Statistical Genomics

An introduction and some basic considerations
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The central dogma of biology

Ebbe Andersen (http://mb.au.dk)

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017




The central dogma of statistics
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The central dogma of prediction

Probability/Sampling Prediction Function
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Typical steps in a genomic study

» Determine the scientific question (biological).

» Select the study design (biological and statistical).
» Conduct the experiment (biological).

» Pre-process / normalize the data (statistical).

» Find differentially expressed genes, associations of genomic
variants with a phenotype, ... (statistical).

[LM]
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Why do we look at genomic data?

» Learn about basic biology.
» |dentify drug targets.

» Find biomarkers.

» Disease risk prediction.

» Early detection of disease onset.

» Prediction of response to treatment.
» Diagnosis and disease monitoring.
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Bioinformatics and Computational Biology are super-exciting
fields to be in! With tons of genomic data being generated, this
is a great time to use those skills for clinical and translational
research (headed towards personalized medicine).

However, there are some aspects to all of this that are less than
super-exciting. Sometimes they get lost in all the hype.

>

>

Even the best device can have poor predictive performance.

Poor experimental design is common, and can easily do people in. The
Hall of Shame is well populated.

Mistakes are easy to make with these high dimensional data, even with
the best of intentions.

It is not unusual that the technical artifacts in the genomic data are
much larger than any biological signal.

Quite frequently, you do have a “needle in the haystack” problem. The
haystack will be hard to move, and your barn might not be large enough
for the hay.

Meet the curse of dimensionality!
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The curse of dimensionality

> 1 dimension:
10 positions
[ J

2 dimensions:
100 positions
[

3 dimensions:
> 1000 positions!

www.iro.umontreal.ca/~bengioy




The curse of dimensionality

> (0.01)A(1/(1:20))
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Personalized medicine

L

What i'm about to tell you is gonna change your
life forever. Are you really sure you want to know it?

g
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Assume you identified a gene signature that predicts the early
onset of disease with 99% sensitivity and 99% specificity. What
is the probability of a person having the disease given the result
is positive, if we randomly select a subject from

» the general population with 0.1% disease prevalence?

» a high risk sub-population with 10% disease prevalence?
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DISEASE

TEST
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DISEASE

+ ™ FP
Sensitivity — Pr ( positive test | disease )
Specificity — Pr ( negative test | no disease )
Positive Predictive Value — Pr ( disease | positive test )
Negative Predictive Value =~ — Pr ( no disease | negative test )
Accuracy — Pr ( correct outcome )
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DISEASE

+ —
+ 99 999

TEST
—_ 1 98901

Sensitivity

Specificity

Positive Predictive Value
Negative Predictive Value
Accuracy

99/ (99+1) =99%

98901 / (999+98901) = 99%
99/ (99+999) ~ 9%

98901 / (1+98901) > 99.9%
(99+98901) / 100000 = 99%

N
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DISEASE

+ 9900

TEST

900

89100

Sensitivity — 9900/ (9900+100) = 99%
Specificity — 89100/ (900+89100) = 99%
Positive Predictive Value — 9900 / (9900+900) ~ 92%
Negative Predictive Value — 89100/ (100+89100) ~ 99.9%
Accuracy — (9900+89100) / 100000 = 99%
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Bayes rule
Pr(A | B) =

Pr(A) x Pr(B | A) / Pr(B) =

Pr(A) x Pr(B | A) / { Pr(A) x Pr(B | A) + Pr(not A) x Pr(B | not A) }

Let A denote disease, and B a positive test result!

Lol
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r(A | B) is the probability of disease given a positive test result.
r(A) is the prevalence of the disease.

r(B | A) is the sensitivity of the test.

P
P
Pr(not A) is 1 minus the prevalence of the disease.
P
Pr(not B | not A) is the specificity of the test.

P

r(B | not A) is 1 minus the specificity of the test.




