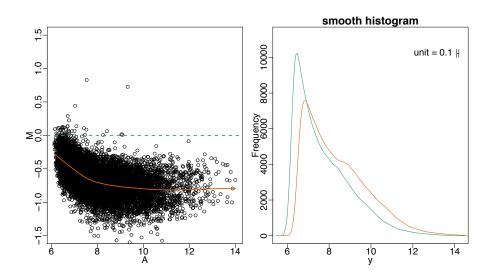
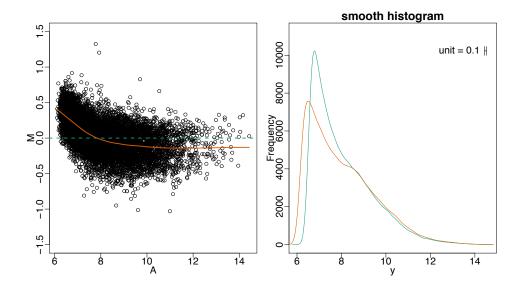

Statistical Modeling 3

Bias correction and normalization

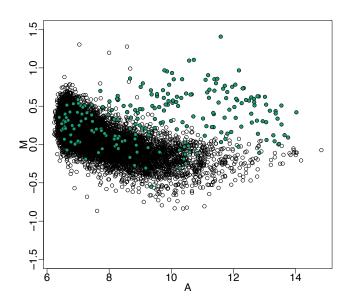
Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017




Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

[RI]

More than location and scale changes!

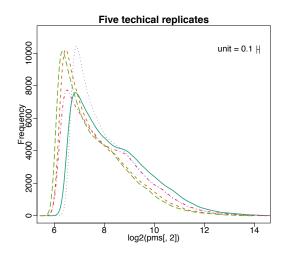

Median shifts do not solve the problem!

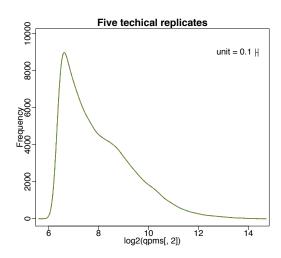
Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

[RI]

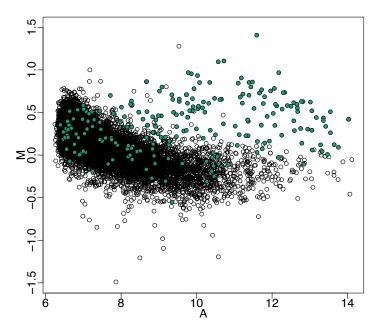
There are non-linear effects!

Quantile normalization

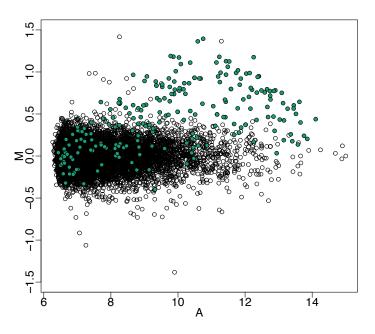

Averaged						
3.5	3.5	3.5	3.5			
5.0	5.0	5.0	5.0			
5.5	5.5	5.5	5.5			
6.5	6.5	6.5	6.5			
8.5	8.5	8.5	8.5			


Re-order						
3.5	3.5	5.0	5.0			
8.5	8.5	5.5	5.5			
6.5	5.0	8.5	8.5			
5.0	5.5	6.5	6.5			
5.5	6.5	3.5	3.5			

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017


[RI]

Densities are forced to be identical

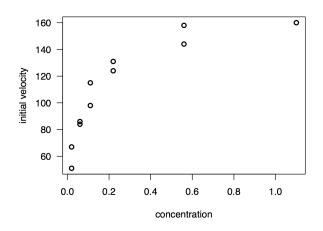

Differential expression can be preserved

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

[RI]

Differential expression can be preserved

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017


"Essentially, all models are wrong, but some are useful"

