addresses how to circumvent this requirement by casting probabilistic inference in the MPF setting,

that is, as aggregate query evaluation over views. We will see conditions under which queries can

be answered without complete reconstruction of the joint relation, thus making probabilistic infer-

ence more efficient. By optimizing query evaluation in a relational setting capable of expressing

probabilistic inference, we provide direct scalable support to large-scale probabilistic systems. For

a more complete discussion of Bayesian Networks and inference using MPF queries, see Section

5.3.2.
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Figure 5.1 A supply chain decision support schema. Entity relations are rectangles, Relationship
relations are diamonds. Attributes are ovals, with measure attributes shaded.

5.1.2 MPF Queries and Decision Support

So far, we have emphasized the relationship between the MPF setting and probabilistic infer-

ence. However, MPF queries can be used in a broader class of applications. Consider the enterprise

schema shown in Figure 5.1:

1) Contracts: stores terms for a part’s purchase from a supplier;

2) Warehouses: each warehouse is operated by a contractor and has an associated multiplicative

factor determining the storage overhead for parts;

3) Transporters: transporters entail an overhead for transporting a part;

4) Location: the quantity of each part sent to a warehouse;

5) Ctdeals: contractors may have special contracts with transporters which reduce the cost of

shipping to their warehouses when using that transporter.

Since contracts with suppliers, storage and shipping overheads, and deals between contractors and

transporters are not exclusively controlled by the company, it draws these pieces of information

from diverse sources and combines them to make decisions about supply chains.
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Total investment on each supply chain is given by the product of these base relations for a par-

ticular combination of dimension values. This can be computed by the following view:

create view invest(pid,sid,wid,cid,tid,inv) as

select pid, sid, wid, cid, tid,

(p price * w overhead * t overhead * qty * ct discount) as inv

from contracts c, warehouses w, transporters t, location l,ctdeals ct

where c.pid = l.pid and l.wid = w.wid ...

Now consider querying this view, not for a complete supply chain, but rather, only for each

part. For example, we may answer the question What is the minimum supply chain investment on

each part? by posing the MPF query:

select pid, min(inv) from invest group by pid

Several additional types of queries over this schema are natural: What is the cost of taking

warehouse w1 offline? What is the cost of taking warehouse w1 offline if, hypothetically, part p1

had a 10% lower price? See Section 5.2.2.

5.2 MPF Setting Definition

We now formalize the MPF query setting. First, we define functional relations:

Definition 5.1 Let s be a relation with schema {A1, . . . , Am, f} where f ∈ R. Relation s is a

functional relation (FR) if the Functional Dependency A1A2 · · ·Am → f holds. The attribute f

is referred to as the measure attribute of s.

We make several observations about FRs. First, any dependency of the form Ai → f can be

extended to the maximal FD in Definition 5.1 and is thus sufficient to define an FR. Second, we do

not assume relations contain the entire cross product of the domains of A1, . . . , Am, although this

is required in principle for probability measures. We refer to such relations as complete. Finally,

any relation can be considered an FR where f is implicit and assumed to take the value 1.

Functional relations can be combined using a stylized join to create functions with larger do-

mains. This join is defined with respect to a product operation on measure attributes:
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Definition 5.2 Let s1 and s2 be functional relations, the product join of s1 and s2 is defined as:

s1

∗
on s2 = πVar(s1)∪Var(s2),s1[f ]∗s2[f ](s1 on s2),

where Var(s) is the set of non-measure attributes of s.

This definition is clearer when expressed in SQL:

select A1,...,Am,(s1.f * s2.f) as f

from s1,s2

where s1.A1 = s2.A1,..., s1.Ak = s2.Ak

where {A1, . . . , Am} = Var(s1) ∪ Var(s2), and

{A1, . . . , Ak} = Var(s1) ∩ Var(s2).

Implicit in the Relational Algebra expression for product join are the assumptions that tables

define a unique measure, and that measure attributes are never included in the set of join conditions.

Note that the domain of the resulting joined function is the union of the domains of the operands,

and that the product join of two FRs is itself an FR.

We propose the following SQL extension for defining views based on the product join:

create mpfview r as

(select vars, measure = (* s1.f,s2.f,...,sn.f)

from s1, s2, ..., sn

where joinquals )

where the last argument in the select clause lists the measure attributes of base relations and the

multiplicative operation used in the product join. This simplifies syntax and makes explicit that a

single product operation is used in the product join.
For example, our decision support schema can be defined as:

create mpfview invest(pid,sid,wid,cid,tid,inv) as

select pid, sid, wid, cid, tid,

measure=(* p price, w overhead, t overhead, qty, ct discount) as inv

from contracts c, warehouses w, transporters t, location l,ctdeals ct

where c.pid = l.pid and l.wid = w.wid ...
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5.2.1 MPF Queries

We are now in position to define MPF queries.

Definition 5.3 MPF Queries. Given view definition r over base functional relations si, i =

1, 2, . . . , n such that r = s1

∗
on s2

∗
on · · ·

∗
on sn, compute

πX,AGG(r[f ])GroupByX(r)

where X ⊆
⋃n
i=1 Var(si), and AGG is an aggregate function. We refer to X as the query vari-

ables.

Note that the result of an MPF query is an FR, thus MPF queries may be used as subqueries

defining further MPF problems.

To clarify the definition, we have not specified the MPF setting at its full generality. FRs

may contain more than a single measure attribute as long as the required functional dependency

holds for each measure attribute. For simplicity of presentation, all examples of FRs we use will

contain a single measure attribute. Also, the requirement that the measure attribute f is real-valued

(f ∈ R) is not strictly necessary. However, f must take values from a set where a multiplicative

and an additive operation are defined in order to specify the product operation in product join and

the aggregate operation in the MPF query. For the real numbers we may, obviously, take × as the

multiplicative operation and +, min or max as the additive operation. Another example is the set

{0, 1} with logical ∧ and ∨ as the multiplicative and additive operations.

For the purposes of query evaluation, significant optimization is possible if operations are cho-

sen so that the multiplicative operation distributes with respect to the additive operation. This cor-

responds to the condition that the set from which f takes values is a commutative semi-ring (Aji

and McEliece, 2000; Kschischang et al., 2001). Both the real numbers and {0, 1} with their corre-

sponding operations given in the previous paragraph possess this property.
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5.2.2 MPF Query Forms

We can identify a number of useful MPF query variants that arise frequently. Using the schema

in Figure 5.1, we present templates and examples for variants in a decision support context. In the

following, we assume that r is as in Definition 5.3.

Basic: This is the query form used in the definition of MPF queries above:

select X,AGG(r.f) from r group by X

Example: What is the minimum investment on each part?

select pid, min(inv) from invest group by pid

Restricted answer set: Here we are only interested in a subset of a function’s measure as given

by specific values of the query variables. We add a where X=c clause to the Basic query above.

Example: How much would it cost for warehouse w1 to go off-line?

select wid, sum(inv) from invest where wid=w1

group by wid

Constrained domain: Here we compute the function’s measure for the query variables con-

ditioned on given values for other variables. We add a where Y=c clause to the Basic query with

Y 6∈ X . Example: How much money would each contractor lose if transporter t1 went off-line?

select cid, sum(inv) from invest where tid=t1

group by cid

The optimization schemes we present in Chapter 6 are for the three query types above. Of

course, there are other useful types of MPF queries. Future work might consider optimizing the

following types:

Constrained range: Here function values in the result are restricted. This is useful when only

values that satisfy a given threshold are required. This is accomplished by adding a having f<c

clause to the basic query.

The next two query types are of a hypothetical nature where alternate measure or domain values

are considered.
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Alternate measure: here the measure value of a given base relation is hypothetically updated.

For example, how much money would contractor c1 lose if warehouse w1 went off-line if, hypo-

thetically, part p1 was a different price?

Alternate domain: alternatively, variable values in base relations may be hypothetically up-

dated. For example, how much money would contractor c1 lose if warehouse w1 went off-line

under a hypothetical transfer of contractor c1’s deal with transporter t1 to transporter t2?

5.3 MPF Queries and Probabilistic Inference

Modeling and managing data with uncertainty has drawn considerable interest recently. A

number of models have been proposed by the Statistics and Machine Learning (Buntine, 1994;

Friedman et al., 1999; Heckerman et al., 2004; Singla and Domingos, 2005), and Database (Bur-

dick et al., 2005; Dalvi and Suciu, 2005, 2004; Fuhr and Rölleke, 1997) communities to define

probability distributions over relational domains. For example, the DAPER formulation (Hecker-

man et al., 2004) extends Entity-Relationship models to define classes of conditional independence

constraints and local distribution parameters.

5.3.1 Probabilistic Databases

Dalvi and Suciu (Dalvi and Suciu, 2004; Ré et al., 2006b), and Ré et al. (2006a,b) define a

representation for probabilistic databases (Fuhr and Rölleke, 1997), and present an approximate

procedure to compute the probability of query answers. They represent probabilistic relations as

what we have called functional relations, where each tuple is associated with a probability value.

Queries are posed over these functional relations, with the probability of each answer tuple given by

the probability of a boolean formula. Ré et al. (2006a) define a middleware solution to approximate

the probability of the corresponding boolean formula.

A significant optimization in their framework pushes evaluation of suitable subqueries to the re-

lational database engine. These subqueries are identical to MPF queries, that is, aggregate queries

over the product join of functional relations. Thus, their optimization is constrained by the engine’s

ability to process MPF queries. Our optimization algorithms in Chapter 6 allow for significantly
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more efficient processing of these subqueries than existing systems, thus improving the efficiency

of their middleware approximation method.

They specify two aggregates used in these subqueries: SUM, and PROD, where PROD(α, β) =

1−(1−α)(1−β). Optimization of the SUM case is handled directly by the algorithms we present,

but the distributivity assumptions we require for optimization (see Chapter 6) are violated by the

PROD aggregate, since PROD(αβ, αγ) 6= αPROD(β, γ). However, we may bound the non-

distributive PROD aggregate as follows:

αPROD(β, γ) ≤ PROD(αβ, αγ) ≤ 2αmax(β, γ).

We can compute each of the two bounds in the MPF setting, so optimization is possible. In cases

where this loss of precision is allowable, ranking applications for example, the gains of using the

MPF setting is significant due to its optimized evaluation.

5.3.2 Bayesian Networks

In general, we can use the MPF setting to represent discrete multivariate probability distribu-

tions that satisfy certain constraints. In this section, we show how MPF queries can be used to query

Bayesian Network (BN) models of uncertain data. BNs (Cowell et al., 1999; Jensen, 2001; Pearl,

1988) are widely-used probabilistic models that satisfy some conditional independence properties

that allow the distribution to be factored into local distributions over subsets of random variables.

To understand the intuition behind BNs, consider a probabilistic model over the cross product

of large discrete domains. A functional relation can represent this distribution but its size makes

its use infeasible. However, if the function was factored, we could use the MPF setting to express

the distribution using smaller local functional relations. For probability distributions, factorization

is possible if some conditional independence properties hold; a BN represents such properties

graphically.

Consider binary random variables A,B,C,D. A functional relation of size 24 can be used to

represent a joint probability distribution. If, however, a set of conditional independencies exists
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Figure 5.2 A simple Bayesian Network

such that

Pr(A,B,C,D) = Pr(A) Pr(B|A) Pr(C|A) Pr(D|B,C)

then the BN in Figure 5.2 may be used instead. For this admittedly small example, the gains of

factorization are not significant, but for a large number of large domains, factorization can yield a

significant size reduction. The joint distribution is specified by the MPF view:

create mpfview joint as (

select A,B,C,D, measure = (* tA.p, tB.p, tC.p, tD.p) as p

from tA, tB, tC, tD

where tA.A=tB.A and tA.A=tC.A ... )

The set of conditional independence properties that induce a factorization may be given by

domain knowledge, or estimated from data (Heckerman, 1999). Given the factorization, the local

function values themselves are estimated from data (Heckerman, 1999). In either case, counts from

data are required to derive these estimates. For data in multiple tables, where a join dependency

holds, the MPF setting can be used to compute the required counts.

After the estimation procedure computes the local functional relations we can use MPF queries

to infer exact values of marginal distributions. An example inference task is given by the MPF

query
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select C,SUM(p) from joint where A=0 group by C

which computes the marginal probability distribution of variable C when A = 0 is observed,

Pr(C|A = 0).

5.3.3 Discussion and Related Work

Wong (2001); Wong et al. (1995, 2003) address the probabilistic inference task in relational

terms and propose an extended relational model and algebra that expresses exactly this problem.

The MPF setting we present here is a generalization and reworking of their formulation. A major

benefit of framing this task in a relational setting is that existing and new techniques for efficient

query evaluation can then be used. This opportunity has not, to the best of our knowledge, been

investigated; our study of MPF query optimization in Chapters 6 and 7 is a first step in this direc-

tion.

To conclude, we have introduced the MPF class of queries and showed its value in a variety of

settings. Our work is an early step in synthesizing powerful ideas from database query evaluation

and probabilistic inference. A number of models have recently been proposed for defining proba-

bility distributions over relational domains, e.g., Plate Models (Buntine, 1994), PRMs (Friedman

et al., 1999), DAPER (Heckerman et al., 2004), and MLNs (Singla and Domingos, 2005). Ap-

plying MPF query optimization to directly support inference in such settings is a promising and

valuable next step.

Theoretical properties of MPF queries, for example, the complexity of deciding containment,

are intriguing. While general results for arbitrary aggregate queries exist, we think that the MPF

setting specifies a constrained class of queries that might allow for interesting and useful results.
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Chapter 6

Single MPF Query Optimization

Section 5.2 hinted at the optimization benefit possible when MPF views and queries are defined

over domains with operations chosen such that the multiplicative operation distributes with respect

to the additive operation. We develop this observation in this section. A generic algorithm has

been proposed for efficiently solving MPF problems (Aji and McEliece, 2000; Kschischang et al.,

2001) in non-relational settings. It makes use of this key distributive property to reduce the size

of function operands, thus making evaluation more efficient. We may cast this in relational terms

as follows: the Group By (‘additive’) operation distributes with the product join (‘multiplicative’)

operation so that Group By operator nodes can be pushed down into the join tree thus reducing the

size of join operands.

We study two algorithms and their variants that use the distributivity property to optimize MPF

query evaluation by pushing down Group By nodes into join trees: (CS) Chaudhuri and Shim’s

algorithm for optimizing aggregate queries (Chaudhuri and Shim, 1994, 1996); (CS+) our simple

extension of CS that yields significant gains over the original; (VE) the greedy heuristic Variable

Elimination algorithm (Zhang and Poole, 1996) proposed for probabilistic inference; and (VE+)

our extension to VE based on Chaudhuri and Shim’s algorithm that finds significantly better plans

than VE by being robust to heuristic choice. These algorithms optimize basic, restricted answer

and constrained domain MPF query types. To the best of our knowledge, this is the first method to

cast VE as a join tree transformation operation.

In this central section of the chapter, we will define and describe each of the optimization algo-

rithms; present conditions under which evaluation plans can be restricted to the linear class, thus
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Table 6.1 Example cardinalities and domain sizes

Table # tuples

contracts 100K

warehouses 5K

transporters 500

location 1M

ctdeals 500K

Variable # ids

part ids 100K

supplier ids 10K

warehouse ids 5K

contractor ids 1K

transporter ids 500

avoiding the extra overhead of searching over nonlinear plans1; we will characterize and compare

the plan spaces explored by each of the algorithms given and show that the plan space explored by

CS+ contains the space explored by VE; we will analyze the optimization time complexity of the

algorithms, and also give conditions based on schema characteristics where VE will have signifi-

cantly lower optimization time complexity than CS+; we will extend VE so that its plan space is

closer to the space of CS+ plans without adding much optimization overhead; and finally, we will

propose a cost-based ordering heuristic for Variable Elimination.