Risk of Down syndrome

Risk of Down syndrome in live births (%)
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Sensitivity / Specificity / Prevalence

Positive predictive value

> 60% / 60% / 0.1%
80% / 80% / 0.1%
80% / 80% / 1.0%

80% / 80% / 10%
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0.15%

0.4%

3.9%

30.8%

Genomics

The Geecmics Seev cos Company

O

GENETIC TESTING FOR

GENE SUSCEPTIBILITY
TO 34 DISEASES

CD Genomics offers genetic testing panel which is based on a technology that assesses a complex but

specific set of sites on the human genome --
an individual’s likelihood of disease.

Single Nucleotide Polymorphisms (SNPs) — which determines

What kinds of diseases are you susceptible to?

Comprehensive Sequencing Anadysis to

Common Disestes Susceptiblity

i
........ > L /“d’g
thit
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GenSeq '™ Disease Susceptibility Panel

Cancers (15)

Breast/Ovarian Cancer, Colorectal Cancer, Pancreatic Cancer, Endometrial
Cancer, Esophageal Cancer, Renal Cancer, Bladder Cancer, Prostate
Cancer, Hodgkin's Lymphoma, Follicular Lymphoma., Chronic Lymphocytic

Leukemia, Meningioma, Abdominal Aortic Aneurysm, Melanoma

Cardiovascular Diseases

(3)

Neurological Diseases (3)
Metabolic Disease (4)

Immune System Diseases

(3)

Endocrine Diseases (3)

Inflammation (3)

Hypertension, Coronary Heart Disease, Venous Thromboembolism.

Chronic Kidney Disease, Ankylosing Spondylitis, Chronic Obstructive
Pulmonary Disease

Obesity, Gout, Kidney Stones, Gallstones

Type | Diabetes, Asthma, Rheumatoid Arthritis

Type |l Diabetes, Endometriosis, Hypothyroidism.

Parkinson's disease, Multiple Sclerosis, Alzheimer's Disease

By identifying your carrier status for mutations linked to 34 common diseases' susceptibility, we provide you

and your family with the knowledge to help you prepare for the future.

By knowing more about your underlying health risks, you and your doctor can make more informed
decisions about your healthcare.

@ Genomics
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As of 06/19/14, the catalog includes 1922 publications and 13395 SNPs.

38 studies were returned in the search below

Download of Search Results (For a description of the file spreadsheet column headings, go to: Tab Delimited File Heading Descriptions. @~ )
Date First Disease/Trait| Initial | ReplicationSample | Region | Reported Gene(s) Mapped Strongest Context Risk P-value OR or beta- Platform
Added to | Author/Date/ Sample size Gene(s) SNP-Risk Allele coefficientand | [SNPs passing QC]
Catalog | Journal/Study Size Allele Frequency [95% c1]
(since in
11/25/08) Controls.
05/01/14 | Hanson RL Type2 278 1,273 American Indian | 11p15.4 | kcvQ1 KCNOL rs8181588-A | intron 0.48 5x10°8 13 [NR] Affymetrix
October 07, | diabetes American | cases, 1,635 American [453,654]
2013 Indian Indian controls, 793
Diabetes young- cases, 3,133 controls
A genome-wide onset
association cases, 129
study in American
American Indian
Indians cases, and 2q36.3 | DNER DNER r51861612-T |intron 0.64 7x10°8 1.29 [NR]
implicates 424
DNERas a American
susceptibility Indian
locus for type 2 controls
diabetes. from 514
sibships
03/11/14 |Harak Type 2 5,976 18,207 Japanese . Tiumina
August 14, diabetes Japanese | ancestry cases, 6,780 View full st of 16 SNPs (6,209,637
2013 ancestry [ Japanese ancestry - (Imputed)
iy cases, Controls, 6,200 11p15.4 |KeNQ1 KCNO1 s2237892-C |intron 0.61 4x1029 13 [1.24-1.36]
Genome:-wide 20,829  |Chinese ancestry
9p21.3 | CDKN24, CDKN2B UBAS2P6 - r510811661-T 0.55 1 x10-18 123 [1.18-1.29]
association Japanese | cases, 7,205 Chinese x
DMRTAL
study identifies ancestry | ancestry controls e
three novel loci controls 10925.2 |TCF7L2 ICF7L2 rs7903146-T |intron 0.04 2 x10-15 1.48 [1.34-1.63]
for type 2
diabetes. 3q27.2  |IGF28P2 1GF28P2 151470579-C | intron 0.34 5x10-14 1.19 [1.14-1.24]
6p22.3 | CDKALL CDKALL rs7754840-C |intron 0.42 2 x10-13 1.8 [1.13-1.23]
7q32.1 | MIR129, LEP LOC101928423 [rs791595-A  |intron 0.08 310713 147 [1.12-1.22]
17p13.1 |siciea13 SLC16A13 1s312457-G | intron 0.078 8x10-13 1.2 [1.14-1.26]
Xq28 DUSPY KRT18P48 - |rs5945326-A 0.68 2 x 10712 1.14 [1.10-1.18]
DUSP9.
9934.3 | GPsm1 GPsM1 1511787792-A | intron 0.874 2x10-10 1.15 [1.10-1.20]
10q23.33 | HHEX HHEX - EXOC6 [rs1111875-C 0.29 2 x108 1.14 [1.09-1.20]
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www.genome.gov/gwastudies
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ARTICLE

