Statistical Modeling 2

Linear models in genomics
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Linear models

t-test linear model
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Two groups (t-test)
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Linear regression with SNPs

Many analyses fit the ‘additive model’

y = Bo + B X #minor alleles
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Linear regression with SNPs

An alternative is the ‘dominant model’;

y=Bo+ B x (G# AA)

_____________________________

cholesterol

AA Aa aa
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Linear regression with SNPs

or the ‘recessive model’;

y = fo+ B x (G == AA)

cholesterol
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Linear regression with SNPs

Finally, the ‘two degrees of freedom model’;

Yy = Bo+ Baa X (G == Aa) + Bua X (G == aa)

cholesterol
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Linear regression with SNPs

TESTS FOR LINEAR TRENDS IN PROPORTIONS AND
FREQUENCIES

P. ArMITAGE

Statistical Research Unit of the Medical Research Council,
London School of Hygiene and Tropical Medicine

1. Introduction

One frequently encounters data consisting of a series of proportions,
occurring in groups which fall into some natural order. The question
usually asked is then not so much whether the proportions differ
significantly, but whether they show a significant trend, upwards or
downwards, with the ordering of the groups. In the data shown in
Table 1, for instance, the usual test for a 2 X 3 contingency table
yields a x* equal to 7.89 on 2 degrees of freedom, corresponding to a
probability of about 0.02.

Source: Biometrics, Vol. 11, No. 3 (Sep., 1955), pp. 375-386
Published by: International Biometric Society
Stable URL: http://www jstor.org/stable/3001775
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Correlation and regression

e In a correlation setting we try to determine whether two random
variables vary together (covary).

e There is no ordering between those variables, and we do not
try to explain one of the variables as a function of the other.

e In regression settings we describe the dependence of one vari-
able on the other variable.

e There is an ordering of the variables, often called the dependent
variable and the independent variable.

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

Correlation

Let X and Y be random variables with
px = E(X), py = E(Y), ox = SD(X), oy = SD(Y)

Covariance Correlation
cov(X,Y) = E{(X = px) (Y — pv)} cor(X,Y) = SV Y)
oxoy

— cov(X,Y) can be any real number — —1<cor(X,Y) <1
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Correlation

Consider n pairs of data:

We consider these as independent draws from some
bivariate distribution.

(X1, Y1), (X2, ¥2), (X3, ¥3), - .-, (Xn, Yn)

We estimate the correlation in the underlying distribution by:

= X0—)
\/Zi(xi —X)2 Yy —Y)?

r

This is sometimes called the correlation coefficient.
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Correlation measures linear dependency
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— All three plots have correlation ~ 0.7!
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Correlation measures linear dependency

www.wikipedia.org
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The correlation coefficient of two jointly distributed random vari-
ables X and Y is defined as

_ cov(X,Y)

N ox0y
where cov(X,Y) is the covariance between X and Y, and ox and
oy are their respective standard deviations.

If X and Y follow a bivariate normal distribution with correlation p
) 2
Yi Ky pPOx0Oy Oy

yilzi ~ N (Bo + Bz, 07)

where By = py — Bipx, B = poy/ox, and o = o (1 — p?).

then
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R? does not assess whether the model fits

A A A2 2
Bo=3.0 B,=0.5 o0 =13.75 R"=0.667
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Fig. 1. Duplicate occurrences of genes are highly correlated. Sev-
enty-four genes were found to be represented more than once in the
list of differentially expressed genes we identified. A fold change
relative to the 2-day value was determined for these genes at 8 and
15 days (higher/lower value to give a value >1), and these fold
changes were compared across the replicate samples. A simple linear
correlation was calculated for 71 of these genes. The regression line

was defined by the following equation: replicate 2 = 1.22(replicate
1) - 0.3; r2 = 0.84.
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Pearson and Spearman

correlation=0.99

correlation=0.066
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If you want to show that two sets of measurements are alike (such
as gene expression from two technical replicates of the same sam-
ple) use the concordance correlation coefficient.

The concordance correlation between two random variables X
and Y is defined as

2 x cov(X,Y)
o% + oy + (nx — py)*

pCC(Xa Y) =

Unlike the Pearson correlation coefficient, the concordance cor-
relation is not invariant to changes in location and scale, and as-
sesses the actual agreement between X and Y, rather then their
correlation alone.
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iTRAQ
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PMID 23555056

Tradtional QTL mapping
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eQTL mapping

i 2
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eQTL mapping

For eQTL mapping (gene g and marker m):

Yg = XmBearL + €eart

Bear. = (X Xm) ' X0 Yg and COV(BeQTL) = 02 (X Xm)™

For rapid computations in eQTL mapping, store the terms

(XTXm)'XI  and (XTI Xn)".
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Gene expression Advance Access publication April 6, 2012

Matrix eQTL: ultra fast eQTL analysis via large matrix operations

Andrey A. Shabalin
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hil, NC 27599, USA
Associate Editor: Trey Ideker