6.1 MPF Query Evaluation Algorithms

In this section, we will define the CS and VE algorithms along with our extensions. We make

use of the example schema in Figure 5.1 again, with Q1 as a running example:

Q1: select wid, SUM(inv) from invest group by wid;

and consider an instance with table cardinalities and variable domain sizes given in Table 6.1.

We need to define linear and nonlinear plans. In linear plans, every interior node in a join tree

has at least one leaf node as a child. Conversely, in nonlinear plans both children of interior nodes

may be interior nodes as well. Leaf nodes are base relations that appear in the query, whereas

interior nodes are intermediate relations that result from performing join or Group By operations.

1We define linear and nonlinear plans in Section 6.1.
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The CS Algorithm Chaudhuri and Shim (1994, 1996) define an optimization scheme for ag-

gregate queries that pushes Group By nodes into join trees. The CS algorithm explores the space

of linear plans using an extension of the dynamic programming optimization algorithm of Selinger

et al. (1979). They also define a condition that ensures the semantic correctness of the plan trans-

formation.

Algorithm 1 illustrates the CS procedure. As in Selinger’s dynamic programming algorithm,

joinplan() in line 2 finds the best linear plan that joins base relation rj to the optimal plan for

relation set Sj (optPlan(Sj)). However, the usual algorithm is modified so that line 3 finds the

best linear plan that joins rj to the optimal plan for relation set Sj , this time modified to include

a Group By node as its topmost node. Grouping in this added node is done on query variables

and variables appearing in a join condition on any relation not yet joined into Sj . This ensures

the semantic correctness of the plan transformation. The cheapest of these two candidate plans is

selected in line 4. The authors showed that this greedy-conservative heuristic produces a plan that

is no worse in terms of IO cost than the naı̈ve plan with a single Group By node at the root of the

join tree.

Algorithm 1 The CS optimization algorithm
1: for all rj, Sj such that Q′ = Sj ∪ {rj} do

2: q1j = joinplan(optPlan(Sj), rj)

3: q2j = joinplan(GroupBy(optPlan(Sj)), rj)

4: pj = minCosti(qij)

5: end for

6: optPlan(Q′) = minCostj(pj)

As defined, the CS procedure cannot evaluate MPF queries efficiently. It does not consider the

distributivity of Group By and functional join nodes since it assumes that aggregates are computed

on a single column and not on the result of a function of many columns. The resulting evaluation

plan would be as in Figure 6.1, same as the best plan without any Group By optimization.
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Figure 6.1 A CS plan for Q1
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Figure 6.3 A VE plan for Q1

The CS+ Algorithm We make a simple extension to the CS algorithm, denoted CS+, that pro-

duces much better plans. In the CS+ algorithm, joins are annotated as product joins and the dis-

tributive property of the aggregate and product join is verified. As in the CS algorithm, Group

By interior nodes must have as grouping variables both query variables and variables appearing

in any join condition on any relation not yet joined into the current subplan. This again ensures

the semantic correctness of the resulting plan. Figure 6.2 shows the CS+ plan for Q1. A Group

By node is added after the join of Location and Contracts since the subplan joining Warehouses is

cheaper.

The Nonlinear CS+ Algorithm We extend the CS+ procedure to consider nonlinear plans as

follows: (a) for relation set Sj we consider joining every relation set of size < j; (b) we change

joinplan() so that it returns the best nonlinear plan joining two relations; (c) instead of comparing

two plans we now compare four: one without any Group By nodes (corresponding to line 2);

another with a Group By on Sj (corresponding to line 3); another with a Group By on the operand

(say, s′) being joined to Sj; and finally, a plan with Group By nodes on both Sj and s′. The cheapest

of these four plans is selected. From this point forward, will refer to this nonlinear extension as

CS+.
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The VE Algorithm Variable Elimination (Zhang and Poole, 1996) is based on a purely func-

tional interpretation of MPF queries; our work is the first to apply VE to relational query optimiza-

tion. The domain of the function defined by the MPF view is reduced one variable at a time until

only the query variables remain. While this is an entirely different approach to query optimization,

not based on transformations between equivalent Relational Algebra expressions, we can cast it

in relational terms: to eliminate a variable, all the tables that include it are product-joined, and

the result is aggregated and grouped by the variables that have not been eliminated so far. Algo-

rithm 2 lists the VE algorithm. We denote the set of relations in S where variable vj appears as

rels(vj, S). So optPlan(rels(vj, S)) is the optimal plan found by the optimizer for joining the set

of relations where variable vj appears. We abuse notation slightly in line 9 where p denotes the

relation resulting from executing plan p of line 6.

Algorithm 2 The Variable Elimination Algorithm
1: Set S = {s1, s2, . . . , sn}

2: Set V = Var(r) \X

3: set p = null

4: while V 6= ∅ do

5: select vj ∈ V according to heuristic order

6: set p = GroupBy(optPlan(rels(vj , S)))

7: set V = V \ {vj}

8: remove relations containing vj from S

9: set S = S ∪ {p}

10: end while

Figure 6.3 shows the VE plan for Q1 with elimination order tid,pid,cid. The efficiency of

VE for query evaluation is determined by the variable elimination order (see Section 6.4). We

again require that grouping in interior nodes contain query variables and variables required for any

subsequent joins as grouping variables to ensure semantic correctness of the resulting plans. In VE

this is satisfied by definition since query variables are not candidates for elimination and variables
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are candidates for elimination as long as there is a relation in the current set that includes it in a

join condition.

6.2 MPF Optimization Plan Spaces

6.2.1 Nonlinear MPF Query Evaluation

Including nonlinear plans in the space searched by an optimization algorithm for MPF queries

is essential since there are join operand reductions available to these plans that are not available

to linear plans. When query variables are of small domain, but appear in large tables, this is a

significant advantage. The example plan in Figure 6.2 illustrates this point. Also note that the

elimination order in Figure 6.3 induces a nonlinear join order. In fact, an advantage of VE is that

it produces nonlinear plans with, usually, small optimization time overhead.

For an MPF query on variable X we can, conservatively, determine if a linear plan can effi-

ciently evaluate it. We can check this using an expression that depends on the domain size of X ,

σX = |X|, and the size of the smallest base relation containing X , σ̂X = mins∈rels(X) |s|. Both of

these statistics are readily available in the catalog of RDBMs systems. To see the intuition behind

this test, consider the following example: X occurs in only two base relations s1 and s2, where

|s1| > |s2|, thus σ̂X = |s2|. A linear plan must, at best, join s2 to an intermediate relation s′ of

size σX resulting from a join or Group By node where s1 is already included. On the other hand,

a nonlinear plan is able to reduce s2 to size σX before joining to s′. Under a simple cost model

where joining R and S costs |R||S| and computing an aggregate on R costs |R| log |R|, a linear

plan is admissible if the following inequality holds:

σ2
X + σ̂X log σ̂X ≥ σX σ̂X . (6.1)

6.2.2 Plan Spaces

We now turn to a characterization of the plan spaces explored by nonlinear CS+ and VE.
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Definition 6.1 (Evaluation Plan Space P) Denote as P the space of all nonlinear semantically

correct evaluation plans where either Group By or join nodes are interior nodes, and are equivalent

to a plan with only join interior nodes and a single Group By node at the root.

CS+ performs a complete (but bounded) search of nonlinear join orders using dynamic pro-

gramming with a local greedy heuristic that adds interior Group By nodes.

Definition 6.2 (CS+ Plan Space P(CS+)) Let p ∈ P have the following property: if a single

interior Group By node is removed, the cost of the subplan rooted at its parent node is greater. We

define P(CS+) to be the set of all plans in P that satisfy this property.

As we saw before, CS+ yields a plan that is no worse than the plan with a single Group By at the

root.

Definition 6.3 (VE Plan Space P(V E)) Let p ∈P have the following properties for every non-

query variable v: 1) a Group By node immediately follows the join node closest to the root where

v appears as a join condition, and 2) all joins where v appears as a join condition are contiguous.

We define P(V E) as the set of all plans in P that satisfy these properties.

VE does not guarantee optimality due to its greedy heuristic search, and it is known that finding

the variable ordering that yields the minimum cost plan is NP-complete in the number of variables.

Theorem 6.4 characterizes these plan spaces. We say that p ∈P(A) if optimization algorithm

A either computes its cost, or can guarantee that there exists a plan p′ ∈ P(A) that is cheaper

than p. Although CS+ uses dynamic programming, its greedy heuristic for adding Group By nodes

makes its search through P incomplete. Not surprisingly, the plan space searched by VE is also

incomplete. However, we see that the plan space searched by CS+ includes the plan space searched

by VE. That is, CS+ will consider the the minimum cost plan returned by VE for a given ordering.

Theorem 6.4 [Inclusion Relationships] Using the notation above, we have:

P ⊃P(CS+) ⊃P(V E).
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To prove this theorem, we need the following Lemma:

Lemma 6.5 Consider relations Sn = {r1, . . . , rn} where variable v only appears in rk. Let

S ′n = {r1, . . . ,GroupBy(rk), . . . , rn}.

For the CS+ algorithm, the following holds: for each output tuple ordering, Cost(optPlan(Sn)) ≤

Cost(optPlan(S ′n)).

Proof. By induction on n. If n = 2, the Lemma follows since the plans are compared directly

in line 4 of Algorithm 1. Now assume Lemma is true for m ≤ n − 1. If rk = rn then the

Lemma follows since, again, the plans are compared directly in line 4 of Algorithm 1. Other-

wise, if rk 6= rn then rk ∈ Sn−1 we have by the inductive hypothesis Cost(optPlan(Sn−1)) ≤

Cost(optPlan(S ′n−1)) for each tuple ordering of Sn−1 so the Lemma follows.

Proof. (Theorem 6.4)

(P(CS+) ⊆ P) This follows by definition of CS+ and the semantic correctness of its plan

transformation.

(P(CS+) 6= P) By the greedy heuristic, any plan p′ ∈ P extending the plan not chosen in

line 4 of Algorithm 1 is not included in P(CS+). However, no guarantee is given that p′ is more

expensive than the plans extending the least expensive plan of line 4.

(P(V E) ⊆ P(CS+)) Let p be the best VE plan for elimination order v1, . . . , vn. We prove

this statement by induction on n. If n = 1, the statement holds trivially. Now assume the statement

is true for m ≤ n − 1 and consider variables vm and vn and Sm = rels(vm, S). By the inductive

hypothesis we have that the subplan in p that eliminates vm is in P(CS+). But, since vm only

appears in the relation resulting from optPlan(Sm), by Lemma 6.5 we have that the subplan in p

eliminating vn is in P(CS+) as well. Thus p ∈P(CS+).

(P(V E) 6= P(CS+)) Consider a plan p ∈ P(V E) for a variable ordering where v1 is

preceded by v2 but rels(v1) ⊆ rels(v2). In this case, VE does not consider adding Group By nodes

to eliminate v1 in the subplan that eliminates v2, but there exists a plan p′ ∈P(CS+) that attempts

to add a Group By node to ‘eliminate’ v1 once rels(v1) are joined in p. Thus p′ 6∈P(V E).
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6.2.3 Extending the Variable Elimination Plan Space

We saw in the previous Section that the plan space considered by VE is a subset of the plan

space considered by CS+. In this section, we extend VE to narrow this gap by delaying the elimi-

nation of variables if that results in cheaper plans and by pushing Group By nodes into elimination

sub-plans. We use Functional Dependency information to implement the delay strategy, and also

use cost-based local decisions similar to those used by the CS+ algorithm to implement both the

delay and pushing strategies.

As defined, VE considers all variables as candidates for elimination; however, the elimination

of some variables might have no effect, that is, the result of Group By is the same as projection.

In other words there is exactly one tuple for each group in the Group By clause. The following

property captures this:

Proposition 6.6 Let r be an MPF view over base relations s1, . . . , sn, and Y ∈ Var(r). If

for each i, 1 ≤ i ≤ n an FD Xi → si[f ] holds where Xi ⊆ Var(si) and Y 6∈ Xi, then

GroupByVar(r)\Y (r) = πVar(r)\Y (r).

Proof. First, we note that for any functional relation s with XY = Var(s) where the FD X → s[f ]

holds, then GroupByX′(s) = πX′(s) for all X ′ ⊇ X since the FD implies that there is only one

row per value of X ′. By the condition that FD’s Xi → si[f ] hold, we have that ∪iXi → r[f ] holds.

That means we can partition Var(r) into ∪iXi and Z with Y ∈ Z and the Proposition follows.

A sufficient condition for Proposition 6.6 to apply is that primary keys are given for each base

relation where Y is not part of any key. Furthermore, this Proposition holds for any set of relations,

so in any iteration of the VE algorithm, if a variable satisfies the Proposition for the current set

of relations, that variable can be removed from the set of elimination candidates. Applying this

Proposition has the effect of avoiding the addition of unnecessary Group By nodes.

In the absence of FD information, we present an extension to Variable Elimination that uses

cost-estimation to both delay variable elimination and push Group By nodes into elimination sub-

plan join trees.
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The VE+ Algorithm Algorithm 2 requires two changes: 1) in line 6 we set p = optPlan(rels(vj, S))

to potentially delay elimination to later iterations of the algorithm, and 2) we assume that the func-

tion optPlan() uses the local greedy conservative heuristic of CS+ to push Group By nodes into

elimination subplan join trees. The first modification removes the Group By node in line 6 which

eliminates the variable chosen at the current iteration. This is done so that the greedy heuristic of

the second modification (from the CS algorithm) is used to decide on the addition of this Group

By node if it yields a locally better plan.

These additions have the effect of extending P(V E) as follows:

Definition 6.7 (VE+ Plan Space P(V E+)) Let p ∈ P satisfy the following conditions: 1) if

a single interior Group By node is removed, the cost of the subplan rooted at its parent node is

greater; and 2) for every non-query variable v all join nodes where v appears as a join condition

are either contiguous or separated by only Group By nodes; that is, no join node where v does not

appear as a join condition separates them. We define P(V E+) as the set of all plans that satisfy

these properties.

Now we may update our inclusion relationship:

Theorem 6.8 (Extended VE Space) Using the notation above, we have:

P(V E) ⊂P(V E+) ⊂P(CS+).

Proof. The proof is similar to that of Theorem 6.4.

(P(V E) ⊆ P(V E+)) Given an elimination order, the same proof for CS+ and V E shows

this case.

(P(V E) 6= P(V E+)) Consider an elimination order where vi follows vj but rels(vi) ⊂

rels(vj), V E+ considers adding Group By nodes to eliminate vi while creating the plan for

rels(vj), whereas V E does not. This is the same argument given above for V E and CS+.

(P(V E+) ⊆P(CS+)) The proof for this is the same as the proof of P(V E) ⊆P(CS+).

(P(V E+) 6= P(CS+)) The issue here is that V E+ only considers plans where the joins

for a given variable are contiguous, whereas CS+ does not follow that constraint. In the presence
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... N tables

Figure 6.4 An example star MPF view.

of indices and alternative access methods, contiguous joins are not necessarily optimal, therefore

CS+ is able to produce plans that are not reachable to V E+.

Although there is still a gap between P(V E+) and

P(CS+) corresponding to plans where join nodes for a variable are not necessarily contiguous,

our experimental results in Section 6.5 show that CS+ rarely produces plans that are not reachable

by V E+.

6.3 Optimization Complexity

Another dimension of comparison between these procedures is time required to find optimum

plans. Since search for optimal sub-plans in VE only occurs in line 6, for views where variables

exhibit low connectivity, that is, variables appear only in a small subset of base relations, the cost

of finding a VE plan is low.

As opposed to CS+, VE optimization time can be insensitive to variables that have high con-

nectivity if average connectivity is low. Consider the star schema in Figure 6.4. This is the classic

example where the optimization time of Selinger-type dynamic programming procedures degrades.

