Homework Assignment \#1
 (Due Wednesday, September 28, 2005)

Please hand in a hard copy of your R code in addition to your solutions and plots. In addition, please send an electronic version of your code to Kenny (kshum@jhsph.edu).

1. Show the following:
(a) If the distribution of Y belongs to the exponential family, the moment generating function of Y is

$$
M_{Y}(t)=\exp \left\{\frac{b(a(\phi) t+\theta)-b(\theta)}{a(\phi)}\right\}
$$

(b) The binomial distribution defined by

$$
f\left(y_{i}, n_{i}, p_{i}\right)=\binom{n_{i}}{y_{i}} p_{i}^{y_{i}}\left(1-p_{i}\right)^{n_{i}-y_{i}}
$$

belongs to the exponential family. Also verify its mean and variance relationship.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independently and identically distributed as $N\left(\mu, \sigma^{2}\right)$. Define

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \quad \text { and } \quad Q=\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left(X_{i+1}-X_{i}\right)^{2}
$$

(a) Prove that $\operatorname{var}\left(S^{2}\right)=2 \sigma^{4} /(n-1)$.
(b) Show Q is an unbiased estimator of σ^{2}.
(c) Find the variance of Q and hence show that, as $n \rightarrow \infty$, the effeciency of Q relative to S^{2} is $\frac{2}{3}$.
(d) Use R to plot the variances S^{2} and Q as functions of n (with n between 10 and 100).

Hint: If $\mathbf{Y} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\operatorname{var}\left(\mathbf{Y}^{\prime} \mathbf{A Y}\right)=2 \times \operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma} \mathbf{A} \boldsymbol{\Sigma})+4 \boldsymbol{\mu}^{\prime} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A} \boldsymbol{\mu}$ (see for example Searle, p57).
3. Let $A=\left(\begin{array}{ll}\frac{3}{5} & \frac{2}{5} \\ \frac{4}{5} & \frac{1}{5}\end{array}\right)$.
(a) Show that $A^{n} \rightarrow\left(\begin{array}{ll}\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3}\end{array}\right)$ as $n \rightarrow \infty$.
(b) Write an iteration in R for the above. Stop after step k if $\max _{i, j}\left|a_{i j}^{k}-a_{i j}^{k-1}\right|<10^{-6}$. How many iterations does it take?
4. Suppose

$$
\mathbf{Y}=\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3} \\
Y_{4}
\end{array}\right] \sim N_{4}\left(\left[\begin{array}{l}
3 \\
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{llll}
4 & 3 & 2 & 1 \\
3 & 3 & 2 & 1 \\
2 & 2 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\right)=N_{4}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

Let $X_{1}=Y_{1}+Y_{2}+Y_{3}+Y_{4}$, and $X_{2}=Y_{1}-Y_{2}-Y_{3}+Y_{4}$.
(a) Find the joint distribution of $\left(X_{1}, X_{2}\right)^{\prime}$.
(b) Find the conditional distribution of X_{1} given X_{2}.
(c) For the above distributions, draw 3D density plots and contour plots using R.

Functions that you might find useful include apply, contour, expand.grid, expression, image, lines, persp, plot, plotmath, text.