Overcoming the Winner’s Curse: Estimating Penetrance
Parameters from Case-Control Data

Sebastian Zollner and Jonathan K. Pritchard

Genomewide association studies are now a widely used approach in the search for loci that affect complex traits. After
detection of significant association, estimates of penetrance and allele-frequency parameters for the associated variant
indicate the importance of that variant and facilitate the planning of replication studies. However, when these estimates
are based on the original data used to detect the variant, the results are affected by an ascertainment bias known as the
“winnet’s curse.” The actual genetic effect is typically smaller than its estimate. This overestimation of the genetic effect
may cause replication studies to fail because the necessary sample size is underestimated. Here, we present an approach
that corrects for the ascertainment bias and generates an estimate of the frequency of a variant and its penetrance
parameters. The method produces a point estimate and confidence region for the parameter estimates. We study the
performance of this method using simulated data sets and show that it is possible to greatly reduce the bias in the
parameter estimates, even when the original association study had low power. The uncertainty of the estimate decreases
with increasing sample size, independent of the power of the original test for association. Finally, we show that application
of the method to case-control data can improve the design of replication studies considerably.

PMID 17357068
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Selected Personalized Medicine Drugs, Treatments and
Diagnostics as of September 2011*

Table:

Indications in quotes and otherwise unattributed, are cited from the therapeutic or diagnostic product label.

Therapeutic product labels contain pharmacogenomic information as:

[ Information only

1 Recommended

[ Required

() Unhighlighted products have no pharmacogenomic information, recommendations or requirements in the label.

THERAPY BIOMARKER/TEST INDICATION

Mi ® (mi ium) | Choli gene Anesthesia adjunct: “Mi is bolized by plasma cholinesterase and
should be used with great caution, if at all, in patients known to be or suspected
of being homozygous for the atypical plasma choli gene.”
Arthritis: “In vitro studies have demonstrated that cytochrome P450 2C9 plays
an important role in the metabolism of flurbiprofen to its major metabolite,
4-hydroxy-flurbiprofen.”
Bipolar disord P phalop fatal, has been
reported following initiation of valproate therapy in patients with urea cycle disorders
[UCDs]...particularly ornithine transcarbamylase deficiency [OTC].”

Breast cancer: Exemestane is indicated for adjuvant treatment of post-

Ansaid® (flurbiprofen) CYP2C9

Depakote® (divalproex) | UCD (NAGS; CPS; ASS;

OTC; ASL; ARG)

L7, . halopatl
y

Aromasin® (exemestane)
Arimidex® (anastrozole)
Nolvaldex® (tamoxifen)

Estrogen Receptor (ER)
menopausal women with ER-positive early breast cancer. Anastrozole is for
treatment of breast cancer after surgery and for metastases in post-menopausal
women. Tamoxifen is the standard therapy for estrogen receptor-positive early
breast cancer in pre-menopausal women.

Chemotherapy Mammostrat® Breast cancer: Prognostic immunohistochemistry (IHC) test used for
postmenopausal, node negative, estrogen receptor expressing breast cancer patients

who will receive hormonal therapy and are considering adjuvant chemotherapy.