In fact, the optimization time complexity for CS+ isO(N2N) forN relations. For VE with a proper

ordering heuristic, only two relations have to be joined at a time for each variable, yielding opti-

mization time complexity of O(M) for M variables.

Theorem 6.9 summarizes these findings. We refer to an ordering heuristic for VE as proper if

it orders variables by connectivity. Of course, while this guarantees good performance in terms of

optimization time, it does not guarantee good performance in terms of query evaluation time since

the resulting plan with a ‘proper’ heuristic might be sub-optimum.
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Theorem 6.9 (Optimization Time Complexity) Let

S be average variable connectivity, let M be the number of variables, and N the number of tables.

The worst-case optimization time complexity of VE with a proper heuristic computable in linear

time is O(MS2S). The worst-case optimization time complexity of CS+ is O(N2N).

Proof. The CS+ result is the standard complexity result for Salinger-type dynamic programming

algorithms. For VE, a proper heuristic chooses a variable vj in line 5 of Algorithm 2 where, on

average, |rels(vj)| = S. Finding a plan for these tables in line 6 takes O(S2S). At worst, this is

done M times, once for each variable.

6.4 Elimination Heuristics

We now define statistics to decide heuristic variable elimination orderings.

Definition 6.10 Define the degree and width statistics for variable v as:

1. degree(v) = |GroupBy(optPlan(rels(v, S)))|;

2. width(v) = |optPlan(rels(v, S))|.

The degree heuristic orders variables increasingly according to estimates of the size of relation

p in line 6 of Algorithm 2, while the width heuristic orders variables increasingly according to

estimates of the size of p without its topmost Group By node.

In the VE literature (El Fattah and Dechter, 1996) these statistics are estimated by the domain

sizes of variables. For example, the degree heuristic computes the size of the cross-product of the

domains of variables in p. This is an effect of the fact that the cost metric minimized in VE, as

defined in the MPF literature (Aji and McEliece, 2000; Kschischang et al., 2001), is the number

of addition and multiplication operations used in evaluating the query. This is a valid cost metric

in that setting since operands are assumed to be memory-resident, and more significantly, single

algorithms are assumed to implement each of the multiplication and summation operations. These

are not valid assumptions in the relational case where there are multiple algorithms to implement

join (multiplication) and aggregation (summation), and the choice of algorithm is based on the
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cost of accessing disk-resident operands. Thus, relational cardinality estimates are used in our

implementation to compute these statistics.

The degree heuristic greedily minimizes the size of join operands higher in the join tree. How-

ever, there are cases where executing the plan that yields these small operands is costly, whereas

plans that use a different order are less expensive. In this case, looking at estimates of the cost of

eliminating a variable as an ordering heuristic is sensible:

Definition 6.11 Define the elimination cost statistic for variable v as

elimcost(v) = Cost(optPlan(rels(v, S)).

A straightforward way of implementing the elimination cost heuristic is to call the query op-

timizer on the set of relations that need to be joined to estimate the cost of the plan required to

eliminate a variable. However, for this heuristic to be computed efficiently, both average variable

connectivity and maximum variable connectivity must be much lower than the number of tables,

otherwise Variable Elimination would exhibit the same optimization time complexity as CS+.

While width and elimination cost estimate the cost of eliminating variables, the degree heuristic

seeks to minimize the cost of future variable eliminations. There is a trade-off between greedily

minimizing the cost of the current elimination subplan vs. minimizing the cost of subsequent elim-

ination sub-plans. To address this trade-off we combine the degree and either width or elimination

cost heuristics by computing the mean of their normalized values. We study the effect of these

heuristics and their combinations in Section 6.5.3.

To summarize the contributions of this central section: 1) we presented a necessary condition

under which evaluation plans can be restricted to the linear class; 2) we characterized the plan

spaces explored by each of the algorithms given; 3) we extended VE so that its plan space is closer

to the space of CS+ plans without adding much optimization overhead; 4) we analyzed the opti-

mization time complexity of both algorithms, and gave conditions based on schema characteristics

where one would be better than the other; and 5) we proposed a cost-based ordering heuristic for

Variable Elimination.
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6.5 Experimental Results

We now present experimental results illustrating the discussion in Sections 6.2– 6.4. We mod-

ified the PostgreSQL 8.1 optimizer to implement each algorithm at the server (not middleware)

level. The extensions in Section 5.2 were added to the PostgreSQL language. Experiments were

performed on a 3 GHz Pentium IV Linux desktop with 2.4 GB of RAM and 38 GB of hard disk

space. In most of these experiments, we do not compare the CS algorithm since its performance

is substantially worse and distorts the scale of the plots, making it harder to see the relative per-

formance of the other (much better) algorithms. However, the results in Section 6.5.4 make this

comparison and illustrate the significant difference in performance.

We use two testbeds for our experiments. The first is the decision support schema of Figure 5.1

for which we create a number of instances at random. The Contracts, Warehouses and Trans-

porters relations were populated according to a Scale parameter, whereas Location and CTdeals

were populated according to Density parameters. The cardinalities and domain sizes in Table 6.1

correspond to Scale = 100, Density(CTDeals) = 100% and Density(Location) = 20%. These

are default settings unless specified otherwise. Non-key attributes in Contracts and Warehouses,

compound keys in Location and CTdeals and all measure attributes are populated uniformly at

random.

The second testbed consists of three variants of the Schema in Figure 6.4: a) a star view exactly

like Figure 6.4, b) a linear view where the variable connecting all tables is removed, and c) a

‘multistar’ schema where instead of a single common variable there are multiple common variables

each connecting to a distinct set of three tables in the linear part. The number of tables N = 5,

all variables have domain size 10 and all functional relations are complete. Measure attributes are

populated uniformly at random from the interval [0, 1].

This section is organized as follows. First, in Section 6.5.1 we test the benefit of nonlinear

evaluation of MPF queries and the linearity condition of Section 6.2.1. We will see that nonlinear

evaluation performs better than linear evaluation except when linear plans are admissible as given

by the linearity condition. In Section 6.5.2 shows how the extension of the Variable Elimination
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algorithm given in Section 6.2.3 benefits evaluation. We will see that VE+ with the degree heuris-

tic finds the optimal CS+ plan, while never finding a plan that is worse than VE. Section 6.5.3

illustrates the effect of elimination heuristics for Variable Elimination. We will see that schema

characteristics are the main determinant of performance of each heuristic. However, we will also

see that VE+ is robust to heuristic choice and is able to find near-optimal plans for all three heuris-

tics we have defined. Finally, Section 6.5.4 tests the trade-off between optimization complexity and

plan quality in each of the algorithms presented. We will see that all algorithms proposed produce

better quality plans than existing systems while, in some cases, not adding significant optimization

time. Furthermore, we will also see that schema characteristics are the main determinants of both

quality and planning time for these algorithms.

6.5.1 Nonlinear Evaluation

Section 6.2.1 showed the benefit of nonlinear plans for MPF query evaluation. The experiment

in Figure 6.5 illustrates how the plan linearity condition is applied. On our first testbed we run two

queries:

Q1:select cid, SUM(inv) from invest group by cid;

Q2:select tid, SUM(inv) from invest group by tid;

We plot evaluation time as the Density(CTdeals) parameter is increased. For Q1, we see that

as density increases nonlinear plans execute faster, whereas for Q2, a linear plan is optimal for all

densities. Since the nonlinear version of CS+ also considers linear plans, the Q2 running times

for both plans coincide. For Q1, we have that σcid = 1000 and σ̂cid = 5000, so the inequality in

Eq. 6.1 does not hold, whereas for Q2, we have σtid = σ̂tid = 500 which makes the inequality hold

showing the applicability of the linearity condition.

6.5.2 Extended Variable Elimination Space

Section 6.2.3 showed how to extend the VE plan space closer to that of nonlinear CS+. Fig-

ure 6.6 compares the resulting plan quality for CS+ and VE with the degree heuristic with and
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Figure 6.6 VE Extended Space Experiment

without the space extension. We ran the following three queries as the Scale parameter is in-

creased:

Q1:select cid, SUM(inv) from invest group by cid;

Q2:select sid, SUM(inv) from invest group by sid;

Q3:select wid, SUM(inv) from invest group by wid;

For Q1, the degree heuristic produced the optimal CS+ nonlinear plan without the VE exten-

sion. For Q2, the degree heuristic produced a suboptimal plan, but with the space extension we

obtain the optimal plan. Q3 is a different case where we have that the degree heuristic is not able

to find the optimal plan even with the extended space. The VE+ extension to VE guarantees that

we find a plan no worse than the plan obtained by VE without the extension; this is reflected in the

results shown here.

6.5.3 Elimination Heuristics

We now show experimental results on the effect of ordering heuristic on plan quality for Vari-

able Elimination. Using our first testbed, we run two queries and plot their running time as a

function of the Scale parameter:

Q1:select cid, SUM(inv) from invest group by cid;

Q2:select pid, SUM(inv) from invest group by pid;

For Q1, the width heuristic yields a plan worse than both degree and elimination cost. Interest-

ingly, width can be seen as an estimate of elimination cost, whereas degree seeks to minimize join
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Figure 6.7 Ordering Heuristics Experiment

operands, or, equivalently, minimize the cost of future variable eliminations. For Q2, all heuristics

derived the same plan.

Table 6.2 summarizes another experiment on order heuristics using our second testbed. A query

on the first variable in the linear section was run on each schema. For each of the degree, width

and elimination cost heuristics described in Section 6.4 we ran both the original VE algorithm and

its extended space version described in Section 6.2.3. We implement the elimination cost heuristic

using an overestimate: we fix a linear join ordering and allow choice of access paths and join

operator algorithms. We also include results for combinations of the degree and width and degree

and elimination cost heuristics2. We report the cost of the plan selected by the nonlinear CS+

algorithm, which is optimal in the plan space considered.

We see that for the star schema, the width heuristic performs best. This is not surprising since

the degree heuristic will select the common variable first since after joining all of its corresponding

tables, all but the query variable can be eliminated and the resulting relation is small (10 tuples).

This requires joining all base tables, thus no Group By optimization is done. However, we see

that by combining the degree and width heuristics we are able to produce a much better plan than

degree but only slightly worse than width. The elimination cost heuristic performs better than the

degree heuristic, but due to its overestimate, does not perform as well as the width heuristic. The

difference in performance lessens as maximum variable connectivity drops.

2Combinations are implemented by normalizing each estimate and multiplying the normalized values
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Table 6.2 Ordering Heuristics Experiment Result

Ordering star multistar linear

Nonlinear CS+ 429.62 363.02 21.23

VE(deg) 240225.15 843.84 34.57

VE(deg) ext. 429.62 363.02 21.23

VE(width) 705.03 593.43 34.57

VE(width) ext. 429.62 363.02 21.23

VE(elim cost) 1045.44 936.34 73.78

VE(elim cost) ext. 429.62 363.02 21.23

VE(deg & width) 950.44 843.84 34.57

VE(deg & width) ext. 429.62 363.02 21.23

VE(deg & elim cost) 240225.15 843.84 34.57

VE(deg & elim cost) ext. 429.62 363.02 21.23
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Table 6.3 Random Heuristic Experiment Result

Schema VE(rand) VE(rand) ext.

star 30830.42± 1470.78 770.78± 5.60

multistar 11730.35± 298.86 4559.58± 149.03

linear 72.04± 0.29 51.78± 0.36

Interestingly, for all schemas, the extended VE algorithm with any heuristic produces optimal

plans. This might indicate that the choice of elimination ordering becomes irrelevant when the

extended version of VE is used. To study this phenomenon we implemented a heuristic that selects

variables to eliminate at random. We ran the same query ten times using the random heuristic with

and without the space extension. Table 6.3 reports the result. The cost displayed is the mean of the

10 runs and an estimated 95% confidence interval around the mean. We see that the minimum cost

is not within the confidence interval in either case, which suggests that elimination ordering is still

significant in the extended plan space version of VE.

6.5.4 Optimization Cost

The following experiment illustrates the trade-off between plan quality and optimization time

of the algorithms. For each view in our second testbed (with N = 7), we query all variables in

the linear part. In Figure 6.8 we plot the average estimated cost of evaluating the query against the

average time required to derive the execution plan. Points closer to the origin are best.

We first note significant gains provided by the algorithms proposed here compared to the CS

algorithm. Next we note that nonlinear plans provide gains of around one order of magnitude

compared to linear plans. Variable Elimination with the degree heuristic performs better when

maximum variable connectivity is low, but still achieves quality plans when considering the ex-

tended space. The width and elimination cost heuristics are not affected by maximum variable

connectivity indicating that their performance is controlled by average connectivity. Finally we

note the lower optimization time, in general, for VE compared to nonlinear CS+.
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6.6 Conclusion

In this chapter, we have defined and described the CS+ and VE single MPF query algorithms;

we have presented conditions under which evaluation plans can be restricted to the linear class thus

avoiding the extra overhead of searching over nonlinear plans; we have characterized and compared

the plan spaces explored by each of the algorithms given and shown that the plan space explored

by CS+ contains the space explored by VE; we have analyze the optimization time complexity

of the algorithms, and also given conditions based on schema characteristics where VE will have

significantly lower optimization time complexity than CS+; we have extended VE so that its plan

space is closer to the space of CS+ plans without adding much optimization overhead; and finally,

we have proposed a cost-based ordering heuristic for Variable Elimination. In the next chapter we

present optimization techniques for anticipated workloads of MPF queries.
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Chapter 7

Optimizing MPF Query Workloads: View Materialization Strate-
gies for Probabilistic Inference

7.1 Introduction

In the previous Chapter, we presented methods for optimizing the evaluation of MPF queries.

These methods extend existing database optimization techniques for aggregate queries to the MPF

setting. In particular, we showed how a modification to the algorithm of Chaudhuri and Shim

(1994, 1996) for optimizing aggregate queries yields significant gains over evaluation of MPF

queries in current systems. We also extended existing probabilistic inference techniques such as

Variable Elimination to develop novel optimization techniques for MPF queries. In this chapter,

we extend our techniques to address the optimization of expected MPF query workloads.

In particular, we present the MPF-cache Algorithm (Algorithm 3) which extends our methods

for optimizing single MPF queries using ideas from Junction Tree and Belief Propagation (Aji and

McEliece, 2000). The MPF-cache Algorithm creates a cache of materialized views which can be

used to evaluate workload queries directly, that is, without joining any other relations. Extensions

to known methods occur along two related directions:

1. We define and incorporate a workload objective to our single query optimization techniques.

This allows the search along plan space carried out by our algorithms to try to minimize a

cost-based objective derived from an expected MPF query workload

2. We use the Junction Tree property in order to ensure that the caches produced are correct, that

is, can be used to answer workload queries correctly. However, as opposed to the classical
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formulation of the Junction Tree algorithm, we attempt to minimize a cost-based workload

objective.

In this chapter we provide a proof that caches produced by the MPF-cache algorithm are in fact

correct. We also outline how the workload objective is derived and used to guide search for plans

that minimize the evaluation of anticipated query workloads.

7.2 MPF Query Workload Optimization

MPF queries are stylized aggregate queries that follow a strict syntax. This implies that work-

loads of MPF queries have a common structure that we want to exploit for efficient evaluation.

In this section we describe an algorithm that creates a cache of materialized views which exploits

these relationships to optimize the evaluation time of an expected query workload.

We define an expected MPF query workload as a set of basic, restricted-answer, or restricted-

domain MPF queries (see Chapter 5), each associated with a probability of being issued by an

user. Formally, given an MPF view definition r = s1

∗
on · · ·

∗
on sn, we define a workload Wr =

(Q,P ) as a set of MPF queries Q = {q1, . . . , qn}, and an associated probability distribution P =

{p1, . . . , pn} over Q where pi ≥ 0 and
∑n

i=1 pi = 1.

To ensure correctness of query evaluation with respect to a cache of materialized views, we

constrain the cache to satisfy the following invariant:

Definition 7.1 A set of functional relations S satisfies the workload correctness invariant if for at

least one functional relation s ∈ S that includes Xi as a variable, computing an MPF query q on

Xi using s yields the same result as evaluating q over joint view r.

