# Homework Assignment \#4 <br> (Due Monday, October 24, 2005) 

Please hand in a hard copy of your R code, and send an electronic version of it to Kenny (kshum@jhsph.edu).

1. Let $A_{1}, A_{2}$ and $A_{3}$ be objects of unknown weights $\beta_{1}, \beta_{2}$ and $\beta_{3}$ respectively. To obtain the weights of $A_{1}, A_{2}$ and $A_{3}$, we use the following three weighings on a balance (scale), all of which are repeated twice.

- $A_{1}$ on the balance (results $y_{11}$ and $y_{12}$ ),
- $A_{2}$ on the balance (results $y_{21}$ and $y_{22}$ ),
- $A_{3}$ on the balance (results $y_{31}$ and $y_{32}$ ).

Assume that the $y_{i j}$ 's come from random variables $Y_{i j}$ which are independent, normally distributed with the same variance $\sigma^{2}$. Also assume that the balance has an unknown systematic error $\theta$.
(a) Show that the $\beta_{i}$ 's are not estimable.
(b) Show that $\beta_{i}-\beta_{j}$ for $i \neq j$ are estimable. Find the BLUE of $\beta_{1}-\beta_{2}$ and an estimate of its variance.
(c) If we include two more readings in which we weigh all three objects on the balance (results $y_{41}$ and $y_{42}$ ), show that the $\beta_{i}$ 's are estimable and that $\theta$ is estimable. Find the BLUE of each of the estimates, and an estimate of the standard error of each estimate.
2. (a) If $H: \mathbf{A} \boldsymbol{\beta}=\mathbf{0}$ is a testable hypothesis, show that

$$
\operatorname{cov}(\mathbf{A} \hat{\boldsymbol{\beta}})=\sigma^{2} \mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{A}^{\prime}
$$

(b) Assuming $\operatorname{rank}(\mathbf{A})=q$, show that

$$
\left(R S S_{H}-R S S\right) / \sigma^{2}=(\mathbf{A} \hat{\boldsymbol{\beta}})^{\prime}[\operatorname{cov}(\mathbf{A} \hat{\boldsymbol{\beta}})]^{-1}(\mathbf{A} \hat{\boldsymbol{\beta}})
$$

(c) Conclude from the above that

$$
E\left[R S S_{H}-R S S\right]=\sigma^{2} q+(\mathbf{A} \boldsymbol{\beta})^{\prime}\left[\mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{A}^{\prime}\right]^{-1}(\mathbf{A} \boldsymbol{\beta})
$$

and when $H: \mathbf{A} \boldsymbol{\beta}=\mathbf{0}$ is true and $\mathbf{Y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$,

$$
\left(R S S_{H}-R S S\right) / \sigma^{2} \sim \chi_{q}^{2}
$$

In the above exercise, you can use the fact that $\operatorname{dim}\left(\omega^{\perp} \cap \Omega\right)=\operatorname{dim}\left(\mathcal{R}\left(\mathbf{P}_{\Omega} \mathbf{M}^{\prime}\right)\right)=q$ if rank $(\mathbf{M})=q$.
3. Consider a one-way ANOVA with 4 groups. Assume there are $n$ observations per group. We are testing the hypothesis that all group means are equal, and the usual assumptions are met. Assume the following cases, in which the null is false:


In case 1 , the group means of $A$ and $B$ are equal, the group means of $C$ and $D$ are equal, but the group means of A and D differ by 3 units ( $3 c$, say). In case 2 , the group means of B and C are equal, but the group means of A and B differ by $1.5 c$, and the group means of C and D differ by $1.5 c$. In case 3 , the group means of A and B differ by $1 c$, the group means of B and C differ by $1 c$, and the group means of C and D differ by $1 c$.
(a) For each of those cases, calculate the non-centrality parameter $\lambda$ for the distribution in the F-test as a function of $c / \sigma$, where $\sigma^{2}$ is the within-group variance.
(b) For each of those cases, plot the power of the F-test as a function of $c / \sigma$, for $n=5,10,15,20$.
(c) For $n=10$ and cases 1 and 2, verify your findings by a simulation.


