```{r setup, include=FALSE} knitr::opts_chunk$set(echo=TRUE, fig.align="center") ``` #### Statistics for Laboratory Scientists ( 140.615 ) ## Error Propagation David Sullivan's pf3d7 plasmodium data. ```{r} h2o2 <- c(0,0,0, 10,10,10, 25,25,25, 50,50,50) pf3d7 <- c(0.3399,0.3563,0.3538, 0.3168,0.3054,0.3174, 0.2460,0.2618,0.2848, 0.1535,0.1613,0.1525) ``` Plot the data. ```{r} par(las=1) plot(h2o2, pf3d7, xaxt="n", xlab="H2O2 concentration", ylab="OD") axis(1,c(0,10,25,50)) abline(lsfit(h2o2,pf3d7), lwd=2, col="blue", lty=2) ``` What is the percent change per unit H202 concentration? ```{r} lm.fit <- lm(pf3d7 ~ h2o2) betahat <- lm.fit$coefficients betahat ratio <- betahat[2]/betahat[1] ratio round(100*ratio,1) ``` Plot the data as percentages of optical density at zero concentration. ```{r} par(las=1) plot(h2o2, pf3d7, xaxt="n", yaxt="n", xlab="H2O2 concentration", ylab="OD") axis(1,c(0,10,25,50)) abline(lsfit(h2o2,pf3d7), lwd=2, col="blue", lty=2) axis(2, betahat[1]*seq(0.5,1,by=0.1), paste0(seq(50,100,10),"%")) abline(h=betahat[1]*seq(0.5,1,by=0.1), lty="dotted", col="lightgrey") ``` Side note: what H2O2 concentration leads to an estimated 50% reduction in optical density? ```{r} -0.5/ratio ``` What is the standard error of the percent change per unit H202 concentration? Here is a function to do all the work. ```{r} estratio <- function(x,y){ lm.sum <- summary(lm(y~x)) # the coefficients betahat <- lm.sum$coef[,1] # the estimated ratio ratio <- betahat[2]/betahat[1] # the estimated standard errors ses <- lm.sum$coef[,2] # the covariance between estimated coefficients covar <- lm.sum$cov.unscaled[1,2]*lm.sum$sigma^2 # the estimated standard error se <- abs(ratio) * sqrt(sum((ses/betahat)^2+2*covar/prod(betahat))) # return the estimated ratio and its estimated standard error return(list(ratio=ratio,se=se)) } ``` Return the percent change per unit H202 concentration, and its standard error. ```{r} est <- estratio(h2o2, pf3d7) est ``` The estimated percent change per unit H202 concentration. ```{r} round(100*est$ratio,2) ``` The estimated standard error. ```{r} round(100*est$se,3) ``` The 95% confidence interval for the estimated percent change per unit H202 concentration. ```{r} round(100 * (est$ratio + c(-1,1)*1.96*est$se) ,2) ```