Homework Assignment \#2
 (Due Wednesday, October 5, 2005)

Please hand in a hard copy of your R code and send an electronic version of your R code to Kenny (kshum@jhsph.edu).

1. Let \mathbf{G} be a generalized inverse of $\mathbf{X}^{\prime} \mathbf{X}$. Show that
(a) \mathbf{G}^{\prime} is also a generalized inverse of $\mathbf{X}^{\prime} \mathbf{X}$,
(b) $\mathbf{X G X} \mathbf{X}^{\prime} \mathbf{X}=\mathbf{X}$, i. e. $\mathbf{G X}^{\prime}$ is a generalized inverse of \mathbf{X},
(c) $\mathbf{X G X} \mathbf{X}^{\prime}$ is invariant to \mathbf{G},
(d) $\mathbf{X G X} \mathbf{X}^{\prime}$ is symmetric, whether \mathbf{G} is or not.

Hint for (b): Show first that $\mathbf{X}^{\prime} \mathbf{X}=\mathbf{0}$ implies $\mathbf{X}=\mathbf{0}$, and second that $\mathbf{P X}^{\prime} \mathbf{X}=\mathbf{Q X}^{\prime} \mathbf{X}$ implies $\mathbf{P} \mathbf{X}^{\prime}=\mathbf{Q X}^{\prime}$.
2. Consider the linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon$, with $E[\varepsilon]=\mathbf{0}$ and $\operatorname{cov}(\varepsilon)=\sigma^{2} \mathbf{I}$. Show that

$$
\mathbf{b}^{0}=\mathbf{G} \mathbf{X}^{\prime} \mathbf{Y}+\left(\mathbf{G} \mathbf{X}^{\prime} \mathbf{X}-\mathbf{I}\right) \mathbf{z}
$$

is a solution to the normal equations for any vector \mathbf{z} of the same length as $\boldsymbol{\beta}$, where \mathbf{G} is any generalized inverse of $\mathbf{X}^{\prime} \mathbf{X}$.
3. Assume that \mathbf{P}_{i} is a projection matrix $(i=1,2)$ and $\mathbf{P}_{1}-\mathbf{P}_{2}$ is p.s.d. Show that
(a) $\mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{2} \mathbf{P}_{1}=\mathbf{P}_{2}$ (Hint: first show that $\mathbf{P}_{1} \mathbf{x}=\mathbf{0}$ implies $\mathbf{P}_{2} \mathbf{x}=\mathbf{0}$).
(b) $\mathbf{P}_{1}-\mathbf{P}_{2}$ is a projection matrix.
4. Write an R function called mylm() that takes the response vector \mathbf{Y} and the matrix of covariates \mathbf{X} as input, and returns a list of the following:

- beta, the vector of least squares estimates,
- sigma, the residual standard error,
- varbeta, the covariance matrix of the least squares estimates,
- fitted, the vector of fitted values,
- residuals, the vector of residuals.

Further, put in an option to return hat, the projection matrix, upon request. The default should be to not return it. To fit an intercept, the elements in the first column of \mathbf{X} have to be equal to one, so your function should also have an option to add a vector of ones to the matrix with the predictors. Further, your function should check whether or not $\mathbf{X}^{\prime} \mathbf{X}$ is invertible, and stop if it is not. Find a dataset to try out your function (you can simulate one if you like), and compare the results to the one from the $\operatorname{lm}()$ function.

