[Carroll, *J Med Entomol* **38**:114–117, 2001]

Place tick on clay island surrounded by water, with two capillary tubes: one treated with deer-gland-substance; one untreated.

Tick sex	Leg	Deer sex	treated	untreated
male	fore	female	24	5
female	fore	female	18	5
male	fore	male	23	4
female	fore	male	20	4
male	hind	female	17	8
female	hind	female	25	3
male	hind	male	21	6
female	hind	male	25	2

Is the tick more likely to go to the treated tube?

Test for a proportion

Suppose $X \sim Binomial(n, p)$.

Test
$$H_0 : p = \frac{1}{2} \text{ vs } H_a : p \neq \frac{1}{2}.$$

Reject H_0 if $X \ge H$ or $X \le L$.

Choose H and L such that

$$Pr(X \ge H \mid p = \frac{1}{2}) \le \alpha/2$$
 and $Pr(X \le L \mid p = \frac{1}{2}) \le \alpha/2$.

Thus $Pr(Reject H_0 | H_0 is true) \leq \alpha$.

The difficulty: The Binomial distribution is hard to work with. Because of its discrete nature, you can't get exactly your desired significance level (α) .

Rejection region

Consider $X \sim Binomial(n=29, p)$.

Test of $H_0: p = \frac{1}{2}$ vs $H_a: p \neq \frac{1}{2}$ at significance level $\alpha = 0.05$.

Lower critical value:

$$qbinom(0.025, 29, 0.5) = 9$$

$$Pr(X \le 9) = pbinom(9, 29, 0.5) = 0.031 \rightarrow L = 8$$

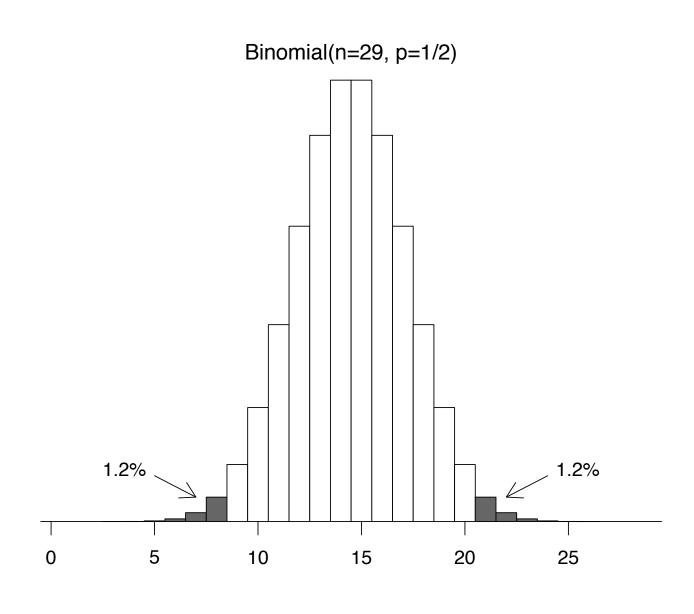
Upper critical value:

$$qbinom(0.975, 29, 0.5) = 20$$

$$Pr(X \ge 20) = 1-pbinom(19,29,0.5) = 0.031 \rightarrow H = 21$$

Reject H_0 if $X \le 8$ or $X \ge 21$. (For testing $H_0: p = \frac{1}{2}$, H = n - L)

Binomial(n=29, p=1/2)



Significance level

Consider $X \sim Binomial(n=29, p)$.

Test of H_0 : $p = \frac{1}{2}$ vs H_a : $p \neq \frac{1}{2}$ at significance level $\alpha = 0.05$. Reject H_0 if $X \leq 8$ or $X \geq 21$.