ABSTRACT

Motivation: Expression quantitative trait loci (€QTL) analysis links
variations in gene expression levels to genotypes. For modern
datasets, eQTL analysis is a computationally intensive task as it

involves testing for association of billions of transcript-SNP (single- Table 1. Estimated performance of various eQTL software on the CF dataset
nucleotide polymorphism) pair. The heavy computational burden

makes eQTL analysis less popular and sometimes forces analysts Method\No. of covariates Zero Ten

to restrict their attention to just a small subset of transcript-SNP

pairs. As more transcripts and SNPs get interrogated over a growing Plink 9.4 583.3 days
number of samples, the demand for faster tools for eQTL analysis Merlin 196 20.0 days
grows stronger. ) R/qtl (Revolution R) 1.0 4.7 days
Rgsylts: We have c!evelcped a ﬁew software for computationally snpMatrix 32 5.1 days
efficient eQTL analysis called Matrix eQTL. In tests on large datasets, eMap 17.8 N/A days

it was 2-3 orders of magnitude faster than existing popular tools FastMap 103 N/A hours

for QTL/eQTL analysis, while finding the same eQTLs. The fast ) : .
performance is achieved by special preprocessing and expressing Matrfx eQTL (Maﬂab). 11.8 11.8 mfnutes
the most computationally intensive part of the algorithm in terms Matrix eQTL (Revolution R) 14.6 14.6 minutes
of large matrix operations. Matrix eQTL supports additive linear and Matrix eQTL (R, Goto BLAS) 19.4 194 minutes
ANOVA models with covariates, including models with correlated and

heteroskedastic errors. The issue of multiple testing is addressed by The time for all methods is projected from tests on a dataset with 2201 genes and
calculating false discovery rate; this can be done separately for cis- 57333 SNPs. The timings projections for Matrix eQTL implementations were refined
and trans-eQTLs. by applying them to the complete dataset.

Availability: Matlab and R implementations are available for free at
http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL
Contact: shabalin@email.unc.edu

PMID 22492648
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GWAs permutation tests
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For rapid permutations in a GWAs, store the terms

(XTXn)'XT  and (XD Xm)™".
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Linear model theory

(and what it means)

Theorem: If X ~ N(u,X) and A(= A’) and B are constant matrices, then X’AX and BX are indepen-
dently distributed iff BX A = 0.

For normally distributed data, the sample mean and the sample variance are independent.

Theorem: If Y ~ N,(p,X) and C,, is a constant matrix of rank p, then CY ~ N,(Cp, CEC').

Linearly transformed normal data (including the sample mean) remain normal.
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Effects of model violations

Effect of Underfitting Effect of Overfitting
,3 biased unbiased
Y biased unbiased
S? biased upward unbiased

cov(B)
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Fixed effects

Underlying group dist'ns

Standard ANOVA model
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Random effects
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(@) GENOME-WIDE ASSOCIATION STUDIES

‘Meta-analysis methods for
genome-wide association studies
and beyond

Evangelos Evangelou' and John P. A. loannidis®3

Abstract | Meta-analysis of genome-wide association studies (GWASs) has become

a popular method for discovering genetic risk variants. Here, we overview both widely
applied and newer statistical methods for GWAS meta-analysis, including issues of
interpretation and assessment of sources of heterogeneity. We also discuss extensions of
these meta-analysis methods to complex data. Where possible, we provide guidelines for
researchers who are planning to use these methods. Furthermore, we address special
issues that may arise for meta-analysis of sequencing data and rare variants. Finally, we

discuss challenges and solutions surrounding the goals of making meta-analysis data

publicly available and building powerful consortia.

Table 2 | Comparison of meta-analysis software packages

METAL GWAMA MetABEL PLINK
Ability to process files from GWAS  No Yes; SNPTEST, Yes; ABEL Yes; PLINK
analysis tools; software used PLINK
Fixed effects implemented? Yes Yes Yes Yes
Random effects implemented? No Yes No No
Heterogeneity metrics generated Q. QI Q. Q,?
Graphical illustration of meta- No Manhattan Forest plots No
analysis results and QQ plots

GWAS, genome-wide association study.
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R packages
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PMID 23657481

Fixed and random effects
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Non-diseased

N11 Ni2 Nzt Nz

Na1 Naz

N4y Nzz Ns; Nsp




Analysis of variance
Nested ANOVA

Yik = i+ oi + B + €ijk

Mixed effects model

Q fixed; Zai =0
/Bij ~ NormaI(O, UQB|A)

Eijk ™~ NormaI(O, 02)

> o?

The expected mean squares are  ¢? +n aé‘ A+tnb

a-—1
o®+n US‘ A
0_2
Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017 [ 140615 ]
. °
Technical replicates
A B A B
. : . . 1 . : ‘
¢ . 1 : . 1
M H : P
L . : ] . .
. . . (]
R A A A2 A3 A4 B:1 B2 B:3 B4

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017




Ignoring dependence
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Significance level : 0.30
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test statistic

Significance level : 0.05
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p-value

5 biological replicates per group, with 3 technical replicates each.
Biological variability (SD) ten times larger than technical variability.




