The Pearson & Lee (1906) data.
library(SPH.140.615)
example(pear)
##
## pear> str(pear)
## 'data.frame': 1376 obs. of 2 variables:
## $ father : num 63.6 64 65.5 58.8 59.4 62.5 62.9 65.7 67.3 58.7 ...
## $ daughter: num 52.6 53.9 55.8 56.2 56.1 56.1 56.9 56.3 56.7 57.2 ...
##
## pear> summary(pear)
## father daughter
## Min. :58.40 Min. :52.60
## 1st Qu.:65.80 1st Qu.:62.10
## Median :67.80 Median :63.80
## Mean :67.68 Mean :63.84
## 3rd Qu.:69.60 3rd Qu.:65.60
## Max. :76.00 Max. :72.60
Plot the data.
plot(pear)
Calculate the sample means and the sample standard deviations of the fathers’ and daughters’ heights.
mes <- apply(pear, 2, mean)
mes
## father daughter
## 67.67871 63.83823
sds <- apply(pear, 2, sd)
sds
## father daughter
## 2.770190 2.656137
Calculate the Pearson correlation between the fathers’ and daughters’ heights.
cor(pear)
## father daughter
## father 1.0000000 0.5173923
## daughter 0.5173923 1.0000000
cor(pear)[1,2]
## [1] 0.5173923
cor(pear$father, pear$daughter)
## [1] 0.5173923
Spearman’s rank correlation coefficient.
cor(pear$father, pear$daughter, method="spearman")
## [1] 0.5081574
Plot the ranks.
plot(rank(pear$father), rank(pear$daughter), cex=0.5)
cor(rank(pear$father), rank(pear$daughter))
## [1] 0.5081574
Test for association between the fathers’ and daughters’ heights.
cor.test(pear$father, pear$daughter)
##
## Pearson's product-moment correlation
##
## data: pear$father and pear$daughter
## t = 22.411, df = 1374, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4776055 0.5550614
## sample estimates:
## cor
## 0.5173923