George E.P. Box

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

[RI]

A biochemical experiment

Michaelis-Menten equation

$$V = \frac{V_{\text{max}} \times C}{K + C}$$

V = initial velocity

C = concentration

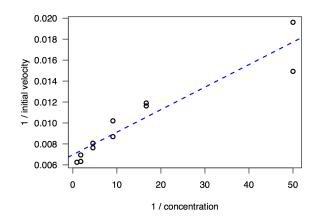
 $V_{\rm max}$ = maximum velocity

K = rate constant

[140.615]

A biochemical experiment

$$V = \frac{V_{\text{max}} \times C}{K + C}$$


$$\Rightarrow \frac{1}{V} = \frac{K + C}{V_{\text{max}} \times C}$$
$$= \frac{K}{V_{\text{max}} \times C} + \frac{1}{V_{\text{max}}}$$

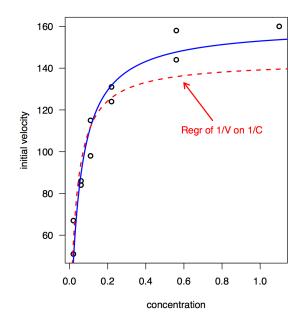
$$\Rightarrow \frac{1}{V} = \left(\frac{1}{V_{\text{max}}}\right) + \left(\frac{K}{V_{\text{max}}}\right) \times \left(\frac{1}{C}\right)$$

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

[140.615]

A biochemical experiment

Model:


$$\frac{1}{V} = \beta_0 + \beta_1 \, \left(\frac{1}{C}\right) + \, \operatorname{error}$$

Intercept 0.00697 Slope 0.00022

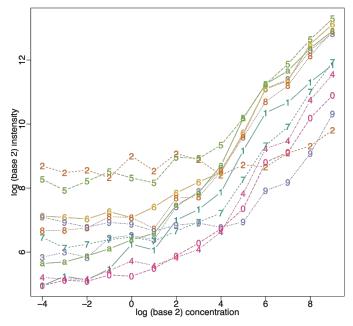
$$\hat{V}_{\text{max}} = 1/\text{Intercept} = 1/0.00697$$

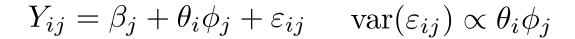
= 143

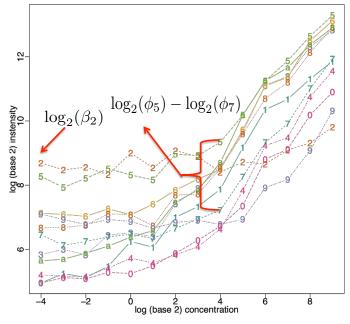
$$\hat{K} = \text{Slope} \times \hat{V}_{\text{max}} = 0.031$$

A biochemical experiment

Which is more reasonable?

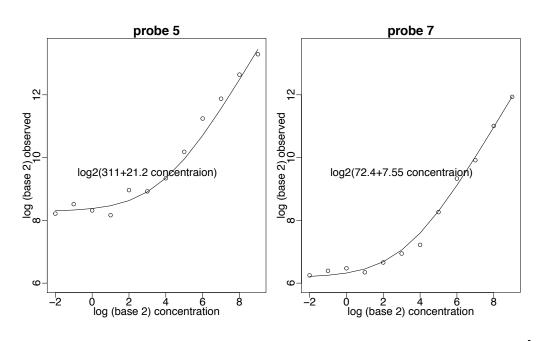

$$\frac{1}{V} = \beta_0 + \beta_1 \left(\frac{1}{C}\right) + \text{error}$$


$$V = \frac{V_{\text{max}} \times C}{K + C} + \text{error}$$


Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

[140.615]

Eleven probes from one spiked-in gene



Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017

[RI]

Model fit to two probes

Ingo Ruczinski | Asian Institute in Statistical Genetics and Genomics | July 21-22, 2017