Actual significance level:

$$\alpha = \Pr(X \le 8 \text{ or } X \ge 21 \mid p = \frac{1}{2})$$

$$= \Pr(X \le 8 \mid p = \frac{1}{2}) + [1 - \Pr(X \le 20 \mid p = \frac{1}{2})]$$

$$= pbinom(8, 29, 0.5) + 1-pbinom(20, 29, 0.5)$$

$$= 0.024$$

If we used instead "Reject H_0 if $X \le 9$ or $X \ge 20$ ", the significance level would be

pbinom(9,29,0.5) + 1-pbinom(19,29,0.5) = 0.061

Observe X = 24 (for n = 29).

Reject
$$H_0: p = \frac{1}{2}$$
 if $X \le 8$ or $X \ge 21$.

Thus we reject H₀ and conclude that the ticks were more likely to go to the deer-gland-substance-treated tube.

P-value =
$$2 \times Pr(X \ge 24 \mid p = \frac{1}{2})$$

= $2 * (1-pbinom(23,29,0.5))$
= 0.0005.

→ Alternatively: binom.test(24,29)

Observe X = 17 (for n = 25); assume X \sim Binomial(n=25, p).

Test of $H_0: p = \frac{1}{2}$ vs $H_a: p \neq \frac{1}{2}$ at significance level $\alpha = 0.05$.

Rejection rule: Reject H_0 if $X \le 7$ or $X \ge 18$.

$$qbinom(0.025, 25, 0.5) = 8$$

$$pbinom(8, 25, 0.5) = 0.054$$

$$pbinom(7, 25, 0.5) = 0.022$$

Significance level:

$$pbinom(7,25,0.5) + 1-pbinom(17,25,0.5) = 0.043$$

Since we observed X = 17, we fail to reject H_0 .

P-value =
$$2*(1-pbinom(16,25,0.5)) = 0.11$$

Confidence interval for a proportion

Suppose $X \sim Binomial(n=29, p)$ and we observe X = 24.

Consider the test of $H_0: p = p_0$ vs $H_a: p \neq p_0$.

We reject H₀ if

$$Pr(X \le 24 \mid p = p_0) \le \alpha/2$$
 or $Pr(X \ge 24 \mid p = p_0) \le \alpha/2$

95% confidence interval for p:

- The set of p_0 for which a two-tailed test of H_0 : $p = p_0$ would not be rejected, for the observed data, with $\alpha = 0.05$.
- → The "plausible" values of p.

 $X \sim Binomial(n=29, p)$; observe X = 24.

Lower bound of 95% confidence interval:

Largest p_0 such that $Pr(X \ge 24 \mid p = p_0) \le 0.025$

Upper bound of 95% confidence interval:

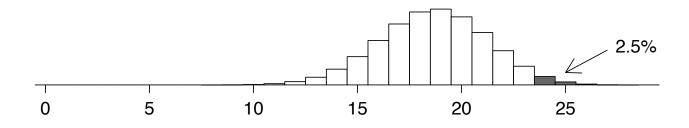
Smallest p_0 such that $Pr(X \le 24 \mid p = p_0) \le 0.025$

 \rightarrow binom.test(24,29)

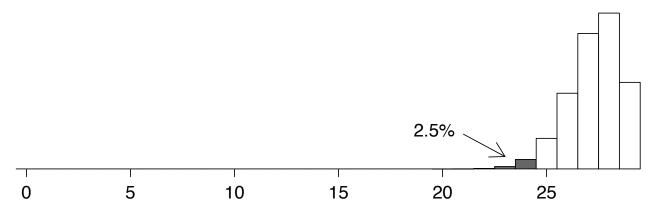
95% CI for p: (0.642, 0.942)

Note: $\hat{p} = 24/29 = 0.83$ is not the midpoint of the CI.

Binomial(n=29, p=0.64)



Binomial(n=29, p=0.94)



 $X \sim Binomial(n=25, p)$; observe X = 17.