MPF Workload Problem We can now define the MPF Workload Problem: given an MPF query

workload Wr as described above, build a cache S of materialized views satisfying the invariant in

Definition 7.1, such that the following objective is minimized:

C (Wr, S) = EP cost(Q(q, S)) + λC(S) (7.1)
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where C(S) is the cost of materializing cache S, λ is a trade-off parameter that we assume is set

by the user, and cost(Q(q, S)) is the cost of evaluating query q using cache S. Expectation is taken

over probability distribution P .

To build S so that it satisfies the invariant of Definition 7.1, we extend the Junction Tree and

Belief Propagation algorithms (Aji and McEliece, 2000). We first modify the view r if it does not

define an acyclic schema as in the Junction Tree algorithm. Then each of the resulting relations is

updated in a manner similar to Belief Propagation (BP), a message passing algorithm that gathers

in each local function information about the joint function. After the message passing algorithm

is completed, each relation will now satisfy the correctness invariant in Definition 7.1. See Sec-

tion 7.4 for a discussion of how the BP and JT algorithms are formulated in the relational setting.

However, we cast this as an optimization problem where an objective based on the evaluation of a

query workload is minimized.

7.2.1 The MPF-cache Algorithm

In this section we introduce the MPF-cache Algorithm (Algorithm 3) for MPF query workload

optimization. MPF-cache first creates a plan p for the MPF query:

select AGG(inv) from r;

where AGG is a suitable aggregate. While executing plan p, MPF-cache materializes and

includes in cache S some intermediate relations that precede Group By nodes. At this point, the

resulting relation from plan p contains information about the complete joint functional view r,

which has to be propagated to the relations in cache S.

The following semijoin operation extends the product join and is used in the algorithm for the

propagation step.

Definition 7.2 Let U = Var(t) ∩ Var(s), define update semijoin as

tn s = t
∗
on (GroupByU,SUM(s[f ])(s))

÷
on (GroupByU,SUM(t[f ])(t)),
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where
÷
on is defined exactly like product join, but uses the division operation instead of the product

operation.

This operation is similar to the classical semi-join operation but uses aggregation instead of

projection to reduce operands with respect to common variable subsets.

Algorithm 3 The MPF-cache Optimization Scheme
Output:Set of cached relations that satisfy the correctness invariant

1: Create a no-query-variable single query plan (Algorithm 1 or 2)

2: Select tables that precede a Group By node to cache, say t1, . . . , tk

3: for all tj , j = k, . . . , 1 do

4: for all ti, such that j > i and GroupBy(ti) was used to create tj do

5: compute ti n tj

6: end for

7: end for

Example 7.3 As an example, consider the VE plan of Figure 6.3. Cache S will then contain

three tables t1(sid, pid, wid), t2(cid, tid) and t3(cid, wid) corresponding to relations that precede

a Group By node. The propagation in steps 3–7 of Algorithm 3 requires the operations t1 n t3 and

t2n t3. As we will see, the materialized views resulting from this algorithm satisfy the correctness

invariant, thus evaluating Q1 on t2 gives the correct answer.

Theorem 7.4 (Correctness of MPF-cache) The set S of materialized tables in MPF-cache (Al-

gorithm 3) satisfies the correctness invariant of Definition 7.1

Proof of this theorem is given as Section 7.4.

As defined so far, it only considers workloads of basic and restricted-answer queries, but we

discuss restricted-domain queries later.

7.2.2 Minimizing the Workload Objective

Having ensured the correctness of the MPF-cache algorithm, we turn to the problem of esti-

mating and minimizing the query workload objective. Given a plan p, the MPF-cache algorithm

takes the set of relations that precede a Group By node in p as the complete cache of materialized
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views S. However, only a subset T ⊆ S of views need to be materialized to evaluate a particular

workload. In example 7.3, if the workload only queries variables sid and cid, it is sufficient to

materialize t1 and t2 only.

Thus, we have two dimensions in which to minimize the workload objective of Equation 7.1:

selection of the plan p from which the complete cache S is induced, and choosing a subset T ⊆ S

as the final cache. In this section we discuss how we estimate the workload objective, and how it

is minimized in the context of the CS+ single-query optimization algorithm with respect to these

two minimization dimensions.

The single-query CS+ algorithm performs a bounded search over the space of candidate plans

to find the plan that minimizes a cost function based on the evaluation of a single query. We extend

the CS+ algorithm by taking the workload objective as the cost function to minimize in the CS+

search algorithm.

Given a candidate plan p and its induced cache S, we find a subset T ⊆ S that minimizes our

estimate of the workload objective. We momentarily delay discussion of how to select subset T

and concentrate on how to estimate the workload objective.

To calculate construction time C(S), we must take into account the following: 1) the cost of

executing plan p, 2) the cost of materializing T , and 3) the cost of the propagation operations in

steps 3–7 of the MPF-cache algorithm. 1 and 3 can be readily estimate from statistics kept in the

DBMS catalog. We will estimate the cost of materializing T as the cost of writing to disk each of

its relations.

Once cache T is materialized, evaluating a query q ∈ Q requires computing an aggregate on

a proper relation t ∈ T . Therefore, we estimate query evaluation cost for query q with respect to

table t as

cost(Q(q, t)) =

 |t| if t is sorted by Xq

|t| log |t| otherwise
, (7.2)

where Xq are the query variables in query q. Expected query evaluation time is then

EP cost(Q(q, T )) =
n∑
i=1

pi min
t∈Ti

cost(Q(qi, t)),

where Ti ⊆ T is the set of relations that may be used to evaluate query qi.
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The problem of selecting cache subset T ⊆ S that minimizes the workload objective is NP-

hard 1. We use a greedy procedure to create approximately optimal assignments: set T = S and

consider removing each relation ti ∈ T in turn, if the workload objective for, say, subset T \ ti is

lower than that for T set T = T \ ti and repeat until the objective can not be improved. Of course,

subsets considered must contain relations such that the workload Q can be evaluated.

Example 7.5 Consider a workload where Q1 is posed with probability p1 and the following query:

Q2: select tid, SUM(inv) from invest group by tid;

is posed with probability p2 = 1−p1. For the plan in Figure 6.3 S is as in Example 7.3. Assume

that for this plan tables t1 and t2 are not sorted and table t3 is sorted on wid. The assignment

procedure above sets T = {t2, t3} since Q1 can be evaluated using t3 and thus t1 need not be

materialized. Expected query evaluation time is then p1|t3|+ p2|t2| log |t2|.

7.2.3 Restricted Domain MPF Queries

We can add restricted domain queries to workloads and use the MPF-cache scheme for opti-

mization. As the MPF-cache algorithm is defined, relations in the cache contains all the infor-

mation concerning its variables from the joint view r without any restrictions placed on domain

values. Thus, further joins are required to absorb information about the joint function under the

constrained domain.

We propose the following protocol to carry this out: 1) apply the selection predicate to any

cache table, say t containing the constrained variable, 2) perform semi-join reductions along paths

defined by plan p to every other cache table.

Example 7.6 In our running example, if the following query were part of the workload:

Q3: select wid, min(inv) from investment where tid=1

group by wid

then, after applying the selection on t2, the reduction t3 n t2 is required.
1This problem is equivalent to a nonlinear integer optimization program
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Theorem 7.7 After carrying out the given protocol, the new MPF-cache tables satisfy the correct-

ness invariant of Definition 7.1.

Proof. This protocol specifies a BP semijoin program over an acyclic schema, so result follows

from Theorem 7.13.

As the protocol above is defined, all queries that have the same domain constraint predicate

can be answered using a single cache relation. However, in our setting we assume that queries are

posed at random with a given probability distribution. Thus, we modify the protocol slightly by

performing reductions strictly along the path between a cache relation containing the constrained

variable and a cache table containing the query variable, rather than the entire cache. It is easily

seen that correctness is retained in this case.

In this case we modify our estimate of expected query evaluation when computing the workload

objective. We add to the evaluation cost of Equation 7.2 the cost of performing these reductions.

Since these semijoin reduction queries can be expressed as a program of product join queries

according to Definition 7.2, their cost can be readily estimated by the query optimizer.

Example 7.8 Modify the workload of Example 7.5 so Q1 and Q2 are posed with probabilities p1

and p2 respectively and query Q3 is posed with probability p3 = 1− p1 − p2. Expected evaluation

time is now

p1|t3|+ p2|t2| log |t2|+ p3(|t3|+ cost(t3 n t2)),

where cost(t3 n t2) estimates the cost of performing the reduction.

7.2.4 Variable Elimination and MPF-cache

As in the single-query case, when MPF-cache uses CS+ in step 1 it performs a (bounded)

complete search over the space of candidate plans. We can use the relational VE algorithm to

heuristically find this plan faster at the cost of sub-optimality. However, the trade-offs between

CS+ and VE discussed in Chapter 6 still hold in this case.

The VE algorithm uses a number of heuristics to determine variable elimination order. These

heuristics were based on approximations of the cost of executing a plan to evaluate a single query.
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Similarly, we define heuristics for the workload case based on approximations of the workload

objective. In particular, we make use of the Elimination Cost heuristic (Corrada Bravo and Ra-

makrishnan, 2006), which approximates the cost of the plan required to eliminate a variable. At

each iteration of Variable Elimination (Algorithm 2,) we can evaluate the workload objective of the

plan required to eliminate a variable by using an approximation based on a sub-optimal elimination

plan. We approximate optPlan(rels(vj, S)) as follows: choose a join order at random, and find the

access paths that minimize the cost of that joining the relations in that order. Given this suboptimal

plan, we can evaluate the workload objective for each variable as described in Section 7.2.2. In

each iteration, we select for elimination the variable that minimizes the approximated workload

objective.

7.3 Discussion

In this chapter we have introduced the MPF-cache algorithm for optimizing the evaluation

of expected workloads of MPF queries. We have proven that it produces caches that satisfy a

correctness invariant, which ensures that by answering a workload query with respect to a single

cache relation yields the same result as evaluating the query on the original MPF view. We have

also described how the MPF-cache algorithm is based on our methods for optimizing the evaluation

of single MPF queries, where a workload objective is minimized.

7.4 Proof of MPF-Cache Correctness Theorem

We now prove the correctness of the MPF-cache algorithm by showing that it implements the

GDL all-vertex algorithm. We first present the Belief Propagation algorithm to motivate the need

for the acyclic schema the Junction Tree algorithm creates. Algorithm 4 is an adaptation of the

Belief Propagation (BP) message passing algorithm to the relational setting.

BP selects an order of the relations in the schema according to some heuristic and reduces

each functional relation in the order with respect to any table that precedes it with which it shares

variables using the product semijoin operation (
∗
n) defined above. This step propagates values for
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variable subsets from one function to another if they have common variables, in a sense, propagat-

ing information about those variables to the latter function. Once this first pass is completed, the

reverse reductions are done, so that function values are propagated in the reverse direction for all

pairs of overlapping functions. This reverse reduction uses the update semijoin operation above so

that values propagated in the first pass are not propagated again in the second pass.

Algorithm 4 The Belief Propagation Algorithm
1: Choose a table order s1, s2, . . . , sn

2: for all Table si in order do

3: for all Table sj , such that i < j and si and sj share variables do

4: compute sj
∗
n si

5: end for

6: end for

7: for all Table sj in reverse order do

8: for all Table si, such that j > i and si and sj share variables do

9: compute si n sj

10: end for

11: end for

Belief Propagation defines a semijoin program reduction on the set of base relations which,

as opposed to the classical semijoin setting where projection is used, grouping and aggregation is

used to ‘project’ tables. This connection between Belief Propagation and semijoin programs was

made by Wu and Wong (2004).

Theorem 7.9 [Pearl (1988)] The updated base relations resulting from BP satisfy the invariant of

Definition 7.1.

Figure 7.1 shows the program resulting from BP with the order Transporters (t), Ctdeals (ct),

Warehouses (w), Location (l), Contracts (c). For illustration we expand the functional semijoins
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1. ct
∗
n t 5. l n c

2. w
∗
n ct 6. w n l

3. l
∗
n w 7. ctn w

4. c
∗
n l 8. tn ct

Figure 7.1 A BP semijoin program

for the first and last steps of the program:

ct
∗
n t = ct

∗
on (GroupBytid,SUM(t.t overhead)(t))

tn ct = t
∗
on (GroupBytid,SUM(ct.ct discount)(ct)

÷
on (GroupBytid,SUM(t.t overhead)(t)).

The Belief Propagation algorithm is not correct for cyclic schemas. Consider an extension to

our Decision Support schema that adds the table

Stdeals(supplier id,transporter id,st discount)

which stores agreements between suppliers and transporters. Using the order Transporters (t),

Stdeals (st), Ctdeals (ct), Warehouses (w), Location (l), Contracts (c) we get the program in Fig-

ure 7.2. In step 1, st is reduced with respect to t, and in step 3, c is reduced with respect to st, thus

by step 3, c has been reduced with respect to t. However, in step 2, ct is reduced with respect to t,

in steps 4,5 and 6 we have reductions from ct to c through w and l. Thus in step 6, c is reduced with

respect to t again. Since each step involves the product of the measure attribute of the relations

involved, the measure field of c has been incorrectly updated with the measure of t twice.

Acyclic schemas have the running intersection property:

Theorem 7.10 (Maier (1983)) Given schema S = {s1, . . . , sn} create undirected graph G =

(V,E) where V = S and (si, sj) ∈ E if Var(si)∩Var(sj) 6= ∅, that is, the nodes of G are relations

and an edge exists between two relations if they share variables. S is an acyclic schema if and only

if there exists a tree T that spans G with the property that for vertices si, sj , Var(si) ∩ Var(sj) is

contained in every relation in the path between si and sj .
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1. st
∗
n t 7. l n c

2. ct
∗
n t 8. w n l

3. c
∗
n st 9. ctn w

4. w
∗
n ct 10. stn c

5. l
∗
n w 11. tn ct

6. c
∗
n l 12. tn st

Figure 7.2 A BP semijoin program on a cyclic schema

The spanning tree with this property is also called a Junction Tree. Our original example

schema has this property, while the schema with the addition of Stdeals does not.

Acyclic schemas have a further property:

Theorem 7.11 (Jensen (2001)) Given schema S = {s1, . . . , sn} create undirected graph G =

(V,E) where V =
⋃
i Var(si) and (vi, vj) ∈ E if there exists a relation sk such that vi, vj ∈

Var(sk), that is, the nodes of G are the variables appearing in the schema and there is an edge

between two variables if they co-occur in a relation. S is an acyclic schema if and only if G is

chordal.

A chordal graph is one where every cycle of length greater than 3 has a chord, that is, an edge

between two non-consecutive nodes in the cycle. Figure 7.3 has the variable graph for our original

acyclic schema. The addition of Stdeals would add an edge between sid and tid which creates a

cycle of length 5 that has no chord. We refer the reader to Cowell et al. (1999) and Jensen (2001)

for a more extended discussion of chordal graphs and junction trees in the context of probabilistic

inference, and to Wu and Wong (2004) for further discussion on the links between Junction Trees,

Belief Propagation and acyclic database schemas.

The Junction Tree algorithm creates an acyclic schema by transforming the variable graph of a

cyclic schema into a chordal graph. The acyclic schema is then induced from this resulting chordal

graph. Algorithm 5 lists the Junction Tree algorithm. Step 2 modifies the variable graph of the

input schema to create a chordal graph using triangulization 2 which is listed as Algorithm 6. It
2A chordal graph is also said to be triangulated
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sid pid wid

cidtid

Figure 7.3 Variable graph for acyclic schema

adds edges to the graph by choosing a vertex, connecting any of its disconnected neighbors and then

removing it from the graph. Figure 7.4 shows a chordal graph resulting from triangulization for

our example cyclic schema using the vertex order tid,sid and added edges drawn dotted. Figure 7.5

shows the new schema and the Junction Tree resulting from that chordal graph. The final step

of the algorithm populates the tables of the new schema by assigning relation si of the original

schema to a relation sj of the new schema such that Var(si) ⊆ Var(sj), and then computing the

product join of tables assigned to each relation of the new schema.

