```{r setup, include=FALSE} knitr::opts_chunk$set(echo=TRUE, fig.align="center") ``` #### Statistics for Laboratory Scientists ( 140.615 ) ## Analysis of Variance - Multiple Comparisons #### Example from class: pea sections and sugar The data. ```{r} x <- c(75,67,70,75,65,71,67,67,76,68, 57,58,60,59,62,60,60,57,59,61, 58,61,56,58,57,56,61,60,57,58, 58,59,58,61,57,56,58,57,57,59, 62,66,65,63,64,62,65,65,62,67) treat <- factor(rep(c("C","G","F","G+F","S"), rep(10,5))) sugar <- data.frame(rsp=x, trt=treat) head(sugar) str(sugar) summary(sugar) ``` Plot the data. ```{r} set.seed(1) par(las=1) stripchart(sugar$rsp ~ sugar$trt, method="jitter", pch=1, xlab="response", ylab="group") ``` Analysis of variance. ```{r} aov.out <- aov(rsp ~ trt, data=sugar) summary(aov.out) ``` Tukey's HSD ```{r} sugar.tukey <- TukeyHSD(aov.out) par(las=1) plot(sugar.tukey) abline(v=0, lty=2, col="red") sugar.tukey ``` Bonferroni corrected confidence intervals (a customized function), based on a pooled estimate of the within-group standard deviation. ```{r} library(devtools) devtools::install_github("bllfrg/SPH.140.615",quiet=TRUE) library(SPH.140.615) sugar.bonf <- ci.bonf(sugar$rsp, sugar$trt) sugar.bonf ``` An alternative built-in function to get Bonferroni corrected pairwise comparisons p-values, based on a pooled estimate of the within-group standard deviation. ```{r} pairwise.t.test(sugar$rsp, sugar$trt, p.adjust="bonf") ``` The Newman-Keuls procedure, using a customized function. ```{r} newman.keuls(sugar$rsp, sugar$trt) ```