Lower bound of 95% confidence interval:

 p_L such that 17 is the 97.5 percentile of Binomial(n=25, p_L)

Upper bound of 95% confidence interval:

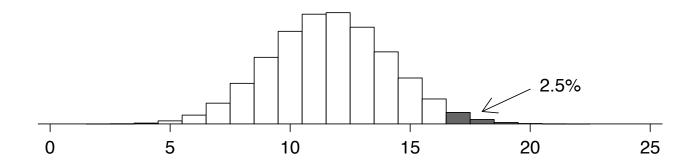
 p_H such that 17 is the 2.5 percentile of Binomial(n=25, p_H)

 \rightarrow binom.test(17,25)

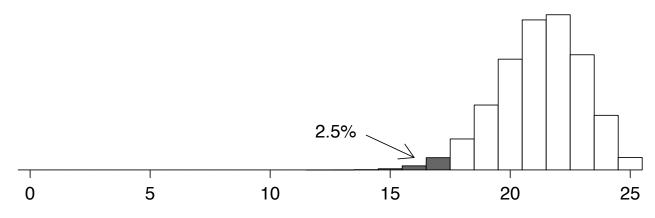
95% CI for p: (0.465, 0.851)

Again, $\hat{p} = 17/25 = 0.68$ is not the midpoint of the CI

Binomial(n=25, p=0.46)



Binomial(n=25, p=0.85)



The case X = 0

Suppose $X \sim Binomial(n, p)$ and we observe X = 0.

Lower limit of 95% confidence interval for p: \rightarrow 0

Upper limit of 95% confidence interval for p:

p_H such that

$$\begin{array}{l} Pr(X \leq 0 \mid p = p_H) = 0.025 \\ \Longrightarrow Pr(X = 0 \mid p = p_H) = 0.025 \\ \Longrightarrow (1 - p_H)^n = 0.025 \\ \Longrightarrow 1 - p_H = \sqrt[n]{0.025} \\ \Longrightarrow p_H = 1 - \sqrt[n]{0.025} \end{array}$$

In the case n = 10 and X = 0, the 95% CI for p is (0, 0.31).

A mad cow example

New York Times, Feb 3, 2004:

The department [of Agriculture] has not changed last year's plans to test 40,000 cows nationwide this year, out of 30 million slaughtered. Janet Riley, a spokeswoman for the American Meat Institute, which represents slaughterhouses, called that "plenty sufficient from a statistical standpoint."

Suppose that the 40,000 cows tested are chosen at random from the population of 30 million cows, and suppose that 0 (or 1, or 2) are found to be infected.

\longrightarrow	How many of the 30 million total cow	/S
	would we estimate to be infected?	

\longrightarrow	What is the 95% confidence interval for
	the total number of infected cows?

No. ir	nfected	
Obs'd	Est'd	95% CI
0	0	0 – 2767
1	750	19 – 4178
2	1500	182 – 5418

The case X = n

Suppose $X \sim Binomial(n, p)$ and we observe X = n.

Upper limit of 95% confidence interval for p: \rightarrow 1

Lower limit of 95% confidence interval for p:

p_L such that

$$Pr(X \ge n \mid p = p_L) = 0.025$$

$$\implies Pr(X = n \mid p = p_L) = 0.025$$

$$\implies (p_L)^n = 0.025$$

$$\implies p_L = \sqrt[n]{0.025}$$

In the case n = 25 and X = 25, the 95% CI for p is (0.86, 1.00).

Large n and medium p

Suppose $X \sim Binomial(n, p)$.

$$E(X) = n p \qquad SD(X) = \sqrt{n p(1-p)}$$

$$\hat{p} = X/n$$
 $E(\hat{p}) = p$ $SD(\hat{p}) = \sqrt{\frac{p(1-p)}{n}}$

For large n and medium p,
$$\longrightarrow \hat{p} \sim \text{Normal}\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

Use 95% confidence interval
$$\hat{p}\pm 1.96~\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- Unfortunately, this can behave poorly.
- Fortunately, you can just use binom.test()