Algorithm 5 The Junction Tree Algorithm
1: Construct variable graph G from schema S

2: Triangulate G to create new graph G′

3: Create new schema S ′ where each maximal clique in G′ is a relation

4: Assign relations from schema S to relations in S ′ that contain all of its variables

5: Create the new relation by product joining all S tables assigned to each relation in S ′

The size of the resulting schema, and thus the complexity of Belief Propagation on the resulting

schema, is determined by the size of the cliques in the new graph. This in turn is determined by

the order in which vertices are chosen during triangulization. The size of the largest clique in the

resulting graph is called the induced width of the new graph.

Theorem 7.12 (Yannakakis (1981)) Finding the chordal graph with minimum induced width is

NP-complete in the number of variables.

The equivalence between the Triangulization and the Variable Elimination algorithms is clear.

Choosing a vertex and connecting any unconnected neighbors in triangulization is equivalent to
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Algorithm 6 The Triangulization Procedure
Input: Graph G = (V,E)

Output: Chordal graph G′ = (V ′, E ′)

1: Set G′ = (V ′, E ′) where V ′ = V and E ′ = E

2: while V 6= ∅ do

3: select vertex v ∈ V from a non-chordal cycle

4: for every pair (v, u1) and (v, u2) ∈ E, add (u1, u2) to E and E ′

5: remove v from V

6: end while

sid pid wid

cidtid

Figure 7.4 A chordal
graph for the cyclic

schema

t1(sid,tid,cid,f)

t2(sid,cid,pid,f)

t3(pid,wid,cid,f)

Figure 7.5 The
resulting Junction

Tree
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selecting a variable v and joining the tables where it appears in Variable Elimination. The clique

resulting from the added edges will be a relation in the new schema, caching the result of this

join in Variable Elimination creates the relation in the new schema. Removing the vertex from the

graph in triangulization yields a clique of its neighbors equivalent to the relation resulting from

marginalizing, or, eliminating the chosen variable.

Theorem 7.13 Denote the set of cached tables in MPF-cache as T = {ti : i = 1, . . . , k}. Then

the following hold:

1. T is the schema result of triangulating using the variable order given by the VE plan of line 1,

2. T is an acyclic schema, and

3. MPF-cache performs a BP semijoin program over T

Proof. (1) follows from the equivalence of triangulation and variable elimination and the fact

that the relations that precede Group By nodes give the relations from triangulation. (2) follows

from (1) since triangulation results in an acyclic schema. For (3) we first note that MPF-cache

implements directly the backward pass of lines 7 through 10, and that by the definition of
∗
n we

have that MPF-cache also performs the forward pass when it executes the given VE plan. Proof.

(Theorem 7.4). Follows directly from Theorems 7.13 and 7.9.
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Chapter 8

Distance-Based Regression by Regularized Kernel Estimation

In this chapter, we propose an extension of RKE to a semi-supervised setting where real-valued

responses are given for some of the objects with the goal of directly estimating a regression function

from noisy, inconsistent and incomplete distance data. We show how to estimate both the kernel

and regression functions jointly by minimizing a trade-off of fidelity to the distance data and a

regression objective for the given responses as a linear semidefinite problem (SDP) where a set of

regularization parameters determines the distance vs. response fidelity trade-off. Properly selecting

values for the tuning parameters is of vital importance in this case. To that end, we present a tuning

method based on an approximation to a cross-validation criterion for choosing values of the tuning

parameters. We derive this approximation using perturbation arguments based on recent results on

the sensitivity of linear SDPs to data perturbations.

For joint RKE and regression we have to make the distinction between semi-supervised and

fully supervised settings. In the latter, distances between a set of objects are given along with

labels for all the objects with the goal of learning a function that predicts the responses of unseen

objects. Within the semi-supervised setting we distinguish the transductive setting where the set

of objects for which the set of distances is given encompasses the entire set of objects of interest

and thus there are no unseen objects. However, responses are given for only a subset of these

objects and the goal is to predict the responses of these unlabeled objects. In the fully semi-

supervised setting, there are unseen objects as in the inductive setting, however, responses are not

given for the entire set of seen objects. The goal in this case is again to learn a function to predict

the responses for unlabeled objects, both seen and unseen. In this chapter, we will address the

transductive setting in particular in the adaptive tuning method, although the general estimation
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methodology is applicable to the fully semi-supervised setting. For this chapter we will have some

distances between all objects of interest, from which we can learn an embedding kernel function,

and we have labels for a subset of these objects. The goal is to learn a regression function spanned

by the embedding kernel to predict the responses of the unlabeled objects. We will address the

remaining cases for both classification and regression in future work.

The chapter is structured as follows: we first reintroduce the RKE setting of Lu et al. (2005)

and its extension to the transductive regression setting in Section 8.1; we continue by stating recent

results on the sensitivity of linear SDPs along with a leave-one-out lemma for linear SDPs which

we need for our tuning method in Section 8.2; we present the tuning method for the transductive

regression setting in Section 8.3.

A note on notation: SN is the space of N -by-N symmetric matrices; xi is the ith entry of

vector x and Xij is the ijth entry of matrix X; xT (XT ) is the vector (matrix) transpose; e is the

unit vector of appropriate length for the context; ei is the ith standard basis vector of appropriate

length for the context such that xi = eTi x; tr(AB) =
∑N

i,j=1 AijBij denotes the standard inner

product in SN . Given matrices A1, . . . , Am ∈ SN , we define the linear operators

A(X) =


tr(A1X)

...

tr(AmX)

 , (8.1)

and AT (w) =
∑m

j=1wjA
j , w ∈ Rm. The non-negative orthant is denoted RN

+ and the cone of

symmetric positive definite matrices X � 0 as X ∈ SN+ .

8.1 Regularized Kernel Estimation for Regression

RKE estimates a symmetric positive semidefinite kernel matrixK which induces a real squared

distance admitting of an inner product. K is the solution to an optimization problem with semidef-

inite constraints that trades-off fit to the observed dissimilarity data and a penalty of the form

λrketr(K) on the complexity of K, where λrke is a non-negative regularization parameter.
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8.1.1 The RKE Problem

Given a set of N objects, assume dissimilarity information is given for a subset Ω of size m of

the
(
N
2

)
possible pairs of objects. Denote the dissimilarity between objects i and j as dij ∈ Ω. We

make the requirement that Ω satisfies a connectivity constraint: the undirected graph defined by Ω

consisting of objects as nodes and including an edge between nodes i and j if dij ∈ Ω is connected.

Formally, RKE estimates a positive semidefinite kernel matrix K ∈ SN such that the fitted

squared distance between objects induced byK, d̂2
ij(K) = K(i, i)+K(j, j)−2K(i, j) := trBijK,

are close to the square of the observed distances d2
ij ∈ Ω:

min
K∈SN

∑
dij∈Ω

|d2
ij − tr(BijK)|+ λrketr(K) (8.2a)

s.t. K � 0. (8.2b)

Since the trace of K may be seen as a proxy for its rank, RKE is regularized by penalizing high

dimensionality of the space spanned by K. The parameter λrke ≥ 0 is a regularization parameter

that trades-off fit of the dissimilarity data, as given by absolute deviation, and the trace penalty

on the complexity of K. The tuning problem in the unsupervised case is finding a value of the

regularization parameter λrke to minimize some generalization criterion with respect to the fitted

distances.

8.1.2 Regularized Kernel Estimation for Regression

We base our joint Regression-RKE method on the setting of Lanckriet et al. (2004a), which

gives a general result on optimizing performance measures derived from the dual of various SVM

formulations over a convex subset of SN+ can be cast as linear semidefinite programs. In our case,

this set will be SN itself but we will trade-off poor fit to the observed distances and minimizing the

error of the regression function on the labeled objects.

In the classical nonparametric regression setting, we assume covariates xi ∈ Rp along with

outcomes yi ∈ R, i = 1, . . . , n are observed. A Reproducing Kernel Hilbert Space of the form
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H = H0⊕H1 where functions φ1, . . . , φM spanH0 andH0 is orthogonal toH1 is chosen to define

a set of functions f(·) = f0 + f1, f0 ∈ H0, f1 ∈ H1 and 〈f0, f1〉 = 0. The goal is to find the

functionH that minimizes the regularized empirical risk variational problem

min
f∈H

1

n

n∑
i=1

(yi − fi)2 + λreg‖P1f‖2
H1

(8.3)

where λreg ≥ 0 is a regularization parameter that trades off fit to the observed outcomes and

the norm of g in Reproducing Kernel Hilbert Space (RKHS)H.

covariates xi ∈ Rp are given. For a given kernel function k(·, ·) : Rp×Rp → R and associated

Reproducing Kernel Hilbert Space H, and parametric functions By the Kimeldorf and Wahba

Theorem (Kimeldorf and Wahba, 1971), the minimizer of (8.3) has a finite expansion in terms of

the representers of training points xi so that f̂(·) =
∑n

i=1 cik(xi, ·), for coefficient vector c to be

estimated. Therefore, lettingK be the Gram matrix resulting from evaluating k(·, ·) at every pair of

training points, we get that vector f = Kc+ γe satisfies fi = f(xi). Equation(8.3) then becomes

min
c∈Rn,γ∈R

1

2
(y − (Kc+ γe))T (y − (Kc+ γe)) +

λreg
2
cTKc. (8.4)

Since our goal in joint regression-RKE is to estimate a kernel matrix K from both the observed

distances and labels, we will show that the optimum value of Problem (8.4) is a convex function of

K. For this purpose we will make use of Lagrange duality. First, we will rewrite Equation (8.4) as

the following equivalent equality constrained optimization problem:

min
c,r∈Rn,γ∈R

1

2λreg
rT r +

1

2
cTKc (8.5a)

s.t. r = y −Kc− γe. (8.5b)

The Lagrangian for this problem is

Lreg(c, r, γ, α) =
1

2λreg
rT r +

1

2
cTKc+ αT (r − y +Kc+ γe). (8.6)
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Setting the gradient of L with respect to r, c and γ to zero yields that at a saddle point the

following conditions must hold:

1

λreg
r + α = 0 (8.7a)

c+ α = 0 (8.7b)

eTα = 0 (8.7c)

This yields the following Lagrange dual problem:

max
α∈Rn

− 1

2
αT (K + λregI)α− yTα (8.8a)

s.t. eTα = 0. (8.8b)

Seen as a function of K, Equation (8.8) is convex as it is the point-wise maximum of affine

functions. This is an instantiation of the generalized performance measure of Lanckriet et al.

(2004a).

Now consider the transductive setting discussed above where we assume that no covariates are

given but rather some pairwise distances between N objects are observed along with responses

yi ∈ R, i = 1, . . . , n, n < N for a subset of the objects. We want to estimate an N -byN kernel

matrix K from the observed distances and responses. We partition K as

K =

Koo Kou

KT
ou Kuu

 , (8.9)

where the n-by-n submatrix Koo corresponds to the kernel matrix for the n objects with observed

responses. We will minimize the optimal value of Problem (8.8) as a function of K over SN+ and

trade-off poor fit of the distance data with parameter λdist regularizing the solution with a penalty

on the trace of K:
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min
K∈SN

gλreg(K) + λdist
∑
ij∈Ω

|d2
ij − tr(BijK)|+ λrketr(K) (8.10a)

s.t. K � 0, (8.10b)

where gλreg(K) is the optimal value of Problem (8.8) givenK and parametrized by λreg. The regu-

larization parameters λdist and λrke can be seen as Lagrange multipliers of the equality constrained

optimization problem

min
K∈SN

gλreg(K) (8.11a)

s.t. |d2
ij − tr(BijK)| = 0, ∀dij ∈ Ω (8.11b)

tr(K) ≤ τ (8.11c)

K � 0 (8.11d)

which minimizes regression regularized loss gλreg(K) over the set of symmetric positive semidef-

inite matrices that match the observed distances and have trace bounded by constant τ .

Using duality we can write gλreg(K) as

gλreg(K) = min
ν∈R

max
α∈RN

−1

2
αT (Koo + λregI)α− yTα + νeTα, (8.12)

where the optimal value of the inner maximization problem has a closed form solution in terms of

K which we get by setting the gradient with respect to α equal to 0:

α̂ = (Koo + λregI)−1(νe− y), (8.13)

which yields gλreg(K) = 1
2
(νe−y)T (Koo+λregI)−1(νe−y), which includes new variable ν ∈ R.

Joint RKE-Regression Problem: The joint Regression-RKE optimization problem is:
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min
K∈SN ,ν∈R

1

2
(νe− y)T (Koo + λregI)−1(νe− y) (8.14a)

+ λdist
∑
ij∈Ω

|dij − tr(BijK)|+ λrketr(K) (8.14b)

s.t. K � 0. (8.14c)

In Section 8.3 we show how to cast this problem as a linear SDP. The tuning problem in this case

is finding values for λreg, λdist and λrke that minimize some generalization criterion. We present a

method for tuning in Section 8.3. Finally, note that given solutions K̂ and ν̂, we can recover ĉ and

γ̂ to define f̂ as

ĉ = −(K̂ + λregI)−1(ν̂e− y) (8.15a)

γ̂ = ν̂ (8.15b)

8.2 Tuning by Sensitivity Arguments for Linear SDPs

The goal of this section is present general results on the sensitivity of linear SDPs on which we

base our tuning methods. Our tuning method defines a criterion that approximates leave-one-out

error along the lines of GCV/GACV (Wahba, 1990). This approximation is based on approximat-

ing from the solution of a single linear SDP P , a performance criterion based on the solution of

a number of linear SDPs where a single constraint is removed in each one. First, we will specify

the standard form we will use for the primal and dual linear SDP and restate a recent sensitivity

result for linear SDPs. Next, we present a leave-one-out lemma for linear SDPs. Finally, using this

lemma and the sensitivity result we give a first-order approximation of the solution of the so-called

leave-one-out problem.

8.2.1 SDPs in Standard Form

We will use the following standard form for the linear semidefinite problem:
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min
X∈SN

tr(CX) (8.16a)

s.t. A(X) = b (8.16b)

X � 0, (8.16c)

where C ∈ SN , b ∈ Rm and Aj ∈ SN , j = 1, . . . ,m. The Lagrangian is

L(X,w, S) = tr(CX) + wT (b− A(X))− tr(SX), (8.17)

where w ∈ Rm and S ∈ Sn+ are Lagrange multipliers. The resulting Lagrange dual is

max
w∈Rm,S∈SN

bTw (8.18a)

s.t. AT (w) + S = C (8.18b)

S � 0, (8.18c)

If there exists a matrix X � 0 that is feasible for Problem (8.16), we say that Problem (8.16)

satisfies Slater’s condition, and conversely for S and Problem (8.18). By weak duality, the optimum

value of Problem (8.18) is a lower bound of the optimum value of Problem (8.16). Strong duality

holds, that is, the optimum values of Problem (8.16) and Problem (8.18) coincide when either

Problem (8.16) or Problem (8.18) satisfy Slater’s condition. On the other hand, if both problems

are feasible, then optimal solutions X̄ and (w̄, S̄) exist and satisfy the complementarity condition

X̄S̄ = 0. Conversely, if X and (w, S) are feasible, and XS = 0 then X and (w, S) are optimal

solutions.

