
Ingo	Ruczinski		|		Asian	Ins0tute	in	Sta0s0cal	Gene0cs	and	Genomics		|		July	21-22,	2017			

Sta$s$cal	Modeling	2	

Linear	models	in	genomics		
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Linear	models	
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Two	groups	(t-test)	
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Three	groups		
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Linear	regression	with	SNPs	

[		Thomas	Lumley,	Ken	Rice		]	
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Linear	regression	with	SNPs	

[		Thomas	Lumley,	Ken	Rice		]	
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Linear	regression	with	SNPs	

[		Thomas	Lumley,	Ken	Rice		]	
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Linear	regression	with	SNPs	

[		Thomas	Lumley,	Ken	Rice		]	
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Linear	regression	with	SNPs	
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Correla$on	and	regression	
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Correla$on	
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Correla$on	
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Correla$on	measures	linear	dependency	
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Correla$on	measures	linear	dependency	

www.wikipedia.org	
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R2	does	not	assess	whether	the	model	fits		
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Pearson	and	Spearman	
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PMID	21645359	
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Trad$onal	QTL	mapping	

[		KB		]	



Ingo	Ruczinski		|		Asian	Ins0tute	in	Sta0s0cal	Gene0cs	and	Genomics		|		July	21-22,	2017			

eQTL	mapping	

PMID	11923494		
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eQTL	mapping	
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eQTL	mapping	
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GWAs	permuta$on	tests	
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Linear	model	theory		
(and	what	it	means)	

For	normally	distributed	data,	the	sample	mean	and	the	sample	variance	are	independent.		
	

Linearly	transformed	normal	data	(including	the	sample	mean)	remain	normal.	

[		140.751		]	
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Effects	of	model	viola$ons	

[		140.751		]	
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Random	effects	
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Fixed	effects	
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Random	effects	



Ingo	Ruczinski		|		Asian	Ins0tute	in	Sta0s0cal	Gene0cs	and	Genomics		|		July	21-22,	2017			 PMID	23657481	

Ingo	Ruczinski		|		Asian	Ins0tute	in	Sta0s0cal	Gene0cs	and	Genomics		|		July	21-22,	2017			

Fixed	and	random	effects	
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Analysis	of	variance		
Nested	ANOVA	
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Technical	replicates	
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5 biological replicates per group, with 3 technical replicates each. 

Biological variability (SD) ten times larger than technical variability.
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