Chemotherapy

MammaPrint®

Breast cancer: Assesses risk of distant metastasis in a 70-gene expression profile.

Chemotherapy

Oncotype DX® 16-gene
signature

Breast cancer: A 16-gene signature (plus five reference genes) indicates whether a
patient has a low, intermediate, or high risk of having a tumor return within 10
years. Low-risk patients may be treated successfully with hormone therapy alone.
High-risk patients may require more aggressive treatment with chemotherapy.
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www.personalizedmedicinebulletin.com




Figure 1. Projected Distribution of Absolute Lifetime Risk of Breast
Cancer for White Women in the United States Ages 30 to 80 Years

0.16

[ Full model
[ Risk factor-only model
[7] SNP-only model

Frequency Density

0 5 10 15 20 25 30 35

Absolute Risk of Breast Cancer for White Women
in the United States Ages 30to 80y, %

SNP indicates single nucleotide polymorphisms.

PMID 27228256
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Figure 3. Distribution of Absolute Lifetime Risk Associated
With Modifiable Risk Factors Stratified by Deciles of Nonmodifiable
Risk for White Women in the United States
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—— Association versus Prediction
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Technical replicates
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Mclntyre et al. BMC Genomics 2011, 12:293

http://www.biomedcentral.com/1471-2164/12/293 BMC

Genomics

RNA-seq: technical variability and sampling

Lauren M Mclntyre', Kenneth K Lopiano?, Alison M Morse', Victor Amin', Ann L Oberg?, Linda J Young? and
Sergey V Nuzhdin®

Abstract

Background: RNA-seq is revolutionizing the way we study transcriptomes. mRNA can be surveyed without prior
knowledge of gene transcripts. Alternative splicing of transcript isoforms and the identification of previously
unknown exons are being reported. Initial reports of differences in exon usage, and splicing between samples as
well as quantitative differences among samples are beginning to surface. Biological variation has been reported to
be larger than technical variation. In addition, technical variation has been reported to be in line with expectations
due to random sampling. However, strategies for dealing with technical variation will differ depending on the
magnitude. The size of technical variance, and the role of sampling are examined in this manuscript.

Results: In this study three independent Solexa/lllumina experiments containing technical replicates are analyzed.
When coverage is low, large disagreements between technical replicates are apparent. Exon detection between
technical replicates is highly variable when the coverage is less than 5 reads per nucleotide and estimates of gene
expression are more likely to disagree when coverage is low. Although large disagreements in the estimates of
expression are observed at all levels of coverage.

Conclusions: Technical variability is too high to ignore. Technical variability results in inconsistent detection of
exons at low levels of coverage. Further, the estimate of the relative abundance of a transcript can substantially
disagree, even when coverage levels are high. This may be due to the low sampling fraction and if so, it will
persist as an issue needing to be addressed in experimental design even as the next wave of technology produces
larger numbers of reads. We provide practical recommendations for dealing with the technical variability, without
dramatic cost increases.

PMID 21645359
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Technical replicates
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Distributions you should know

* Normal (Gaussian) distribution
* tdistribution

e Chi-square distribution

* Fdistribution

* Binomial distribution

* Poisson distribution

* Gamma distribution

* Negative Binomial distribution
* Beta distribution

* Beta Binomial distribution

* Multinomial distribution
1 parameter
2 parameters

And how can we estimate some of those parameters...?
3+ parameters
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@ MoODELLING

—

Bayesian statistical methods for
genetic association studies

Matthew Stephens* and David J. Balding*$

Abstract | Bayesian statistical methods have recently made great inroads into many areas

of science, and this advance is now extending to the assessment of association between
genetic variants and disease or other phenotypes. We review these methods, focusing
onsingle-SNP tests in genome-wide association studies. We discuss the advantages of
the Bayesian approach over classical (frequentist) approaches in this setting and provide
a tutorial on basic analysis steps, including practical guidelines for appropriate prior
specification. We demonstrate the use of Bayesian methods for fine mappingin
candidate regions, discuss meta-analyses and provide guidance for refereeing
manuscripts that contain Bayesian analyses.
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