Finally, we make the observation that if C is a diagonal matrix and operatorA consists of only

diagonal matrices, thenX and S can be restricted to their diagonals, which make their semidefinite

constraint equivalent to a non-negativity constraint on the diagonals. In this case, X and S can be

represented by vectors x and s in RN
+ and A represented as matrix A ∈ Rm×N , in which case

Problems (8.16) and (8.18) become linear problems. We can also allow free variables x ∈ Rn
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in standard form linear SDPs and implicitly assume that the problem will be transformed to an

equivalent problem with non-negative variables x+ ∈ Rn
+ and x− ∈ Rn which satisfy x = x+−x−.

8.2.2 Perturbed Linear SDPs

In this section we provide an approximation of the solution of SDPs where the right-hand-side

vector b is perturbed by vector u. The perturbed primal problem is

min
X∈SN

tr(CX) (8.19a)

s.t. A(X) = b+ u (8.19b)

X � 0, (8.19c)

with Lagrangian (now including u as a variable) is

L(X,w, S, u) = tr(CX) + wT (b+ u− A(X))− tr(SX), (8.20)

The resulting Lagrange dual is

max
w∈Rm,S∈SN

(b+ u)Tw (8.21a)

s.t. AT (w) + S = C (8.21b)

S � 0, (8.21c)

Denote the solution of Problem (8.19) as X(u) such that X̄ = X(0), and X∗ = X(∆b) for

some perturbation vector ∆b. Denote also their associated dual solutions to Problem (8.21) as

(w̄, S̄) and (w∗, S∗) respectively.

Our goal is to approximate X∗ using the solutions X̄ and (w̄, S̄) to the unperturbed primal

and dual problems. To that end, we turn to recent sensitivity results that for semidefinite pro-

grams (Bonnans and Shapiro, 2000; Freund and Jarre, 2004; Sturm and Zhang, 2001; Yildirim and

Todd, 2001). In particular we will make use of the perturbation results of Freund and Jarre (2004)

on the differentiability of the optimal solution function of linear SDPs which we restate here:
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Theorem 8.1 (Freund and Jarre (2004)) Let a linear operator A : SN → Rm, a vector b ∈ Rm

and a matrix C ∈ SN be the data of a pair (8.16) and (8.18) of primal and dual linear semidefinite

programs. Assume that programs (8.16) and (8.18) satisfy Slater’s condition, and that X̄ ∈ SN ,

and (w̄, S̄) ∈ Rm × SN are unique and strictly complementary solutions of (8.16) and (8.18), that

is

A(X̄) = b, AT (w̄) + S̄ = C, X̄S̄ = 0, X̄ � 0, S̄ � 0, X̄ + S̄ � 0. (8.22)

If the data is changed by sufficiently small perturbations ∆A, ∆b, ∆C, then the optimal solutions

of the perturbed semidefinite programs are differentiable functions of the perturbations. Further-

more, the derivatives

Ẋ := DA,b,CX̄ [∆A,∆b,∆C] , ẇ := DA,b,Cw̄ [∆A,∆b,∆C] , Ṡ := DA,b,CS̄ [∆A,∆b,∆C] ,

(8.23)

of the solution X , w and S at X̄ , w̄ and S̄ satisfy

A(Ẋ) = ∆b−∆A(X̄), (8.24a)

AT (ẇ) + Ṡ = ∆C −∆AT (w̄), (8.24b)

S̄Ẋ + ṠX̄ = 0. (8.24c)

Given these derivatives a first-order approximation of X∗− X̄ ≈ Ẋ is obtained, where solving

system 8.24 is required. However, the left-hand-side of this system of equations is the same as the

predictor Newton step in many interior point implementations (Borchers, 1999; Toh et al., 1999).

With that in mind, as described by Yildirim and Todd (2001), the Cholesky Factorization of the

Schur Complement Matrix of the predictor step of the last iterate can be used to solve the system

above (taking the next to last iterate as X̄ and (w̄, S̄)).

In particular, for perturbations of only the right-hand side vector b of the form ∆b = tej we

can solve the system as follows. First, using Equation (8.24b), set Ṡ = −AT (ẇ) and substitute

into Equation (8.24c). This yields Ẋ = S̄−1AT (ẇ)X̄ . Substituting into (8.24a) we get the linear

system of equations
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A(S̄−1AT (ẇ)X̄) = tej (8.25)

which can be rewritten as

Oẇ = tej (8.26)

where O is the Schur matrix from, for example, the H..K..M.. predictor step (Helmberg et al.,

1996): Oij = trS̄−1AiX̄Aj . Since O is positive definite (Helmberg et al., 1996) we get ẇ =

tO−1ej , and Ẋ = t
∑m

i=1O
−1
ij S̄

−1AiX̄ . Therefore, for perturbations of the form ∆b = tej we will

use the first-order approximation:

X∗ − X̄ ≈ t
m∑
i=1

O−1
ij S̄

−1AiX̄. (8.27)

8.2.3 Leave-one-out Lemma

Let A, b and C be data defining the primal SDP problem (8.16). Define the jth primal para-

metric SDP P (uj) as:

min
X∈Sn

tr(CX) (8.28a)

s.t. A[−j](X) = b[−j] (8.28b)

tr(AjX) = bj + uj (8.28c)

X � 0 (8.28d)

where A[−j] is the linear operator A with matrix Aj removed, and b[−j] is vector b with component

j removed. Also, define the jth primal leave-one-out SDP P̃j as:
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min
X∈Sn

tr(CX) (8.29a)

s.t. A[−j](X) = b[−j] (8.29b)

X � 0 (8.29c)

Lemma 8.2 (SPD leave-one-out) Let X [−j] be an optimal solution of the jth leave-one-out SDP

P̃j and let b∗j = tr(AjX [−j]). X [−j] is an optimal solution of P (b∗j − bj).

Proof. Since X [−j] is feasible for P̃j , we have by definition that X [−j] is feasible for P (b∗j − bj).

Let X̄ be a feasible solution for P (b∗j − bj), then we have that X̄ is feasible for P̃ . Since X [−j] is

an optimal solution for P̃j we must have tr(CX [−j]) ≤ tr(CX̄) for every feasible solution X̄ of

P (b∗j − bj). Therefore, X [−j] is an optimal solution of P (b∗j − bj).

Using this lemma, we have that the solution of the jth leave-one-out SDP is optimal for the

perturbed primal Problem (8.19) by setting u = (b∗j − bj)ej = ∆b∗jej . Therefore, using the

approximation of Equation (8.27) we have

X [−j] − X̄ ≈ ∆b∗j

m∑
i=1

O−1
ij S̄

−1AiX̄. (8.30)

8.2.4 The Tuning Problem

Assume that problem data for the primal linear SDP (8.16) is parametrized by a vector λ. We

want to find the vector λ that minimizes a cross-validation criterion based on the leave-one-out

problem (8.29) for n ≤ m constraints:

V0(λ) =
1

n

n∑
i=1

gi(bi, fi(X
[−i]
λ )) (8.31a)

=
1

n

n∑
i=1

gi(bi, fi(Xλ)) +
1

n

m∑
i=1

[
gi(bi, fi(X

[−i]
λ ))− gi(bi, fi(Xλ))

]
, (8.31b)

= OBS(λ) +D(λ), (8.31c)
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where Xλ is the solution to the linear SDP parametrized by λ and X [−i]
λ is the same for the ith

leave-one-out problem. Here fi is a prediction function and g(bi, fi(X)) is a “loss” that penalizes

the prediction function fi(X) with respect to right-hand-side vector entry bi. The notationOBS(λ)

and D(λ) stresses that this approximation adds a divergence term to the observed loss for solution

Xλ based on the sensitivity of the solution to perturbations in the right-hand-side vector arising

from the leave-one-out criterion.

Assume for now that g and fi for all i are differentiable functions. We use a first-order approx-

imation of g(bi, ·) as a function of X and the leave-one-out approximation (8.30) to get

g(bi, fi(X
[−i]
λ ))− g(bi, fi(Xλ)) ≈

∂g(fi(Xλ))

∂f
tr(DXfi(Xλ)(X

[−i]
λ −Xλ)) (8.32a)

≈ ∆b∗i
∂g(fi(Xλ))

∂f

m∑
j=1

O(λ)−1
ij tr(F i

λS
−1
λ AjXλ), (8.32b)

where F i
λ = DXfi(Xλ) and Sλ andO(λ) are the corresponding dual solution and Schur matrix. We

will use the approximation ∆b∗i ≈ fi(Xλ)−bi, the motivation for which will become apparent once

we look at particular applications of this general setting. Thus we have the following first-order

approximation of D(λ):

D(λ) ≈ 1

n

n∑
i=1

(bi − fi(Xλ))
∂g(fi(Xλ))

∂f

m∑
j=1

O(λ)−1
ij tr(F i

λS
−1
λ AjXλ). (8.33)

We will next do some further approximations for computational efficiency concerns. The first

approximates
∑m

j=1O
−1
ij S

−1
λ AjXλ by 1

n

∑n
i=1

∑m
j=1O

−1
ij S

−1
λ AjXλ for all i = 1, . . . , n;

∑n
i=1O

−1
ij

by 1
m

∑m
j=1

∑n
i=1 O

−1
ij for all j = 1, . . . ,m; and

∑n
i=1

∑m
j=1O

−1
ij by n

m
eTO−1e.

The SDP-GACV tuning criterion is then

V (λ) =
1

n

n∑
i=1

g(bi, fi(X(λ))) + D̂(λ), (8.34)

where

D̂(λ) =
σλ
n

trS−1
λ A

T (e)Xλ

[
n∑
i=1

(bi − fi(Xλ))
∂g(fi(Xλ))

∂f
F i
λ

]
, (8.35)
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with σλ = 1
m2‖R−1e‖2

2 and R the (triangular) Cholesky factor of O.

8.3 Tuning RKE for Regression

To apply the tuning by sensitivity arguments presented in the previous Section we have to

specify the join RKE-Regression Problem (8.10) as a linear SDP in standard form. We begin by

writing it as the following equivalent problem:

min
K∈SN ,ν∈R
t∈R,p,q∈Rm

t+ λdiste
T (p+ q) + λrketr(K) (8.36a)

s.t.

Koo νe

νeT t

 �
−λregI y

yT 0

 (8.36b)

B(K) + p− q = d (8.36c)

X � 0, p ≥ 0, q ≥ 0. (8.36d)

Non-negative variables p and q are used to represent the piece-wise linear absolute value term in the

objective of Problem (8.10). By the Schur Complement Lemma and the fact that Koo + λregI � 0,

the linear matrix inequality (8.36b) implies t ≥ (νe − y)(Koo + λregI)−1(νe − y) = gλreg(K).

To convert this linear matrix inequality to the equality constraint required for standard form we

introduce a positive semidefinite slack variable Z =

Z11 z

zT ζ

 ∈ Sn+1:

min
K∈SN ,Z∈Sn+1

ν,t∈R,p,q∈Rm

t+ λdiste
T (p+ q) + λrketr(K) (8.37a)

s.t.

Koo νe

νeT t

− Z =

−λregI y

yT 0

 (8.37b)

B(K) + p− q = d (8.37c)

K � 0, Z � 0, p ≥ 0, q ≥ 0. (8.37d)
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Finally, we express the matrix equality element-wise by defining the linear operator: V(X)

which extracts the lower triangular part of the leading n-by-n sub-matrix of matrix X into a vector

of size n(n+ 1)/2:

min
K∈SN ,Z∈Sn+1

ν,t∈R,p,q∈Rm

t+ λdiste
T (p+ q) + λrketr(K) (8.38a)

s.t. V(K)− V(Z) = −λregV(I) (8.38b)

νe− z = y (8.38c)

t− ζ = 0 (8.38d)

B(K) + p− q = d (8.38e)

X � 0, Z � 0, p ≥ 0, q ≥ 0. (8.38f)

Note that problem data, labels and distances appear as right-hand-side vectors (8.38c) and (8.38e)

in the standard form joint RKE-regression linear SDP.

Since in this chapter we are assuming a transductive setting, the goal is to learn a function that

predicts the responses of the N − n unlabeled objects. We proposes tuning the regularization

parameters λ = (λreg, λdist, λrke) by minimizing an approximation to the ordinary leave-one-

out cross-validation criterion where the joint Regression-RKE problem is solved withholding one

response at a time and computing the error of the predicted label. That is, we minimize

V0(λ) =
1

n

n∑
i=1

(yi − f [−i]
λi )2, (8.39)

where f [−i]
λi is the response for object i predicted by the solution of the joint Regression-RKE

problem where the response for object i is left out. In the notation of Section 8.2 we have

g(yi, fi(Xλ)) = (yi − fi(Xλ))
2, where Xλ = (Kλ, νλ, tλ, Zλ) in the notation of Section 8.3.

By the constraints in the joint problem, we can write fi(Xλ) = −eTi KλooZ
−1
λ11zλ + νλ. To use the

SDP-GACV approximation in this case matrix H(λ) must be defined as in Section 8.2, although

here (fi(Xλ)− bi)∂g(fi(Xλ))
∂f

= 2(yi − fi(Xλ))
2 so the following special case may be derived
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Vreg(λ) = OBS(λ)

[
1

n
tr(I + σnQ(λ))

]
. (8.40)

where matrix Q(λ) is defined as

Q(λ)ij =

2trF i
λS
−1
λ AjXλ if i ≤ n

0 o.w.
, (8.41)

The motivation for the approximation ∆b∗i = (fi(Xλ) − bi) can be explained now in terms of

this criterion. We use (fi(Xλ)−bi) as an approximation of (fi(X
[−i]
λ −bi) which in this case makes

the leave-one-out lemma equivalent to the leave-one-out lemmas proven in derivations of the GCV

and GACV (Wahba, 1990), where it is shown that using the prediction from the leave-one-out

solution as the corresponding response in the full data problem yields the leave-one-out solution.

The assumption in this approximation is that fi(Xλ) and fi(X
[−i]
λ ) are “close”.

8.4 Discussion

In this chapter we have delineated an extension to the RKE framework where a joint regression-

distance fit objective is optimized. This technique begins to address the problems that arise when

tuning the regularization parameter in RKE in an independent step discussed in Appendix A. As

with the RKE framework, distances may be noisy, incomplete and/or inconsistent. Thus, this

methodology will be the first to address prediction solely from this type of data.
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Chapter 9

Further Prospects

In this final chapter we address some future directions in which the work presented can be

extended.

9.1 Tree-Structured Covariance Matrix Estimation

One of the main goals of the work presented here on estimating tree-structured covariance ma-

trices is that once the proper representation of this class of matrices is in place, estimation problems

can be cast as instances of well-known numerical optimization problems, and thus, existing solvers

can be employed. However, as a future direction, creating specialized solvers for this particular

type of problems can allow for larger problem instances to be solved.

A promising avenue in the unknown topology case is to set aside modeling by mixed-integer

constraints and use a methodology similar to the sparse reconstruction approach (Figueiredo et al.,

2007). In this case, the basis matrix V can be, in principle, extended to include all possible columns

that appear in valid basis matrices, that is, that satisfy the partition property (Section 2.2). With

each column of the over-complete basis matrix V is associated an element of the vector of branch

lengths d. Since the basis matrix is now over-complete, a penalty on d is used to enforce the parti-

tion property of the columns of V corresponding to non-zero entries in d. The composite absolute

penalties defined in Zhao et al. (2006) is a first option. One last note, as in the sparse reconstruc-

tion setting, the design matrix in the optimization problem is assumed to be only available through

look-up operations. Given the structure of the basis matrices in use in this case, this is easily

implemented.
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We presented results for estimates given by solutions of projection problems. It is of interest as

well to make use of any distributional assumptions of the diffusion process over the tree, and get

estimates through maximum likelihood. For example, under a normality assumption, we must ex-

tend our computational methods to determinant maximization problems. Solving these and similar

types of nonlinear MIPs is an active area of research in the optimization community (Lee, 2007).

Finally, we can leverage these methods in principled hypothesis testing frameworks that better

assess the presence of hierarchical structure in observed data.

9.2 Graph-Based Prediction in SS-ANOVA Models

Throughout the experiments and simulations presented in the Section of the dissertation on

SS-ANOVA models that include pedigree data we have used genetic marker data in a very sim-

ple manner by including single markers for each gene in an additive model. A more realistic

model should include multiple markers per gene and would include interaction terms between

these markers. Along the same lines, we currently use a very simple inheritance model to define

pedigree dissimilarity. Including, for example, dissimilarities between unrelated subjects might

prove advantageous. A simple example would be including a spousal relationship when defin-

ing dissimilarity since this would be capturing some shared environmental factors. Extensions to

this methodology that include more complex marker models and dissimilarity measures are fertile

grounds for future work.

We found that results for the RKE/RBF methodology differed substantially depending on the

tuning method used. For example, we found that the GACV criterion did not yield good results for

the full marker, environmental covariates and pedigree model. Developing a version of the GACV

criterion that is better suited to the type of kernel matrices arising in this setting is an important

future direction.

Another promising avenue for future work is to test the applicability of this methodology in

other settings. For example, in social networking settings, the structure of the network can be

revealing and useful when predicting, say, purchasing patterns in a population. However, a number
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of other features, traditionally used in data mining applications must be weighted against this

network effect. The SS-ANOVA framework can be useful in elucidating that type of trade-off.

9.3 MPF Queries and Probabilistic Inference

The MPF query setting provides a framework where scalability can be addressed in the usual

relational database sense. However, the hope for probabilistic inference is that it can be scaled to

large web-scale models, especially models that include relationship information. Towards that end

we propose to extend the optimization of MPF queries in two directions that address this need.

9.3.1 Approximate MPF Query Evaluation

Most recent activity in research for Probabilistic Inference in the Graphical Model commu-

nity is centered on approximate methods. Of particular interest is the work on Variational meth-

ods (Wainwright and Jordan, 2003). Translating these methods to the MPF setting would provide

extra insights into the characteristics of these approximate methods.

In particular, methods such as Generalized Belief Propagation (Yedidia et al., 2000) and Struc-

tured Mean Field (Saul and Jordan, 1996) can be seen as schema transformation techniques that

allow faster query evaluation while, hopefully, controlling approximation error. As in the case of

Variable Elimination, by recasting the objectives in this method in terms of cost-based database

optimization we can provide for scalable versions of these methods.

9.3.2 Templetized Workloads

A common characteristic of many probabilistic relational models (Friedman et al., 1999; Heck-

erman et al., 2004; Singla and Domingos, 2005), is that inference is performed in models resulting

by unrolling instances of classes, or templates, of probabilistic structures. These unrolled models

share common structural features that can be exploited by set-oriented computations. Additionally,

these methods can also gain from specifically tailored view materialization techniques.
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9.3.3 Theoretical Properties

Theoretical properties of MPF queries, for example, the complexity of deciding containment,

are intriguing. While general results for arbitrary aggregate queries exist, we think that the MPF

setting specifies a constrained class of queries that might allow for interesting and useful results.
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Appendix A: RKE: Tuning for Clustering and Classification

We have seen results in Chapter 4.3 from applying the RKE framework to protein classification

tasks. There, we saw that in one of the classification tasks, prediction performance was relatively

invariant for a large range of values of the RKE regularization parameter λrke. On the other hand,

careful tuning of this parameter was required for good prediction in the second classification task.

In this appendix, we will further explore the issues in tuning the RKE regularization parameter in

both clustering and classification settings.

Section A.1 introduces the CV2 tuning method and shows how it may be used to select regular-

ization parameter values for RKE in clustering and visualization applications. An empirical study

in Section A.2 illustrates the observation that clustering, as opposed to classification, is less sensi-

tive to a large range of values of the regularization parameter. A simulation study in Section A.3

further illustrates this observation.

A.1 The CV2 Tuning Method

In this Section, we present the CV2 pairwise tuning method for choosing the regularization

parameter λrke in Eq. (8.2). CV2 is a set-aside tuning set method where pairwise dissimilarities

are estimated for objects in a tuning set by embedding them in the space spanned by an RKE kernel

estimated with regularization parameter λrke. After embedding the objects in the tuning set using

the newbie algorithm, we compare their original dissimilarities with their squared distance in the

embedding space.

Suppose we have dissimilarity data for a tuning set T of objects where T is disjoint from the

set of N objects used for training RKE. Let Kλrke be a kernel matrix estimated using RKE with

regularization parameter λrke on the training set ofN objects. Let dij be the dissimilarity of objects

i and j ∈ T , and for object i, let Γi be a vector of dissimilarity measurements between object i and

a subset of the N objects used for training RKE. Let xλrke(i) be the coordinate vector estimated
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Figure A.2 Embedding dimensionality for
newbie algorithm.

for object i by the newbie algorithm applied to Γi and Kλrke . We define CV 2(λrke) as

CV 2(λrke) =
∑
i,j∈T

|‖xλrke(i)− xλrke(j)‖2
2 − dij|. (A.1)

Figure A.1 shows the CV2 curve for the data from structural classification task in Chapter 4.3

as a function of log10(λrke). The CV2 tuning set contains 10% of the objects in the original dataset,

selected as follows: at first, an object was chosen at random to be in the training set, from then

on, the next object is chosen at random from the set of unchosen neighbors of the current object,

until 90% of the objects have been included in the training set. This maintains connectivity of

the training set graph. The embedding dimensionality for the newbie algorithm was determined

using the same relative zero procedure of Chapter 4.3; we show the resulting dimensionalities in

Figure A.2. The newbie problem was solved using the SeDuMi Second-Order Cone Programming

solver (Sturm, 1999).

Although we can see a clear minimum in Figure A.1, the CV2 curve in this case is rather flat,

with a large range of values of the regularization parameter exhibiting similar performance. Fig-

ure A.3 shows the embedding of the data corresponding to log10(λrke) = −8.5, which minimizes

CV2 in this case. The fact that this embedding is very similar to that of Figure 4.1 is consistent with
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our observation that performance for purposes of visualization and clustering is mostly invariant

of the regularization parameter.

A.2 Tuning RKE for Classification

We have seen that both classification and clustering performance in our protein data set are

invariant to the value of the regularization parameter in RKE. If this were a general phenomenon,

RKE may be applied to large data sets since, lacking a need for careful tuning, the expensive

to solve RKE problem would only have to be solved a small number of times. If, on the other

hand, careful tuning is required, then efficient tuning strategies and the scalability of RKE would

have to be addressed. In this section, we show an example based on the protein classification task

where careful tuning is in fact required for classification, whereas clustering performance exhibits

a similar behavior of invariance to the regularization parameter.

Our new data set is shown in Figure A.4. This was obtained by transforming the eigenspectrum

given in Figure 4.2 by reducing the magnitude of the two leading eigenvalues. The remaining
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eigenvalues and all eigenvectors were not transformed. We can see that the general characteristics

of the two clusters are retained, while now, at least in low dimensions, good classification by a

linear function becomes slightly harder. The eigenspectrum used to generate the data is shown in

Figure A.5. With this transformation we have essentially reduced variance in the direction with

the highest variance in the original data set. Thus, it is expected that cluster characteristics are

maintained, while bringing the embedded data points together in the two dominant directions.

From this transformed embedding of protein sequences we compute Euclidean distances in 58-

dimensional space. These distances were then given to RKE as input, with the same 3,994 pairs of

objects selected in the original classification task. We now show how classification performance

and clustering performance are affected under this data transformation.

Figure A.6 shows the CV2 curve for RKE given the distances for the transformed dataset. We

see that this curve is almost identical to the CV2 curve of the original data shown in Figure A.1.

Clustering performance is not significantly affected by the data transformation. In addition, we can

see the same wide range of similar performance for CV2. This, again, indicates that for clustering

purposes carefully tuning the regularization parameter might not be necessary.

If this phenomenon is again reflected in the classification performance, then we can safely

say that in this case, careful tuning of the regularization parameter is not required. As we stated

previously, this would make RKE much more efficient since the expensive step of solving the RKE

problem would have to be executed a very small number of times.

Figure A.7 shows the error curve for the transformed dataset. Unfortunately, we see that per-

formance is very sensitive to the value of the regularization parameter. While there is a value of

the regularization parameter which yields an SVM with perfect classification accuracy, most other

values of the regularization parameter do not perform well. This indicates that in this case, careful

tuning of the regularization parameter is in fact needed. Thus, efficient tuning methods and the

efficiency of solving the RKE problem must be addressed to make this an effective framework for

classification.

The degradation in classification performance might also be explainable by the fact that the

distances given to RKE were given by Euclidean distance in the protein embedding space. To verify
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Figure A.4 Transformed protein dataset.
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Figure A.5 Eigenspectrum of transformed data.
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Figure A.7 Error curve for transformed
dataset.

that this had a limited effect on classification performance we performed the same experiment as

above with distance data obtained from the protein embedding space without transformation, that

is, without changing the two leading eigenvalues. Figure A.8 shows the misclassification rate for

this experiment. Although there is some degradation in performance it is not nearly as large as that

in Figure A.7.

A.3 Simulation Study

To further study the properties of the tuning methods for clustering and classification presented

above, we created the artificial slashdot dataset. Figure A.9 plots the three signal dimensions

for one instance of this dataset. 100 samples were generated from two three dimensional normal

distributions respectively. To each sample we append three additional spurious coordinates of

independent normal noise (σ = 0.3). Euclidean distance was computed for each pair of points and

the distances binned into nb bins of equal size. Smaller values of nb generate noisier dissimilarity

data. For each point we include dissimilarity information for 20 other randomly selected points in

the training set. 20% of the training set was selected at random as the tuning set for CV2. The

distance between clusters is determined by parameter τ . The smaller τ is, the less separable the

resulting dataset. For Figure A.9 we have τ ≈ 4.
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Figure A.8 Error curve for Euclidean distance data from untransformed protein embedding space.

In the following, we use 90% of the trace of a kernel Kλrke to determine the dimensionality of

the embedding space for the newbie algorithm, and to truncate Kλrke before using it for SVMs.

To determine the suitability of CV 2 as a tuning criteria for RKE we compare it to the normal-

ized Procrustes measure (Sibson, 1979). Given a set of points in Euclidean Rd space, its Gram

matrix K is such that Kij = x′ixj , where xi and xj are column vectors. The normalized Procrustes

measure determines the positional similarity after matching two centered Gram matrices under

rotation, translation and reflection:

D(K,Kλrke) =
trace(K) + trace(Kλrke)− 2trace

[
K1/2KλrkeK

1/2
]1/2√

trace(K)trace(Kλrke)
. (A.2)

In our simulations, K will refer to the Gram matrix of our simulated data points and Kλrke is the

RKE kernel estimated with regularization parameter λrke.

To measure the sensitivity of classification performance, we extend the GACV criterion (Wahba

et al., 2001) to define the RGACV criterion for RKE regularization parameters λrke:

RGACV (λrke) = min
λsvm

GACV (λsvm, Kλrke), (A.3)

where GACV (λsvm, Kλrke) is the GACV value of an SVM estimated with parameter λsvm and

kernel matrix Kλrke , estimated by RKE with regularization parameter λrke.
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Figure A.9 Signal dimensions for slashdot simulation dataset
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Figure A.11 Procrustes curve

Figure A.10 plots the CV2 score as a function of log10(λrke) for increasing values of the regu-

larization parameter. Figure A.11 plots the Procrustes measure as a function of log10(λrke). We see

that in this case CV2 displays the same effect of the regularization parameter on clustering perfor-

mance as the Procrustes measure. However, both the CV2 and Procrustes curves in this example

show that the effect of the regularization parameter is almost negligible for values of λrke < 1.5

where all RKE kernels are able to estimate distances relatively well. For values of λrke ≥ 1.5 the

eigenvalues of every RKE kernel are shrunk 0, thus their poor performance is expected.

Figure A.12 plots the RGACV score for this case. We see that in contrast with the CV2 and

Procrustes plots in Figures A.10 and A.11, the plot in Figure A.12 exhibits a sharp minimum.

According to CV2, for clustering and visualization applications, small variations in the RKE reg-

ularization parameter have little effect. This is contrary to what is shown in Figure A.12 for this

classification application.

For both CV2 and Procrustes, although a number of λrke values display the same performance,

one may expect that a suitable choice for kernel would be the most regularized, λrke = 1.5 in this

case since that would imply lower dimensionality of the spanned space. However, in the RGACV

plot of Figure A.12 we see that the kernel that does best for classification, λrke ≈ −0.5, is not the

most regularized. A possible explanation is that the flexibility of larger dimensionality allows for
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classification functions that are expected to have better generalization since it reduces the bounds

on LOO error while still retaining low complexity.

A.4 Discussion

Chapter 4.3 has shown the utility of RKE for classification in settings where noisy dissimilarity

data is provided. In particular, we have shown that for a sample of globins, an SVM fit using a

kernel estimated with RKE is capable of classifying them into sub-families perfectly. Furthermore,

we have shown that in this task, performance is invariant of the choice of RKE regularization

parameter.

Using a transformation of this globin data we have shown that performance of SVMs and

RKE can be sensitive to the choice of regularization parameter, requiring careful tuning of this

parameter. In the next chapter we analyze a number of tuning methods for SVMs that might be

extended to the joint tuning of RKE and SVM. Furthermore we have shown that in this instance,

using performance with respect to distance recovery, via the CV2 criterion, is not suitable for

tuning a classification task.

Thus, tuning methods that target classification performance of a joint RKE-SVM system are

required. This has a number of implications. Due to the inefficiency of semidefinite programming

in general, a tuning procedure must be able to find suitable values of the regularization parameter

while solving as few RKE problems as possible. Otherwise, the task of solving the RKE problem

must be made much more efficient, where a tuning procedure that is not capable of reducing the

number of RKE problems to solve can be used. Another direction is solving the RKE and SVM

problems jointly, but the naı̈ve way of doing this leads to a non-convex optimization problem. We

address some of these directions in Chapter 9.
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Appendix B: Adaptive Tuning of Support Vector Machines

The Support Vector Machine (SVM) (Scholkopf and Smola, 2002; Vapnik, 1998) has proven

to be a successful nonlinear classification method for a broad range of applications. There are

two main reasons for its, at least theoretical, success: as other kernel methods, the representation

of SVMs as finite expansions of kernel functions implicitly maps input data to possibly infinite

spaces where linear decision functions can perform well; on the other hand, the SVM problem

can be specified as the solution of a particular optimization problem whose solution has strong

properties with respect to optimal decision functions.

However, properly choosing tuning parameters, both to parametrize kernel functions and the

SVM optimization problem, is fundamental for the successful application of SVMs. In this chapter

we review and compare a number of adaptive tuning methods for SVMs. In particular, we show that

the GACV approximation to expected misclassification given in Wahba et al. (2001) is equivalent

to the Support Vector Span Rule given by Chapelle and Vapnik (Chapelle et al., 2002) under certain

assumptions.

B.1 The SVM Variational Problem

The Support Vector Machine (SVM) can be cast as the solution to a data-fit + penalty-term

optimization problem (Scholkopf and Smola, 2002; Vapnik, 1998). Any positive definite function

k induces a Reproducing Kernel Hilbert Space (RKHS) Hk with reproducing kernel k. That is,

if T is some index set, and k : T × T → R is a positive semidefinite function, then Hk is a

Hilbert Space of functions f : T → R endowed with an inner product 〈·, ·〉Hk with properties

〈ky(·), kx(·)〉Hk = k(y, x), where kx(·) = k(x, ·) and h(x) = 〈h(·), kx(·)〉Hk for all h ∈ Hk.

See Wahba (1990) for more on Reproducing Kernel Hilbert Spaces.

Given data {(x1, y1), . . . , (xn, yn)} with xi ∈ T , yi ∈ {+1,−1}, and a kernel function k :

T × T → R, the SVM problem is to find function f(x) = d + h(x), h(x) ∈ HK and d ∈ R, to
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Figure B.1 Hinge-loss and Misclassification loss functions

solve the following optimization problem:

min
d∈R, h∈Hk

1

n

n∑
i=1

(1− yif(xi))+ + λ‖h‖2
Hk , (B.1)

where ‖h‖2
Hk = 〈h, h〉Hk , and λ >= 0 is a regularization parameter. The loss function used here,

referred to as “hinge-loss”, is a piecewise linear function given by (τ)+ = max{0, τ}. It is a

convex upper bound on misclassification (yif(xi))∗, where

(τ)∗ =

 1 if τ ≤ 0

0 otherwise

That is, (yif(xi))∗ = 1 if the signs of yi and f(xi) disagree, indicating that the decision function

f has misclassified point xi. Figure B.1 shows both the hinge-loss and misclassification error

functions.

By the Kimeldorf and Wahba Representer Theorem (Kimeldorf and Wahba, 1971), the mini-

mizer f̂ of (B.1) has finite representation

f̂(·) = d+
n∑
i=1

ciK(·, xi); (B.2)

implying ‖h‖2
Hk = c′Kc, where K is an n-by-n matrix such that Kij = k(xi, xj), and c′ is the

transpose of vector c. Thus, we can write (B.1), after adding slack variables for hinge-loss as the
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optimization problem:

min
d,c,z

e′z + nλc′Kc (B.3)

s.t. 1− yi(c′K·i + d) ≤ z ∀i

zi ≥ 0 ∀i.

We’ll describe various adaptive tuning methods in terms of the solution of the dual problem

of (B.3). Let H = 1
2nλ

Y KY where Y = diag(y) is the diagonal matrix with vector y in the main

diagonal, then the dual problem is:

max
α

e′α− 1
2
α′Hα (B.4)

s.t. 0 ≤ αi ≤ 1 ∀i

y′α = 0.

If there exists a function f̂ (given by the solution c and d of (B.3)) that separates the training

data perfectly, that is, f̂(xi) < 0 if and only if yi = −1, then the distance between the two closest

points with different labels is a quantity of interest. Also known as the optimal separating margin,

this distance γ is given by

γ2 = (c′Kc)
−1

=
2nλ∑

i:yif(xi)≤1 αi
. (B.5)

Intuitively, if the margin is large and the underlying data distribution does not change, the resulting

SVM can be expected to perform well on new data points, that is, will have good generalization

performance.

B.1.1 The Tuning Problem

The generalization performance of the solution f̂ to (B.1) depends on the given value of the

trade-off parameter λ. For example, large values of λ makes f̂ tend to constant functions. On the

other hand, small values of λ allow ‖h‖2
HK to be large, which according to Vapnik’s (Vapnik, 1998)

convergence bounds, as we will see below, implies slow convergence of the empirical risk of f̂ to

its expected risk. Furthermore, kernel function K might also be parametrized and different values

of these parameters also affect the generalization performance of f̂ .
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Consider the, non-separable, classification task in Figure B.2, which we want to solve using an

SVM with a Gaussian kernel

k(x, y) = exp
{
−τ‖x− y‖2

2

}
.

In figure B.3, we plot three solutions to the SVM problem obtained with three different settings

of regularization parameter λ, and kernel bandwidth parameter τ where we can see the effect of the

regularization and bandwidth parameter. We expect the generalization performance to be better in

the bottom case, where the function better resembles the optimal decision function: a concentric

circle between the two circles in Figure B.2.

The tuning problem is then to find a set of parameters such the solution to the respective SVM

problem has low expected misclassification. The difficulty lies in having access to only a finite

number of data points, thus this expectation must be estimated from this finite dataset. We will

compare a number of methods that attempt to estimate this expectation efficiently. From now on,

we refer to both the regularization parameter and any set of kernel parameters jointly as λ.
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parameters
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B.1.2 The SRM Interpretation

There is another interpretation of the regularization parameter in terms of Vapnik’s Structural

Risk Minimization (SRM) Principle (Vapnik, 1998). This argument is given by both Evgeniou et al.

(2000) and Vapnik (1998). First, we define the notions of empirical and expected risk, we have

mentioned previously. Given a loss function l(y, f(x)), such as hinge-loss or misclassification, the

expected risk of function f is

R(f) = EP [l(y, f(x))] ,

where expectation is taken over an unknown data probability distribution P (x, y). On the other

hand, given a finite data set of size n, the empirical risk of f is

Remp(f) =
1

n

n∑
i=1

l(yi, f(xi)).

In the learning setting, we have access to Remp but not R which is the function we want to mini-

mize. Vapnik proves that, in general, minimizing Remp does not imply minimizing R.

Vapnik’s result on the convergence of empirical risk to expected risk gives bounds of the type

R(f) ≤ Remp(f) + Φ(v, n, η) (B.6)

which hold with probability 1−η for all f in a given function class F . The quantity v is referred to

as the V C dimension and is a measure of the complexity of function class F . Ψ(v, n, η) is referred

to as the confidence interval.

The Structural Risk Minimization Principle defines a set of function classes Fj , each with

associated VC-dimension vj for which the relationships F1 ⊆ F2 ⊆ · · · ⊆ Fl and v1 ≤ v2 ≤

· · · ≤ vl hold. For SVMs this structure is given by an increasing sequence of constants a1, . . . , al

and function class Fj = {f(x) = d + h(x) : ‖h‖2
HK ≤ a2

j}. SRM then finds the function f̂j in

each class Fj that minimizes empirical risk, and from those selects the function f̂j that minimizes

the right hand side of (B.6).

For SVMs with ‖h‖2
HK ≤ a2, the following holds for VC-dimension v

v ≤ O(min(N,R2a2)) (B.7)
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where R2 is the radius of the smallest sphere containing the points k(xi, ·) for each data point xi,

and N is the dimensionality ofHK .

The SRM principle could then be implemented by solving the following problem for each aj:

min
f=d+h(x)

1
n

∑n
i=1(1− yif(xi))+ (B.8)

s.t. ‖h‖2
HK ≤ a2

j .

The Lagrangian for this problem is:

min
f=d+h(x)

1
n

∑n
i=1(1− yif(xi))+ + λ(‖h‖2

HK − a
2
j). (B.9)

Now suppose we know that the function class Fj contains the function which, if selected by min-

imizing empirical risk, then it minimizes the right-hand side of (B.6). If we have the Lagrange

multiplier λ corresponding to the constant aj which defines Fj , then we can drop constant aj from

the Lagrangian and recover the original variational problem (B.1) from (B.9). Thus, choosing

the proper value of λ implies finding Fj , the function class for which minimizing empirical risk

implies minimizing the right hand side of (B.6), therefore minimizing a bound on expected risk.

B.2 Adaptive Tuning Methods

We analyze and compare a few methods for tuning the parameters of an SVM, all of which

estimate the expected risk by approximating or bounding the leave-one-out (LOO) risk. It has

been shown that LOO error is an ‘almost’ unbiased estimate of expected error (Devroye et al.,

1996).

We denote the solution of the SVM problem where the ith training point is removed as f [−i],

which we will refer to as the leave-one-out SVM. Then, the leave-one-out risk is

1

n

n∑
i=1

l(yi, f
[−i](xi)). (B.10)

The methods we analyze approximate or bound this quantity:

1. GACV The Generalized Approximate Cross-Validation method (Wahba, 1999; Wahba et al.,

1999, 2002) approximates LOO risk for hinge-loss.
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2. XAJ The ξα method (Joachims, 2000) bound LOO risk for misclassification.

3. XA The version of ξα given by Wahba et al. (2001) which approximates LOO risk for

misclassification

4. Support Vector Span Rule This is a bound on LOO risk for misclassification, which can be

tightened to an exact estimate under certain conditions (Chapelle and Vapnik, 1999; Chapelle

et al., 2002; Vapnik and Chapelle, 2000).

The main result in this section, Proposition B.1 states that under certain conditions the GACV

approximation to LOO risk for misclassification (XA), is equivalent to the Support Vector Span

Rule.

B.2.1 GACV

The GACV (Wahba et al., 1999) was proposed to approximate the Generalized Comparative

Kullback-Leibler (GCKL) distance of two distributions in penalized likelihood settings. Denote

the solution to (B.1) for a given λ as fλ and fλi = fλ(xi). Then the GCKL of fλ, GCKL(fλ) =

GCKL(λ), is defined as:

GCKL(λ) = Etrue
1

n

n∑
i=1

(1− yifλi)+, (B.11)

where expectation is taken with respect to an unknown conditional probability P (y|x). That is,

given a fixed function fλ and a set of observations x1, ..., xn, GCKL is the expected risk (with

hinge-loss) of fλ on this set of observations. The LOO estimate of GCKL, which is also the LOO

estimate of expected risk, can be written as

LOO(λ) = Remp(fλ) +D(λ),

where D(λ) ≈ 1
n

∑n
i=1 g(yi(fλi − f [−i]

λi )). The quantity yp(fλp − f [−p]
λp ) measures how much the

decision function of the leave-one-out SVM differs from the SVM trained on the entire dataset for

the data point xp that was left out of the dataset. The methods we analyze here essentially differ

on how they either approximate or bound this quantity.
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For the GACV, yp(fλp−f [−p]
λp ) is approximated, using a finite differences argument and a leave-

one-out lemma similar to that used for GCV spline estimates (Wahba, 1990), by ∂fλp
∂yp

, which, refer-

ring to the primal and dual SVM problem, may be interpreted as αλp
2nλ

Kpp, whereKpp = k(xp, xp) =

‖k(·, xp)‖Hk and αλp is the corresponding component of the dual variable α from the solution of

the SVM dual problem (B.4).

The GACV is defined as:

GACV (λ) =
1

n

[
n∑
i=1

zi + 2
∑

i:yifλi<−1

αλi
2nλ

Kii +
∑
i:yifλi

αλi
2nλ

Kii

]
, (B.12)

where zi = (1− yifλi)+ can be obtained from variable z in the primal problem (B.3).

B.2.2 Joachim’s ξα

As opposed to the GACV, the ξα procedure Joachims (2000) bounds expected misclassification

rate. Let R2 ≥ Kii −Kij for all i, j, then the ξα bound is

XAJ(λ) =
1

n

[
n∑
i=1

ξi +
∑

i:yifλi≤1

I[ ραλi2nλ
R2](yifλi)

]
, (B.13)

where ξi = (yifλi)∗ and

I[θ](τ) =

 1 if τ ∈ (0, θ]

0 otherwise

Joachim proves that XAJ bounds the LOO to expected risk for misclassification if ρ = 2.

Since R2 ≥ Kii −Kij for all i, j, we have

2R2 ≥ Kii −Kij +Kjj −Kij

= 〈kxi(·)− kxj(·), kxi(·)− kxj(·)〉Hk

= ‖K·i −K·j‖2
Hk .

That is,R2 is an upper bound on the radius of the smallest sphere inHK containing the representers

(kx(·)) for the data points. Thus the term αλi
2nλ

R2 is the ith term in the radius-margin VC dimension

bound given in (B.7). For XAJ , we have that yp(fλp − f [−p]
λp ) ≤ αλp

2nλ
R2.
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B.2.3 A GACV version of ξα

The relationship between GACV and ξα is given in Wahba et al. (2001) where an approxima-

tion of the LOO estimate of misclassification rate is found using a similar derivation to GACV. As

we saw above, GACV is treated as a proxy for GCKL, in this case, however, for misclassification

rate. Now, we take

GCKL(λ) = Etrue
1

n

n∑
i=1

(yifλi)∗. (B.14)

The GACV approximation in this case is

XA(λ) =
1

n

[
n∑
i=1

ξi +
∑

i:yifλi≤1

I[αλi2nλ
Kii](yifλi)

]
. (B.15)

In this case, yp(fλp − f [−p]
λp ) ≈ αλp

2nλ
Kpp. Note that maxiKii can be used in place of R2 in XAJ

since maxiKii ≥ Kjj −Kjk for all j, k.

B.2.4 Vapnik-Chapelle Support Vector Span Rule

Vapnik and Chapelle define the support vector span rule to estimate LOO misclassification

risk. For convenience, assume that the first n∗ data points are support vectors of the SVM solution

to (B.1) given λ. That is, for the first n∗ data points, yifi ≤ 1, or equivalently, αi 6= 0.

Vapnik and Chapelle define the support vector span with respect to support vector kxp(·) as

Λλp =

{
n∗∑

i=1, i 6=p

βikxi(·) :
∑

i=1, i 6=p

βi = 1, 0 ≤ 1

2nλ
(αλi + αλpypβi) ≤ 1

}

and give the span rule in terms of S2
λp = minkx(·)∈Λλp ‖kxp(·)− kx(·)‖HK , that is, the projection of

kxp(·) to Λλp.

The span rule states that assuming the set of support vectors is unchanged during the leave-

one-out procedure then

yp(fλp − f [−p]
λp ) =

αλp
2nλ

S2
λp

holds for every support vector xp. Assuming the support vectors are unchanged during the leave-

one-out procedure is equivalent to removing the box constraints in the definition of Λλp. Also,

assuming that d = 0 in the SVM solution is equivalent to removing the
∑

i=1, i 6=p βi = 1 constraint.
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Proposition B.1 XA is equivalent to the Support Vector Span Rule under the following condi-

tions:

1. The set of support vectors is unchanged during the leave-one-out procedure

2. the intercept of fλ is zero (d = 0x).

3. The set of support vectors are orthogonal to each other.

Proof. First, we restate the span rule problem as a constrained optimization problem:

min
β
WP (β) = ‖kxp(·)−

n∗∑
i=1, i 6=p

βikxi(·)‖HK (B.16)

s.t.
∑

i=1, i 6=p

βi = 1 (B.17)

0 ≤ 1

2nλ
(αλi + αλpypβi) ≤ 1 ∀i. (B.18)

The Lagrangian for this problem is:

L(β, r, s, t) = Kpp − 2K ′pβ + β′Kpβ + r(e′β − 1) (B.19)

+
1

2nλ
s′(α + ypαλpY β − e) (B.20)

− 1

2nλ
t′(α + ypαλpY β). (B.21)

where the kernel matrix K is now restricted to its first n∗ columns and rows, that is, the kernel

evaluated only for pairs of support vectors. Kp is the restricted kernel matrix’s pth column, and

KP is the sub-matrix of K resulting of removing its pth row and column. Also, α and Y are

restricted to support vectors kxi(·) where i 6= p.

The dual is then:

max
r,s,t

WD(r, s, t) = Kpp −
1

4
z′K−1

p z +
1

2nλ
(s− t)′α− 1

2nλ
s′e− r (B.22)

s.t r, s, t ≥ 0, (B.23)

where z = 2Kp − re− ypαλp
2nλ

Y (s− t).
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We observe that WD(0, 0, 0) = Kpp −K ′pK−1
p Kp, and we can recover the GACV approxima-

tion, Kpp, as an upper bound to WD(0, 0, 0) by assuming that xp is orthogonal to all other support

vectors, i.e., Kp = 0.

Since setting r = s = t = 0 is equivalent to solving the unconstrained span rule problem, the

proposition follows. �

Consider also the mean-field approximation to leave-one-out error of Opper and Winther (2000):

yp(fλp − f [−p]
λp ) =

1

2nλ

αλp
K−1
pp

. (B.24)

This approximation can also be derived from the dual of the span rule problem after rewriting Λλp

as

Λλp = {
n∗∑
i=1

βikxi(·) : βp = −1
n∗∑
i=1

βi = 0 0 ≤ 1

nλ
(αλi + αλpypβi) ≤ 1}. (B.25)

Rewriting the primal and dual problem under these equivalent constraints gives WD(0, 0, 0) =

1
K−1
pp

.

B.3 Discussion

We have analyzed various methods to select the tuning parameters in the SVM problem. In

particular, we have shown that the GACV approximation of the LOO estimate of misclassification

rate is equivalent to that given by the Chapelle and Vapnik Support Vector Span rule.


